Ivan Lončar

Fakultet organizacije i informatike Varaždin

UDK: 513 Original Scientific Paper

e-mail:Ivan.Loncar@foi.hr

A note on approximate limits

The main theorems of this paper are the following theorems. **THEOREM 2.7.** Let $\mathbf{X} = \{X_n, p_{mn}, N\}$ be an approximate sequence of non - empty Čech-complete paracompact spaces X_n such that each $p_{nm}(X_m)$ is dense in X_n , then $\lim X$ is non-empty and Čech-complete. Moreover, $p_n(\lim \mathbf{X})$ is dense in X_n for each $n \in \mathbb{N}$. **THEOREM 2.11.** Let $\mathbf{X} = \{X_n, p_{mn}, IN\}$ be an approximate inverse sequence of absolute G_{δ} - space. Then there exist: a) a cofinal subset $M = \{n_i : i \in \mathbb{N}\}$ of \mathbb{N} , b) a usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}$ and $q_{ij} = p_{ii+1} p_{i+1i+2} \dots p_{j-1j}$ for each $i, j \in \mathbb{N}$, c) a homeomorphism $H : lim \mathbf{X} \rightarrow lim \mathbf{Y}$.

Keywords: Approximate inverse system and limit. Classification: 54B25, 54D30.

1 Preliminaries

A space means a Tychonoff space and a mapping means a continuous (not necessarily surjective) mapping.

Cov(X) is the set of all normal coverings of a topological space X.For other details see [1].

In this paper we study the approximate inverse system in the sense of S. Mardešić [12].

DEFINITION 1.1 An approximate inverse system is a collection $X = \{X_a, p_{ab}, A\}$, where (A, \leq) is a directed preordered set, $X_a, a \in A$, is a topological space and $p_{ab}: X_b \to X_a, a \leq b$, are mappings such that $p_{aa} = id$ and the following condition (A2) is satisfied:

(A2) For each $a \in A$ and each normal cover $\mathcal{U} \in Cov(X_a)$ there is an index $b \ge a$ such that $(p_{ac}p_{cd}, p_{ad}) \prec \mathcal{U}$, whenever $a \le b \le c \le d$.

The inverse system in the sense of [6, p. 135.] we will call usual inverse system.

DEFINITION 1.2 An approximate map $\mathbf{p} = \{\mathbf{p}_a : a \in A\}: X \to X$ into an approximate system $\mathbf{X} = \{X_a, \mathbf{p}_{ab}, A\}$ is a collection of maps $\mathbf{p}_a: X \to X_a$, $a \in A$, such that the following condition holds

(AS) For any $a \in A$ and any $\mathcal{U} \in Cov(X_a)$ there is $b \ge a$ such that $(p_{ac}p_c, p_a) \prec \mathcal{U}$ for each $c \ge b$.(See [14]).

DEFINITION 1.3 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate system and let $\mathbf{p} = \{p_a: a \in A\}: X \rightarrow X$ be an approximate map. We say that \mathbf{p} is a *limit* of \mathbf{X} provided it has the following universal property:

(UL) For any approximate map $\mathbf{q} = \{\mathbf{q}_a: a \in A\}: \mathbf{Y} \to \mathbf{X}$ of a space \mathbf{Y} there exists a unique map $\mathbf{g}: \mathbf{Y} \to \mathbf{X}$ such that $\mathbf{p}_a \mathbf{g} = \mathbf{q}_a$.

DEFINITION 1.4 Let $X = \{X_a, p_{ab}, A\}$ be an approximate system. A point $x = (x_a) \in \prod \{X_a : a \in A\}$ is called a *thread* of X provided it satisfies the following condition:

 $(\mathbf{L}) \qquad (\forall a \in \mathbf{A})(\forall \mathcal{U} \in \operatorname{Cov}(\mathbf{X}_a))(\exists b \geq \mathbf{a})(\forall c \geq b)\mathbf{p}_{ac}(\mathbf{x}_c) \in \operatorname{st}(\mathbf{x}_a, \mathcal{U}).$

REMARK 1.5 If X_a is a $T_{3.5}$ space, then the sets $st(x_a, \mathcal{U}), \mathcal{U} \in Cov(X_a)$, form a basis of the topology at the point x_a . Therefore, for an approximate

system of Tychonoff spaces condition (L) is equivalent to the following condition:

$$(\mathbf{L})^* \qquad (\forall a \in \mathbf{A}) \lim \{\mathbf{p}_{ac}(\mathbf{x}_c) : \mathbf{c} \ge \mathbf{a}\} = \mathbf{x}_a.$$

The existence of the limit of any approximate system was proved in [14, (1.14)Theorem].

THEOREM 1.6 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate system. Let $X \subseteq \Pi\{X_a : a \in A\}$ be the set of all threads of \mathbf{X} and let $p_a: X \to X_a$ be the restriction $p_a = \pi_a | X$ of the projection $\pi_a: \Pi X_a \to X_a, a \in A$. Then $\mathbf{p} = \{p_a: a \in A\}: X \to \mathbf{X}$ is a limit of \mathbf{X} .

We call this limit the canonical limit of $\mathbf{X} = \{X_a, p_{ab}, A\}$.

We say that a statement T on elements of a directed set D is fulfiled [16]:

1. For almost all $n \in D$ if there exists an element $n_0 \in D$ such that T is fulfiled for every $n \ge n_0$.

2. For arbitrarily large $n \in D$ if the set of all $n \in D$ for which T is fulfiled is cofinal with D.

A net $\{A_n, n \in D\}$ is a function [16] defined on a directed set D. If $\{A_n, n \in D\}$ is a net of subsets of X, then:

3. A limit inferior LiA_n is the set of all point $x \in X$ such that every neighbouhood of x intersect A_n for almost all $n \in D$.

4. A limit superior LsA_n is the set of all point $x \in X$ such that every neighbouhood of x intersect A_n for arbitrarily large $n \in D$.

5. A net $\{A_n, n \in D\}$ is said to be topologically convergent (to a set A) if $LsA_n = LiA_n$ (=A) and in this case the set A will be denoted by $LimA_n$.

2 Approximate limit of paracompact Čechcomplete spaces

We start with the following theorem.

LEMMA 2.1 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of non-empty compact Hausdorff spaces with limit X. If A' is a cofinal subset of A, then for each family $\mathcal{N} = \{x_a: x_a \in X_a, a \in A'\}$ the set $Ls\{p_a^{-1}(x_a)$: $a \in A'\}$ is non-empty and $p_a(Ls\{p_a^{-1}(x_a): a \in A'\}) \subseteq Ls\{p_{ab}(x_b): b \in A', b \ge a\}$.

Proof.For each $a \in A$ we consider the net $\mathcal{N}_a = \{p_{ab}(\mathbf{x}_b): b \in A', b \geq a\}$. From the compactness of X_a it follows that the set C_a of all cluster points of \mathcal{N}_a is non-empty.Clearly,each C_a is closed and compact in X_a .First,we prove

(a) For each
$$a \in A$$
, C_a is a subset of $p_a(X)$.

If we suppose that some $c_a \in C_a \setminus p_a(X)$, then c_a and $p_a(X)$ respectively, have disjoint neighborhoods U and V.By virtue of the property (B3) [14, pp. 606,615] there is a b≥a such that $p_{ac}(X_c) \subseteq V$ for each $c \ge b$, $c \in A'$. This is impossible since there exists $c \ge b$ such that $p_{ac}(x_c) \in U$ (c_a is a cluster point of the net \mathcal{N}_a).

From (a) it easily follows that

(b) For each $a \in A$, the set $p_a^{-1}(C_a)$ is non-empty.

By (b) there is $y^a \in p_a^{-1}(C_a) \subseteq \lim X$, $a \in A'$. Since $\lim X$ is compact, there is a cluster point $y \in \lim X$ of the net $\mathcal{Y} = \{y^a : a \in A'\}$. Let us prove

(c) $p_a(y) \in C_a$, $a \in A$.

It suffices to prove that for each neighborhood U_a of $p_a(y)$ and each b_0 there exists a $d \ge b_0$ such that $p_{ad}(\mathbf{x}_d) \in U_a$. Let \mathcal{U} be a normal cover of X_a such that

$$st^{2}(p_{a}(y),\mathcal{U})\subseteq U_{a}.$$
(1)

Let $U_1 \in \mathcal{U}$ be such that $p_a(y) \in U_1$. Then $p_a^{-1}(U_1)$ is a neighborhood of y. The set B of all $b \in A'$ with $y^b \in p_a^{-1}(U_1)$ is cofinal in A' since y is a

cluster point of \mathcal{Y} . By virtue of (AS) the set B' \subseteq B of all $b\in B$, $b\geq b_0$, such that

$$(p_a, p_{ab}p_b) \prec \mathcal{U} \tag{2}$$

is cofinal in A. Similarly, by (A2), the set $B'' \subseteq B'$ of all $b \in B'$ such that

$$(p_{ac}, p_{ab}p_{bc}) \prec \mathcal{U}, \quad c \ge b$$
 (3)

is cofinal in A. Let $b \in B''$. Then $y^b \in p_a^{-1}(U_1)$. Thus

$$p_a(y), p_a(y^b) \in U_1. \tag{4}$$

By virtue of (2) it follows

$$p_a(y^b), p_{ab}p_b(y^b) \in U_2 \in \mathcal{U}.$$
(5)

This and (4) imply

$$p_{ab}p_b(y^b) \in St(p_a(y), \mathcal{U}) \tag{6}$$

Now, $p_b(y^b) \in C_b$ since $y^b \in p_b^{-1}(C_b)$. We infer that $p_{ab}^{-1}(St(p_a(y), U))$ is a neighborhood of $p_b(y^b)$. Since $p_b(y^b)$ is a cluster point of $\mathcal{N}_a = \{x_a : a \in A'\}$ there is a $d \ge b \ge b_0, d \in A'$ such that $p_{bd}(x_d) \in p_{ab}^{-1}(St(p_a(y), U))$. This means that $p_{ab}(p_{bd}(x_d)) \in St(p_a(y), U)$. Using (3), $p_{ad}(x_d) \in St^2(p_a(y), U)$, \mathcal{U}). Thus, by (1)

$$p_{ad}(x_d) \in U_a. \tag{7}$$

We infer that $p_a(y) \in C_a$, i.e., $y \in p_a^{-1}(C_a)$ for each $a \in A$.

In the sequel we shall use

LEMMA 2.2 Let cX and cY be extensions of Tychonoff spaces X and Y and let $f,g:X \rightarrow Y$ be a pair of continuous mappings which have the extensions $cf:cX \rightarrow cY$ and $cg:cX \rightarrow cY$. If \mathcal{U}, \mathcal{V} is a pair of normal covers of cY such that $st\mathcal{V} < \mathcal{U}$, then if f and g are $\mathcal{V}|Y$ -near, cf and cg are \mathcal{U} -near.

Proof.Consider the normal cover $\mathcal{W}=(cf)^{-1}(\mathcal{V})\wedge(cg)^{-1}(\mathcal{V})$. For each $x \in cX$ there is a $W \in \mathcal{W}$ such that $x \in W$. Moreover, there is a point $y \in X \subseteq cX$ such that $y \in W.$ Now, $cf(x) \in V_1 \in \mathcal{V}$ and $cg(x) \in V_2 \in \mathcal{V}$. Furthermore, $f(y) \in V_1 \in \mathcal{V}$ and $g(y) \in V_2 \in \mathcal{V}$. There exists a $V_3 \in \mathcal{V}$ such that $\{f(y),g(y)\} \subseteq V_3$ since f and g are $\mathcal{V}|Y$ -near. We infer that $\{cf(x),cg(x)\} \subseteq t(V_3,\mathcal{V})$. This means that there is an $U \in \mathcal{U}$ such that $\{cf(x),cg(x)\} \subseteq U$ since $st\mathcal{V} < \mathcal{U}$. We infer that cf and cg are \mathcal{U} -near. The proof is completed.

LEMMA 2.3 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of Tychonoff spaces. If $c_a X_a$, $a \in A$, are Hausdorff extensions of the spaces X_a such that the mappings p_{ab} have the extensions $c_{ab}p_{ab}$, then $c\mathbf{X} = \{c_a X_a, c_{ab}p_{ab}, A\}$ is an approximate inverse system.

Proof. It suffices to verify the condition (A2) for cX. Let $a \in A$ be fixed and let \mathcal{U} be any normal cover of $c_a X_a$. Choose a normal cover \mathcal{V} such that $st\mathcal{V}\prec\mathcal{U}$. By virtue of (A2) for X there is an index $b\geq a$ such that p_{ad} and $p_{ac}p_{cd}$ are $\mathcal{V}|X_a$ -near. By virtue of the above Lemma we infer that $c_{ad}p_{ad}$ and $c_{ad}(p_{ac}p_{cd})$ are \mathcal{U} -near. Finally, from $c_{ad}(p_{ac}p_{cd}) = c_{ac}p_{ac}c_{cd}p_{cd}$ it follows that $c_{ad}p_{ad}$ and $c_{ac}p_{ac}c_{cd}p_{cd}$ are \mathcal{U} -near. The proof is complete.

If X is a Tychonoff space, then by βX the Čech-Stone compactification of X is denoted.

COROLLARY 2.4 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of Tychonoff spaces. Then $\beta \mathbf{X} = \{\beta X_a, \beta p_{ab}, A\}$ is also an approximate inverse system.

In the sequel we shall denote by P_n the natural projection $P_n:\lim \beta X \to \beta X_n$.

LEMMA 2.5 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of non-empty Tychonoff spaces. If for some family $\mathcal{N} = \{x_a: x_a \in X_a, a \in A\}$ the set $C_a = Ls\{p_{ab}(x_b): b \ge a\}$ is non-empty and compact, then limX is non-empty.

7

Proof. Consider the approximate system $\beta \mathbf{X} = \{\beta X_a, \beta p_{ab}, A\}$. By virtue of 2.1 there exists $\mathbf{y} \in \beta \lim \mathbf{X}$ such that $\mathbf{y}_a = \mathbf{P}_a(\mathbf{y}) \in \mathbf{D}_a$, where \mathbf{D}_a is a limit superior of $\{\mathbf{p}_{ab}(\mathbf{x}_b) : \mathbf{b} \ge \mathbf{a}\}$ in βX_a . On the other hand $\mathbf{C}_a = \mathrm{Ls}\{\mathbf{p}_{ab}(\mathbf{x}_b) : \mathbf{b} \ge \mathbf{a}\}$ in X_a is compact. This means that $\mathbf{D}_a = \mathbf{C}_a$. We infer that $\mathbf{y}_a \in X_a$. Thus, $\mathbf{y} \in \lim \mathbf{X}$. The proof is complete.

LEMMA 2.6 Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of non-empty Tychonoff topologically complete spaces. If there exists a cofinal subset A' of A such that for some family $\mathcal{N} = \{x_a: x_a \in X_a, a \in A'\}$ the set $C_a = Ls\{p_{ab}(x_b) : b \in A'\}$ is non-empty and compact, then limX is non-empty.

Proof.Consider the approximate system $\mathbf{Y} = \{X_a, p_{ab}, A'\}$. By virtue of Theorem 2.5 lim \mathbf{Y} is non-empty. Theorem (2.14) of [15] completes the proof.

We give the following application of Lemma 2.6.

We say that a space X is Cech - complete if X is a Tychonoff space which is a G_{δ} - set in βX [6, p. 251.]. We shall say that the diameter of a subset Y of topological space X is less than a cover $\mathcal{A} = \{A_i : s \in S\}$ of the space X, and we shall write $\delta(Y) < \mathcal{A}$, provided there exists $s \in S$ such that $Y \subseteq A_i$ [6, p. 252.]. A Tychonoff space X is Čech - complete iff there exists a countable family $\{\mathcal{A}_i : i \in I\!N\}$ of open covers of the space X with the property:

(Č) Any family \mathcal{F} of subsets of X, which has the finite intersection property and contains sets of diameter less than \mathcal{A}_i for i = 1, 2, ..., has non - empty intersection $\bigcap \{ \text{ClF} : F \in \mathcal{F} \}$ ([3, p. 183.], [6, p. 252.]).

THEOREM 2.7 Let $\mathbf{X} = \{X_n, p_{mn}, \mathbb{N}\}$ be an approximate sequence of non - empty Čech-complete paracompact spaces X_n such that each $p_{nm}(X_m)$ is dense in X_n , then lim \mathbf{X} is non-empty and Čech-complete. Moreover, $p_n(\lim \mathbf{X})$ is dense in X_n for each $n \in \mathbb{N}$. **Proof.** The proof is broken into several steps.

Step 1. Let us prove that for each point $x_{i_0} \in X_{i_0}$ and for each open set $U_{i_0} \ni x_{i_0}$ there exists a point $x \in \lim X$ such that $p_{i_0}(x) \in U_{i_0}$. Let $\{\mathcal{A}_{n,i} : i \in I\!N\}$ be a family of open covers of X_n with the property ($\check{\mathbf{C}}$). There exists a normal cover \mathcal{U} of X_{i_0} such that st ${}^2(x_{i_0}, \mathcal{U}) \subseteq U_{i_0}$. Moreover, there exists a normal cover \mathcal{V} of X_{i_0} such that st \mathcal{V} refines both $\mathcal{A}_{i_0,1}$ and \mathcal{U} . Now, we denote \mathcal{V} again by $\mathcal{A}_{i_0,1}$.

Step 2. By induction, for each $i \in \mathbb{N}$, we will choose $n_i \in \mathbb{N}, n_i \ge i_0$, and the normal covers $\mathcal{U}_{j,n_i}, j \le n_i$, such that :

(P1) st \mathcal{U}_{j,n_i} , $j < n_i$, is a refinement of the covers $\mathcal{A}_{j,k}$ for $k < n_i$,

(P2) st \mathcal{U}_{n_i,n_i} is a refinement of the covers $q_{ji}^{-1}(\mathcal{U}_{n_j,n_i})$, $j \leq i$, the covers $\mathcal{A}_{n_i,k}$, $k \leq n_i$, and the cover $p_{jn_i}^{-1}(\mathcal{U}_{j,n_i})$, whenever $j < n_i$,

 $(\mathbf{P3}) (\mathbf{p}_{jn}, \mathbf{p}_{jm} \mathbf{p}_{mn}) \prec \mathcal{U}_{j,n_i}, \qquad \mathbf{n} \geq \mathbf{m} \geq \mathbf{n}_{i+1}, \mathbf{j} \leq \mathbf{n}_i .$

Let $n_1 = i_0$ and let \mathcal{U}_{n_1,n_1} be a normal cover of X_{n_1,n_1} such that $st\mathcal{U}_{n_1,n_1}$ is a refinement of the cover \mathcal{A}_{n_1,n_1} . By (A2), there is a number $n_2 \in \mathbb{N}$, $n_2 > n_1$, such that (P3) is satisfied for $j = n_1$ and n_2 , i.e.,

$$(p_{n_1n}, p_{n_1m}p_{mn}) \prec \mathcal{U}_{n_1, n_1}, \qquad n \ge m \ge n_2. \tag{8}$$

In each space X_j , $j < n_2$, there is a normal cover \mathcal{U}_{j,n_2} such that (P1) is satisfied (i.e., $st\mathcal{U}_{j,n_2}$ is a refinement of the covers $A_{j,k}$, $k \le n_2$) since X_j is a paracompact space. Similarly, one can define a normal cover \mathcal{U}_{n_2,n_2} such that (P2) is satisfied.

Suppose that n_1, \ldots, n_{i-1} , i>2, and the covers $\mathcal{U}_{j,n_{i-1}}$, $j\leq n_{i-1}$, with (P1) - (P3) are defined. Let us define n_i . Firstly, we define the covers $\mathcal{U}_{j,n_{i-1}}$, $j< n_{i-1}$, $\mathcal{U}_{n_{i-1},n_{i-1}}$ such that (P1) and (P2) are satisfied. This is possible since X_j , $j\leq n_{i-1}$, is paracompact and since any two normal coverings admit a normal covering which refines both. By (A2) there is a number $n_i > n_{i-1}$ such that (P3) is satisfied. This completes the construction of an usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}$ and $q_{ij} = p_{ii+1} p_{i+1i+2} \dots p_{j-1j}$ for each $i, j \in \mathbb{N}$, i.e., the sequence

$$X_{n_1} \stackrel{p_{n_1n_2}}{\longleftarrow} \dots \stackrel{p_{n_{i-1}n_i}}{\longleftarrow} X_{n_i} \stackrel{p_{n_in_{i+1}}}{\longleftarrow} \dots$$
(9)

Step 3. By virtue of Michael's theorem for usual inverse sequences [6, p. 257.], $\lim \mathbf{Y}$ is non-empty. Moreover, there exists $\mathbf{y} = (\mathbf{y}_{n_i})$ in $\lim \mathbf{Y}$ such that

$$(p_{i_0}(y), x_{i_0}) \prec \mathcal{A}_{i_0, 1}.$$

$$(10)$$

By (P3) it follows

$$(p_{n_{j-2}n_j}, p_{n_{j-2}n_{j-1}}p_{n_{j-1}n_j}) \prec \mathcal{U}_{n_{j-2}, n_{j-2}}.$$
(11)

This means that

$$(p_{n_{j-2}n_j}(y_{n_j}), y_{n_{j-2}}) \prec \mathcal{U}_{n_{j-2}, n_{j-2}}.$$
 (12)

since $p_{n_{j-2}n_{j-1}}p_{n_{j-1}n_{j}}(y_{n_{j}} = y_{n_{j-2}})$. By (P2) we have

$$(p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}}), p_{n_{j-s}n_{j-2}}(y_{n_{j-2}})) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
(13)

or

$$(p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}}), y_{n_{j-s}}) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
(14)

since $p_{n_{j-3}n_{j-2}}(y_{n_{j-2}}) = y_{n_{j-3}}$. Using (P3) for n_{j-3} , n_{j-2} , n_j and y_{n_j} we obtain

$$(p_{n_{j-s}n_{j}}(y_{n_{j}}), p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}})) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
 (15)

We infer that

$$p_{n_{j-s}n_j}(y_{n_j}) \in st(y_{n_{j-s}}, \mathcal{U}_{n_{j-s}, n_{j-s}})$$

$$(16)$$

Repeating this , we infer that for fixed $i \in \mathbb{N}$ and each $k \ge i + 3$

$$p_{n_i n_k}(y_{n_k}) \in st(y_{n_i}, \mathcal{U}_{n_i, n_i}).$$

$$(17)$$

Step 4. We see that $\{p_{in_k}(y_{n_k}) : n_k \ge i\}$ has the diameter less than \mathcal{U}_{n_i,n_i} . It is obvious that $Ls\{p_{in_k}(y_{n_k}) : n_k \ge i\}$ is compact. By virtue of Lemma 2.6 there exists $x \in \lim \beta \mathbf{X}$ such that $P_i(x) \in Ls\{p_{in_k}(y_{n_k}) : n_k \ge i\}$. This means that $x \in \lim \mathbf{X}$. From (17) it follows that $p_{i_0}(x) \in st(p_{i_0}(y), \mathcal{A}_{i_0,1})$. Moreover, (10) implies $(p_{i_0}(y), x_{i_0}) \prec \mathcal{A}_{i_0,1}$. By virtue of Step 1.

st² $(\mathbf{x}_{i_0}, \mathcal{A}_{i_0,1}) \subseteq U_{i_0}$. We infer that $\mathbf{p}_{i_0}(\mathbf{x}) \in U_{i_0}$. This means that $\mathbf{p}_{i_0}(\lim \mathbf{X})$ is dense in X_{i_0} . The proof is completed.

QUESTION. Let $\mathbf{X} = \{X_n, p_{mn}, N\}$ be an approximate inverse sequence of non-empty Čech-complete spaces X_n . Does it follow that $\lim \mathbf{X}$ is non-empty?

A Tychonoff space X is called *locally Čech* - complete if every point $x \in X$ has a Čech - complete neighbourhood [6, p. 297.]. Every locally Čech - complete paracompact space is Čech - complete. From [6, p. 423.] it follows that if $X = \{X_n, p_{mn}, IN\}$ is an approximate sequence of paracompact Čech - complete spaces, then limX is paracompact and Čech - complete. By virtue of Theorem 2.7 it follows

COROLLARY 2.8 Let $\mathbf{X} = \{X_n, p_{mn}, IN\}$ be an approximate inverse sequence of non-empty locally Čech - complete paracompact spaces such that $p_{ij}(X_j)$ is dense in $X_i, i \leq j$. Then $p_i(\lim \mathbf{X})$ is dense in X_i . Moreover, $\lim \mathbf{X}$ is paracompact and Čech - complete.

From Theorem 2.7 it follows the approximate version of Theorem of Arens [2, Theorem 2.4.]. (See also [6, p. 257, Exercise 3.9.H.]).

COROLLARY 2.9 Let $\mathbf{X} = \{X_n, p_{mn}, I\!\!N\}$ be an approximate sequence of non - empty complete metric spaces X_n . If $p_{nm}(X_m)$ is dense in X_n , $m \ge n$, then lim \mathbf{X} is non - empty complete metric space and $p_n(\lim \mathbf{X})$ is dense in X_n .

A metric space X is said to be *locally complete* if for each $x \in X$ there exists an open set $U \ni x$ such that ClU is complete.

Let $X = \bigcup \{ \mathbb{R} \times \{\frac{1}{n}\}: n=1,2,... \}$ be the subspace of the space \mathbb{R}^2 . Then X is locally complete, but not complete since the sequence $\{(1,\frac{1}{n}): n=1,2,3,..\}$ is a Cauchy non-convergent (in X) sequence. Similarly, the subspace $Y = \{(x,y): x>0, y=\sin\frac{1}{x}\}$ of \mathbb{R}^2 is non-complete locally complete space. **COROLLARY 2.10** Let $\mathbf{X} = \{X_n, p_{mn}, IN\}$ be a usual inverse sequence of non-empty locally complete metric spaces such that $p_{ij}(X_j)$ is dense in $X_i, i \leq j$. Then $p_i(\lim \mathbf{X})$ is dense in X_i .

A metric space X is an absolute G_{δ} - space [6, p. 342] if X is a G_{δ} - set in any metrizable space in which it is embedded. A metrizable space X is a G_{δ} - space iff it is completely metrizable.

The main theorem of this Section is the following theorem.

THEOREM 2.11 Let $\mathbf{X} = \{X_n, p_{mn}, IN\}$ be an approximate inverse sequence of absolute G_{δ} - spaces. Then there exist:

- a) a cofinal subset $M = \{n_i : i \in \mathbb{N}\}$ of \mathbb{N} ,
- b) a usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}$ and $q_{ij} = p_{ii+1} p_{i+1i+2} \dots p_{j-1j}$ for each $i, j \in \mathbb{N}$,
- c) a homeomorphism $H : lim \mathbf{X} \rightarrow lim \mathbf{Y}$.

Proof.Let $\{A_{n,i} : i \in \mathbb{N}\}$ be a family of open covers of X_n with the property:

(UN0) the members of $A_{n,i}$ are sets of diameter less than 1/i.

By induction, for each $i \in \mathbb{N}$, we will choose $n_i \in \mathbb{N}$ and the normal covers \mathcal{U}_{j,n_i} , $j \leq n_i$, of X_j such that :

(UN1) st \mathcal{U}_{j,n_i} , $j < n_i$, is a refinement of the covers $\mathcal{A}_{j,k}$ for $k < n_i$, (UN2) st \mathcal{U}_{n_i,n_i} is a refinement of the covers $q_{ji}^{-1}(\mathcal{U}_{n_j,n_i})$, $j \le i$, the covers $\mathcal{A}_{n_i,k}$, $k \le n_i$, and the cover $p_{jn_i}^{-1}(\mathcal{U}_{j,n_i})$, whenever $j < n_i$, (UN2) (n = n = n) $\neq \mathcal{U}$

 $\begin{array}{ll} (\mathbf{UN3}) \ (\mathrm{p}_{jn} \ , \ \mathrm{p}_{jm} \mathrm{p}_{mn}) \prec \mathcal{U}_{j,n_i} \ , & \mathrm{n} \geq \mathrm{m} \geq \mathrm{n}_{i+1} \ , \ \mathrm{j} \leq \mathrm{n}_i \ , \\ (\mathbf{UN4}) \ (\mathrm{p}_{j} \ , \mathrm{p}_{jm} \ \mathrm{p}_m) \prec \mathcal{U}_{j,n_i} \ , & \mathrm{j} \leq \mathrm{n}_i \ , \ \mathrm{m} \geq \mathrm{n}_i. \end{array}$

Let $n_1 = 1$ and let \mathcal{U}_{n_1,n_1} be a normal cover of X_{n_1,n_1} such that $st\mathcal{U}_{n_1,n_1}$ is a refinement of the cover \mathcal{A}_{n_1,n_1} . By (A2) and (AS) ([12, p. 242.], [15, p. 113.]) there is a number $n_2 \in \mathbb{N}$, $n_2 > n_1$, such that

$$(p_{n_1n}, p_{n_1m}p_{mn}) \prec \mathcal{U}_{n_1, n_1}, \qquad n \ge m \ge n_2, \tag{18}$$

and

$$(p_{n_1}, p_{n_1m}p_m) \prec \mathcal{U}_{n_1, n_1}, \qquad m \ge n_2.$$
 (19)

In each space X_j , $j < n_2$, there is a normal cover \mathcal{U}_{j,n_2} such that (UN1) is satisfied (i.e., $st\mathcal{U}_{j,n_2}$ is a refinement of the covers $A_{j,k}$, $k \le n_2$) since X_j is a paracompact space. Similarly, one can define a normal cover \mathcal{U}_{n_2,n_2} such that (UN2) is satisfied.

Suppose that n_1, \ldots, n_{i-1} , i>2, and the covers $\mathcal{U}_{j,n_{i-2}}$, $j\leq n_{i-2}$, with (UN1) - (UN4) are defined. Let us define n_i . Firstly, we define the covers $\mathcal{U}_{j,n_{i-1}}$, $j< n_{i-1}$, $\mathcal{U}_{n_{i-1},n_{i-1}}$ such that (UN1) and (UN2) are satisfied. This is possible since X_j , $j\leq n_{i-1}$, is paracompact and since any two normal coverings admit a normal covering which refines both. By (A2) and (AS) there is a number $n_i > n_{i-1}$ such that (UN3) and (UN4) are satisfied. This completes the construction of an usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}$ and $q_{ij} = p_{n_i n_{i+1}} p_{n_{i+1} n_{i+2}}$ $\dots p_{n_{j-1} n_j}$ for each $i,j \in \mathbb{N}$, i.e., the sequence

$$X_{n_1} \stackrel{p_{n_1 n_2}}{\longleftarrow} \dots \stackrel{p_{n_{i-1} n_i}}{\longleftarrow} X_{n_i} \stackrel{p_{n_i n_{i+1}}}{\longleftarrow} \dots$$
(20)

Now we shall define a homeomorphism $H : \lim X \to \lim Y$. Let x be any point of $\lim X$. We shall prove that for each cover $\mathcal{A}_{n_j,\ell}$ of X_{n_j} there is a $m \in \mathbb{N}$ such that the diameter

$$\delta(\{q_{jk}p_{n_k}(x):n_k\geq m\})<\mathcal{A}_{n_j,k}.$$
(21)

From the above construction it follows that there is a cover \mathcal{U}_{n_j,n_i} , j < i, which satisfies (UN1), (UN3) and (UN4).We set $m = n_i$. Let $n_k > m$. By virtue of (UN3) and (UN4) it follows

$$(p_{n_{k-2}n_k}p_{n_k}(x), p_{n_{k-2}n_{k-1}}p_{n_{k-1}n_k}p_{n_k}(x)) \prec \mathcal{U}_{n_{k-2},n_{k-2}}, \qquad (22)$$

and

$$(p_{n_{k-2}}(x), p_{n_{k-2}n_k}p_{n_k}(x)) \prec \mathcal{U}_{n_{k-2}, n_{k-2}}.$$
 (23)

We infer that

$$(p_{n_{k-2}}(x), p_{n_{k-2}n_{k-1}}p_{n_{k-1}n_{k}}p_{n_{k}}(x)) \prec st(p_{n_{k-2}n_{k}}p_{n_{k}}(x), \mathcal{U}_{n_{k-2}, n_{k-2}}).$$
(24)

From (UN2) it follows that st ${}^{2}\mathcal{U}_{n_{k-2},n_{k-2}}$ refines the cover $p_{n_{k-3}n_{k-2}}^{-1}(\mathcal{U}_{n_{k-3},n_{k-3}})$. Thus, (24) implies

Moreover, (UN4) implies

$$(p_{n_{k-s}}(x), p_{n_{k-s}n_{k-2}}p_{n_{k-2}}(x)) \prec \mathcal{U}_{n_{k-s}, n_{k-s}}.$$
 (26)

Hence

$$(p_{n_{k-s}}(x), q_{k-3k}p_{n_k}(x)) \in st(p_{n_{k-s}n_{k-2}}p_{n_{k-2}}(x), \mathcal{U}_{n_{k-s}, n_{k-s}}).$$
(27)

Repeating this, we infer that

$$(p_{n_i}(x), q_{ik}p_{n_k}(x)) \in st(p_{n_i n_{i+1}}p_{n_{i+1}}(x), \mathcal{U}_{n_i, n_i}), k \ge i.$$
(28)

Using (UN2) for the cover \mathcal{U}_{n_j,n_i} we have that st ${}^2\mathcal{U}_{n_i,n_i}$ refines $q_{j_i}^{-1}\mathcal{U}_{n_j,n_i}$. Now, (28) implies

$$\{q_{jk}p_{n_k}(x):k\geq i\}\prec \mathcal{U}_{n_j,n_j}.$$
(29)

Hence, the relation (21) is proved. We infer that $\{q_{jk}p_{n_k}(x): k \in \mathbb{N}\}$ is a Cauchy sequence. Set

$$y_{n_j} = \lim\{q_{jk}p_{n_k}(x) : k \in \mathbb{N}\}.$$

$$(30)$$

This is possible since each X_i is completely metrizable. Moreover, we have

$$q_{ij}(y_{n_j}) = y_{n_i},$$
 (31)

since $q_{ij}(y_{n_j}) = q_{ij}(\lim\{q_{jk}p_{n_k}(x) : k \in \mathbb{N}\}) = \lim\{q_{ij}q_{jk}p_{n_k}(x) : k \in \mathbb{N}\}$ = $\lim\{q_{ik}p_{n_k}(x) : k \in \mathbb{N}\}) = y_{n_i}$. Hence $y = (y_{n_i})$ is a point of $\lim \mathbf{Y}$. We define a maping $H_{n_i} : \lim \mathbf{X} \to X_{n_i}$ by

$$H_{n_i}(x) = y_{n_i}.\tag{32}$$

Claim 1. The mappings H_{n_i} , $i \in \mathbb{N}$, induce a mapping $H: \lim \mathbf{X} \to \lim \mathbf{Y}$ such that $q_{n_i}H = H_{n_i}$, $i \in \mathbb{N}$.

Claim 2. H and H_{n_i} , $i \in \mathbb{N}$, are continuous.

Let x be any point of limX and let H(x) = y. Consider any open neighbourhood U of $y \in \lim Y$. There exists an open set U_{n_i} such that $y \in q_i^{-1}(U_{n_i}) \subseteq U$. This means that $q_i(y) \in U_{n_i}$. By virtue of (UN0) there exist $V_{\ell} \in \mathcal{A}_{n_{i,j}}$, such that $V = V_{\ell} \subseteq U_{n_i}$. Let $n_j = \max\{n_i, j\}$. Consider the cover \mathcal{U}_{n_j,n_j} . By virtue of (UN2) $W = \operatorname{st}^3(q_j(y), \mathcal{U}_{n_j,n_j})$ is contained in $q_{ij}^{-1}(V)$. Hence, $q_j^{-1}(W)$ is a neighbourhood of y contained in U. Let W_1 be any member of \mathcal{U}_{n_j,n_j} containing $q_j(y)$. There is an $m_0 \in \mathbb{N}$ such that $q_{jm}p_{n_m}(x) \in W_1$. By virtue of (28)

$$(p_{n_j}(x), q_{jm}p_{n_m}(x)) \in st(p_{n_jn_{j+1}}p_{n_{j+1}}(x), \mathcal{U}_{n_j,n_j}).$$

We infer that $p_{n_j}(x) \in st^2(q_j(y), \mathcal{U}_{n_j,n_j})$. Let W_2 be any member of \mathcal{U}_{n_j,n_j} which contains $p_{n_j}(x)$. There is an open set W_3 containing x such that $p_{n_j}(W_3) \subseteq W_2$. By virtue of (UN4) we have $p_{n_j}(z) \in st^3(q_j(y), \mathcal{U}_{n_j,n_j})$ for each $z \in W_3$. This means $H(z) \in q_j^{-1}(W) \subseteq U$. The proof of the continuity of H is completed. The continuity of H_{n_i} follows from $q_{n_i}H = H_{n_i}$, $i \in \mathbb{N}$. Claim 3. H is one - to - one.

Let x_1 , x_2 be any pair of distinct points of lim**X**. There exists an indeks $i \in \mathbb{N}$ such that $p_m(x_1) \neq p_m(x_2)$ for all $m \ge n_i$. There exists a cover $\mathcal{U}_{n_i,j}$ of X_{n_i} such that $p_{n_i}(x_1)$ and $p_{n_i}(x_2)$ are in the members W_1 , W_2 of $\mathcal{U}_{n_{ij},j}$ with disjoint closures. By virtue of (29) we have

$$\{q_{jk}p_{n_k}(x_1)\}: k \ge i\} \subseteq W_1, \tag{33}$$

and

$$\{q_{jk}p_{n_k}(x_2):k\geq i\}\subseteq W_2.$$
(34)

We infer that $\lim\{q_{jk}p_{n_k}(x_1)\}: k \ge i\} \ne \lim\{q_{jk}p_{n_k}(x_1)\}: k \ge i\}$. By virtue of (32) we infer that $\operatorname{H}_{n_i}(x_1) \ne \operatorname{H}_{n_i}(x_2)$ and $\operatorname{H}(x_1) \ne \operatorname{H}(x_2)$. Hence, H is one - to - one.

Claim 4. H is onto.

Let $y = (y_{n_i})$ be any point of $\lim \mathbf{Y}$. We will define a point $x \in \lim \mathbf{X}$ such that H(x) = y. By (UN3) it follows

$$(p_{n_{j-2}n_j}, p_{n_{j-2}n_{j-1}}p_{n_{j-1}n_j}) \prec \mathcal{U}_{n_{j-2}, n_{j-2}}.$$
(35)

This means that

$$(p_{n_{j-2}n_j}(y_{n_j}), y_{n_{j-2}}) \prec \mathcal{U}_{n_{j-2}, n_{j-2}}.$$
 (36)

By (UN2) we have

$$(p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}}), p_{n_{j-s}n_{j-2}}y_{n_{j-2}}) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
(37)

or

$$(p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}}), y_{n_{j-s}}) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
 (38)

Using (UN3) for n_{j-3} , n_{j-2} , n_j and y_{n_j} we obtain

$$(p_{n_{j-s}n_{j}}(y_{n_{j}}), p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}})) \prec \mathcal{U}_{n_{j-s},n_{j-s}},$$
(39)

We infer that

$$(p_{n_{j-s}n_{j}}(y_{n_{j}}), y_{n_{j-s}}) \in st(p_{n_{j-s}n_{j-2}}p_{n_{j-2}n_{j}}(y_{n_{j}}), \mathcal{U}_{n_{j-s}, n_{j-s}})$$
(40)

Repeating this , we infer that for fixed $i \in \mathbb{N}$ and each $k \ge i + 3$

$$p_{n_i n_k}(y_{n_k}) \in st(y_{n_i}, \mathcal{U}_{n_i, n_i}).$$

$$\tag{41}$$

Arguing as in (28) and (29) we see that $\{p_{in_k}(y_{n_k}): n_k \ge i\}$ is a Cauchy sequence in X_i . Let

$$x_i = \lim\{p_{in_k}(y_{n_k}) : n_k \ge i\}.$$
(42)

By virtue of Lemma 2.5 there exists $x \in \lim X$ such that $p_i(x) = x_i$. It remains to prove that H(x) = y. From (41) and (42) it follows that

$$x_{n_i} \in st(y_{n_i}, \mathcal{U}_{n_i, n_i}).$$

Arguing as in (35)-(41) we infer that

$$y_{n_i} = lim\{q_{ij}(x_{n_j}): n_j \ge i\} = lim\{q_{ij}p_{n_j}(x): n_j \ge i\}.$$
 (43)

By virtue of (32) and Claim 1. it follows that $H_{n_i}(x) = y_{n_i}$, $i \in \mathbb{N}$, and H(x) = y. The proof of the surjectivity of H is completed.

Claim 5. *H* is open. We shall prove that $G = H^{-1}$ is continuous. Let y be any point of limY and let U be any open neighbourhood of x = G(y). By virtue of the definition of a base in limX, there is an open set $U_i \subseteq X_i$ such that $x \in p_i^{-1}(U_i) \subseteq U$. We infer that $x_i = p_i(x) \in U_i$. Let V_i be an open set such that $x_i \in V_i \subseteq ClV_i \subseteq U_i$. There exists a cover $\mathcal{A}_{i,j}$ such that $st(x_i, \mathcal{A}_{i,j})$ is contained in V. Moreover, by (UN1), there exists a normal cover \mathcal{U}_{i,n_k} such that

$$st^{3}\mathcal{U}_{i,n_{k}}\prec\mathcal{A}_{i,j}.$$
(44)

By virtue of (42) and (41) it follows that there exists a $n_{\ell} \geq i$ such that

$$p_{in_m}(y_{n_m}) \in st(x_i, \mathcal{U}_{i, n_k}), n_m \ge n_\ell.$$

$$(45)$$

and

$$p_{n_{\ell}n_m}(y_{n_m}) \in st(y_{n_{\ell}}, \mathcal{U}_{n_{\ell}, n_{\ell}}), n_m \ge n_{\ell}.$$

$$(46)$$

Let $V_{n_{\ell}} = st(y_{n_{\ell}}, \mathcal{U}_{n_{\ell},n_{\ell}})$. Then $q_{n_{\ell}}^{-1}(V_{n_{\ell}})$ is a neighbourhood of y.For each $z \in q_{n_{\ell}}^{-1}(V_{n_{\ell}})$ we have $z_{n_{\ell}} = q_{n_{\ell}}(z) \in st(y_{n_{\ell}}, \mathcal{U}_{n_{\ell},n_{\ell}})$. By virtue of (41)

$$p_{n_{\ell}n_{m}}(z_{n_{m}}) \in st(z_{n_{\ell}}, \mathcal{U}_{n_{\ell}, n_{\ell}}), n_{m} \geq n_{\ell}.$$

$$(47)$$

This means that

$$p_{n_{\ell}n_m}(z_{n_m}) \in st^2(y_{n_{\ell}}, \mathcal{U}_{n_{\ell}, n_{\ell}}), n_m \ge n_{\ell}.$$

$$(48)$$

By (UN2) we infer that

$$p_{in_{\ell}}p_{n_{\ell}n_{m}}(z_{n_{m}})\in st^{2}(x_{i},\mathcal{U}_{i,n_{k}}), n_{m}\geq n_{\ell}.$$

$$(49)$$

Using (UN3) for i and \mathcal{U}_{i,n_k} we infer that

$$p_{in_m}(z_{n_m}) \in st^3(x_i, \mathcal{U}_{i, n_k}), \ n_m \ge n_\ell.$$

$$(50)$$

From (44) it follows that

$$p_{in_m}(z_{n_m}) \in V_i, \ n_m \ge n_\ell. \tag{51}$$

We infer that $lim\{p_{in_m}(z_{n_m}): n_m \ge n_\ell\} \in ClV_i \subseteq U_i$. By virtue of (42) we infer that $p_i G(z) \in U_i$, i.e., $G(z) \in U$. Thus, $G = H^{-1}$ is continuous. This means that H is is open. The proof of Theorem 2.11 is completed.

COROLLARY 2.12 Let $\mathbf{X} = \{X_n, p_{mn}, \mathbb{N}\}$ be an approximate inverse sequence of compact metric spaces. Then there exist:

- a) a cofinal subset $M = \{n_i : i \in \mathbb{N}\}$ of \mathbb{N} ,
- b) a usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}$ and $q_{ij} = p_{ii+1} p_{i+1i+2} \dots p_{j-1j}$ for each $i,j \in \mathbb{N}$,

c) a homeomorphism $H : lim X \rightarrow lim Y$.

Proof. Each compact metric space is complete. Apply Theorem 2.11.

REMARK 2.13 An alternate proof of the above Corollary can be found in Proposition 8. of [4] since each normal cover of a compact metric space X has a Lebesgue number [6, p. 344.]. Thus, each approximate inverse system of compact metric spaces is an approximate inverse system in the sense of M.G. Charalambous [4]. This is not true for non - compact metric spaces. M.G. Charalambous [4, Proposition 8] has a more general result for the inverse sequences of complete metric spaces and uniform bonding mappings.

3 Applications

We start with the following theorem.

THEOREM 3.1 Let $\mathbf{X} = \{X_n, p_{mn}, \mathbf{N}\}$ be an approximate inverse sequence of non-empty complete metric spaces and let \mathcal{P} be a topological property which satisfies the following condition:

(C) If $\mathbf{Z} = \{Z_n, f_{mn}, N\}$ is an inverse sequence of spaces having property \mathcal{P} , then $\lim \mathbf{Z}$ has property \mathcal{P} . Then $\lim \mathbf{X}$ has the property \mathcal{P} .

Proof. Let $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ be an usual inverse sequence from Theorem 2.11. From (C) it follows that $\lim \mathbf{Y}$ has the property \mathcal{P} . By virtue of Theorem 2.11 it follows that $\lim \mathbf{X}$ has property \mathcal{P} since $\lim \mathbf{X}$ is homeomorphic to $\lim \mathbf{Y}$.

In the sequel we shall give some application of Theorem 3.1.

THEOREM 3.2 Let $\mathbf{X} = \{X_n, p_{mn}, \mathbb{N}\}$ be an approximate inverse system of complete metric spaces. If $\dim X_n \leq k$, then $\dim(\lim \mathbf{X}) \leq k$.

Proof. Apply Theorem 3.1 and the usual inverse limit theorem of Nagami [17].

If the spaces X_n are separable metric spaces, then we have the next theorem which is an approximate version of Theorem 1.13.4 of [7, p. 149.].

THEOREM 3.3 Let $\mathbf{X} = \{X_n, p_{mn}, IN\}$ be an approximate inverse sequence of separable metric spaces such that $\dim X_i \leq k, i \in N$. Then $\dim(\lim \mathbf{X}) \leq k$.

Proof. By virtue of Lemma 1.13.3. there are compact metric spaces cX_n which are the extensions of X_n such that $\dim(cX_n) \leq \dim X_n$ and such that each p_{nm} is extendable to a continuous mapping cp_{nm} . Thus, we have the approximate inverse sequence $c\mathbf{X} = \{cX_n, cp_{nm}, IN\}$. By virtue of

18

the above Theorem dim(lim cX) $\leq k$. It follows that dim(limX) $\leq k$. The proof is complete.

A space X is locally connected (semi-locally connected) if for each $x \in X$ and each open subset U of X such that $x \in U$ there is an open subset V with $x \in V \subseteq U$ and V is connected(X\V has only a finite number of components).

THEOREM 3.4 Let $\mathbf{X} = \{X_n, p_{mn}, \mathbf{N}\}$ be an approximate inverse system of complete metric spaces. If the spaces $X_i, i \in N$, are connected (locally connected) and if the mappings p_{ij} are hereditarily quotient monotone surjections, then lim \mathbf{X} is connected (locally connected).

Proof. Consider the inverse system $\mathbf{Y} = \{X_{m_i}, q_{ij}, M\}$ as in Theorem 2.11. By virtue of [6, p. 134.] and [6, Theorem 6.1.28.] the system \mathbf{Y} has the hereditarily quotient monotone surjective bonding mappings. If the spaces X_i are connected, then lim \mathbf{Y} is connected [18, Theorem 11.]. By virtue of Theorem 11. [18] lim \mathbf{X} is connected. Moreover, by virtue of [18, Theorem 9.] and [18, p. 71., Corollary] it follows that the projections $q_i:\lim \mathbf{Y} \to X_{m_i}$ are hereditarily quotient and monotone. If the spaces X_{m_i} are locally connected, then from the definition of a base of topology of lim \mathbf{Y} and [6, Theorem 6.1.28.] it follows that lim \mathbf{Y} is locally connected. Clearly, lim \mathbf{X} is locally connected.

ACKNOWLEDGEMENT. The author is grateful to the referee for his help and valuable suggestions.

Literatura

- Aló R.A. and Shapiro H.L., Normal topological spaces, Cambridge Univ. Press, 1974.
- [2] Arens R., Dense inverse limit rings, Michigan Math. Jorn. 5(1958), 169-182.
- [3] Arhangel'skij A. V., Otobraženija otkrytye i blizkie k otkrytym. Svjazi meždu prostranstvami, Trudy moskovskogo matematičeskogo obščestva 15 (1966), 181 - 223.
- [4] M.G. Charalambous, Approximate inverse systems of uniform spaces and an application of inverse systems, Comment. Math. Univ. carolinae, 32, 33(1991), 551-565.
- [5] Dugundji J., Topology, Wm. C. Brown Publishers, Iowa, 1989.
- [6] Engelking R., General Topology, PWN, Warszawa, 1977.
- [7] Engelking R., Dimension Theory, Polish Scientific Publishers, Warszawa 1978.
- [8] Fort M.K. and Segal J., Local connectednes of inverse limit spaces, Duke Math. J., 28(1961), 253-260.
- [9] Ginsburg J. and Saks V., Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-417.
- [10] Lončar I., Monotonicity of the projections of the approximate limit, Glasnik matematički 28 (48) (1993), 297 - 313.
- [11] Lončar I., A note on approximate systems of compact spaces, Zbornik radova FOI Varaždin 17 (1993),135-156.

- [12] Mardešić S., On approximate inverse systems and resolutions, Fund. Math. 142(1993),241-255.
- [13] Mardešić S. and Rubin L.R., Approximate inverse system of compacta and covering dimension, Pacific J. Math. 138(2):129-144, 1989.
- [14] Mardešić S. and Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat., 24(3):587-637, 1989.
- [15] Matijević V., A note on limit and resolution of (nongauged) approximate inverse systems, Glasnik Matematički 28 (48) (1993) ,111 -122.
- [16] Mrowka S., On the convergence of nets of sets, Fund. math., 45(2):237-246, 1958.
- [17] K. Nagami, Dimension Theory, Academic Press, New York and London, 1970.
- [18] Puzio E., Limit mappings and projections of inverse systems, Fund. math. 80 (1973), 57 - 73.

Primljeno: 1995-02-06

Lončar I. Bilješka o aproksimativnim limesima

SAŽETAK

U radu su izučavani limesi aproksimativnih inverznih sistema $\mathbf{X} = \{X_a, p_{ab}, A\}$ u smislu S. Mardešića [10].Glavni rezultati rada su slijedeći:

(a) Ako je $X = \{X_n, p_{mn}, I\!\!N\}$ aproksimativni inverzni niz nepraznih Čech - kompletnih parakompaktnih prostora, tada je limX neprazan Čech - kompletan prostor (Teorem 2.7.).

(b) Ako je $X = \{X_n, p_{mn}, N\}$ aproksimativni niz apsolutno G_{δ} - prostora, tada postoji obični inverzni podniz koji ima limes homeomorfan limesu polaznog aproksimativnog niza (Teorem 2.11.).

(c) U trećem odjeljku dane su neke primjene rezultata (b).