
UDe: 007.52
Original scientific paper

A CONCEPTUAL PROLOG ENGINE FOR AUTOMATED
DICTIONARY -TO-HYPERTEXT MAPPING

Mirko Čubrilo

University of Zagreb, Faculty ofOrganization and Informatics, Varaždin, Croatia
E-mail: mcubrilo@foi.hr

This article examines the possibilities of mapping the structure of classical information
sources (dictionaries, .. .) in to the hypertext structure. The hypertext structure enables more
efficient usage of the mapped resources (enriching il with new multimedia sources, databases
and knowledge bases' structuring, .. .). The idea is to interpret the classical information
source as formal language, and it shali be demonstrated using the example of the classical
dictionary, but it is nevertheless equally applicable to all (similar) types of classical
information sources. The adequate technical basis for the implementation is to be seen in the
logic programming language Prolog. The method, called Conceptual Prolog Engine, has
been formed and developed in this environment.

Keywords: classical sources of information, hypertext, knowledge base, database, Prolog.

1. INTRODUCTION

Every day we are witness to the increasing migration of classical sources of
information to new computer memory media, such as floppy and hard disks, magnetic
tapes, and, recently, CD - ROM disks. But, the very process of mapping information
from old to new media is hard to achieve for several reasons. Some of them are of
technical provenience, while the others are structural.

Technical difficulties arise when someone wants information to migrate physically
to new media. They concern the quaiity of scanned text and images, as well as
recognizing them as objects of different kinds. At this time this sort of problems is
reasonably solved by us ing the high quality scanners and OCR programs (such as
Recognita ar Omni Page), New generation scanners and OCR programs can
succesfully separate text and images and recognize (at !east typewritten) text with high
precision (99% or higher).

Amore difficult problem to solve is the one of mechanically structuring mapped
information onto new media, preserving and possibly improving the old organizational
structure.

13

M. Ćubrilo. A conceptual prolog enginefor automated dictiol1({/y-/u-h)perlex/mapping

The most important information sources, living on old media and screaming for
rnapping to the new ones, are: dictionaries (rnonolingual, such as The Oxford
Dictionary of Modern English [ODME for short], and multi-lingual, such as
CAPITOL'S CONCISE DICTIONARY: ji-om and' to English. Swedish, Dutch, ...),
phone books, hospital data files, government data files (X-Files (joking), driving
licence data, crime data, statistical data, etc.).

In the context of our examination, one such useful structure is hypertext structure.
Basically, hypertext is nonliriearly organized text, structured in a multi-leveled net of
interlinked nodes. The conceptual base of the hypertext structure is described in [I]
and became the basis for several implernentations. Among the other general sources of
information on hypertext are [2] and [6].

Here, we are proposing a method, which is sufficiently founded in theory, so that
we can call it a method, and which, on the other hand, can be practically realized for
mapping some of the information sources to new memory media and new
organizational structure, in a uniform and at the same time almost pure!y mechanical
way. The new structure can be a table of a relational database, a hyperbase, or some
other structure. Here we will restrict ourse!ves to mapping classic dictionary structure
to the hypertext structure.

The method will be illustrated using the ODME dictionary as a source of
information. Here we can not go into the full details of the implementation, but we will
sketch, in Prolog, all the important predicates and describe all the needed data
structures.

This paper consists of five sections and two appendices. [n Section 2 we describe
our Method at the conceptual level. [n Section 3 we dernonstrate the Method in
action. in Section 4 we exarnine the various possibilities of postprocessing the
hypertext structure. Section 5 is the concluding one. Appendix A gives the core
structure of a whole application and Appendix B demonstrate il grarnmar description
of a sample dictionary unit of middle complexity.

2. THE METHOD

The main goal of the method is to mechanically map the structure of the classical
dictionary into the hypertext structure.

We assume that dictionary units are available as strings. The problem of getting
strings (problerns of scanning the text and character recognition) are out of our
concern.

The steps of the method are the following:

1. Lexical and syntactical analysis of dictionary units

a) Preliminary arrangement of dictionary units

Dictionary units are to be arranged in such away that their BNF grarnmar is as
simple as possible. This step consists of the uniform exchange of sorne of the

14

Zbornik radova, Volume 22. Number J (J 998)

characters or words in strings with others (e.g. the expansion of the shortcut adj. :::::>

adjective, ...) and embedding some markers or tags in the text. If the text editor
concerned is capable of recognizing some of the graphical features of the text (such as
font style, font size, etc.), then those features can also be built into the BNF grarnmar
of the dictionary units as terminal objects. That way we can achieve amore detailed
description of those un its. Such an editor is, for example, the Visual Prolog editor,
which reads text in RTF format (Reach Text Format) in its code form, with all of its
79 markers (where applicable), which is much more than we need for the recognition
of all the graphical features of dictionary units. Some of those graphical features serve
as elements of the grammatical structure of dictionary units. For example, the type of
grammatical units of the ODME dictionary is always in italics.

Further, markers (grammar production terminal elements) can be inserted in
dictionary units, as, for example, pronunciation, which will decide if its hypertext
structure appearance should contain audio and/or video records. It would be logical
that every dictionary unit should contain an audio record describing its pronunciation,
but it can also contain other audio records, which would explain its semantics (bird
song, sound of an animal, engine noise, wind murmur, etc.). Obtaining the first type
of audio records can be (at least for some languages) wholly automated, by using the
so-called text-to-speech technology (Dragon Naturally Speaking, IBM VoiceType ...).
Audio and video records should be accessible through the corresponding Prolog
predicates by using the prearranged (internal or external) database. Joining the
dictionary units with other types of records, audio as well as video records, can be
harder to automate, due to their dependency on the meaning of dictionary un its.

b) Preparation for syntactical analysis

This step includes the shaping of the input (BNF) gramrnar for the syntactical
analyser generator (PARSER.EXE from the PDC Prolog [also Turbo Prolog or Visual
Prolog] development environment) which will generate the predicates of the future
syntactic analyser on the basis of that grammar.

Syntactical analyser predicates could be developed manually, e.g. using the widely
known difference lists technique. However, their automatic generation on the basis of
the given grammar will give amore uniform syntactical analyser structure.

e) Lexical analysis

Lexical analysis includes structuring the source text in a row (list) of irreducible
lexical units (lexemes). Especially important among thern are nonterminal symbols
which participate in structuring the grammar of dictionary units.

d) Syntaetieal analysis

In this step the list of lexemes created by the the lexical analysis of dictionary units
is structured in the BNF grammar language structure with the aid of generated
syntactic analyser predicates.

15

M. Čubrilo. A conceptual prolog engine for automated dictionary-to-hypertext mapping

2. Shaping the hypertext structure

In this step the hypertext structure is shaped on the basis of the dictionary units
global structure, encompassed by the BNF grammar. The choice of building units
depends on the goals in mind ~hen executing the reshaping. One goal can be simply
the separation of the lexical units and their pronunciation with the intention of forming
audio files. Another goal can be the extraction of the dictionary units and the forming
of connections between them all and grammar forms for the given individual word,
etc. The hypertext structure will be shaped in PDC Prolog.

The input dictionary unit's grammar structure does not have to be (and it is
desirable that it is not) universal, meaning that it does not have to describe the
structure of all dictionary units. The logical scenario is separating the dictionary unit's
forms (nouns, verbs, adjectives, ...) and then further improving the grammar which
carried out the former in order to accompIish a higher quality hypertext structure. Of
course, the improvement level depends on the hypertext structure currently held in
mind.

As previously mentioned, a hypertext structure can contain elements which are not
present in the dictionary unit's structure, such as audio files and pictures. Those
elements have to be predefined and put together in one or more internal or external
databases (in the Prolog environment) or classical databases (us ing the ODBC
interface). The input of those elements can be performed manually or automatically,
but one should have in mind that the latter is harder to accomplish because it depends
on the sernantics of the dictionary units connected with audio and picture files.

3. Impiementing hypertext structure with the aid of the structure created by
syntactic anaiysis

In this step the predicates from the hypertext structure description are defined
using the generated syntactic analyser predicates.

4. Postprocessing

On the upper level the application can contain a whole sequence of the hypertext
structure exploitation mechanisms, ranging from those designed for the classical
database structuring to those for the knowledge base structuring.

Different general types of abstraction can be performed on the hypertext structure,
like generalization, speciaIisation, aggregation, defining new views and extraction of
the implicit knowledge (through different kinds of deduction). Later, while illustrating
our Conceptual Prolog Engine, we will give a few examples of postprocessing,
specific for the chosen domain, and implement one.

The resulting application does not merely transfer the printed dictionary
information content, it enriches it by enabIing all sorts of information manipulation
and thus provides the users with a higher quaIity service.

16

Zbornik radova, Volume 22, Number 1(1998;

3. THE METHOD IN ACTION

We will choose two ODME units. We shali illustrate the whole proces s of
mapping dictionary units on a simple example from a dictionary unit. The second unit
(see Appendix B) shali be used to illustrate the cumulative BNF grammar
development for all more complex dictionary unit types.

Example I: (grammar G 1)

accommodating adj. Willing to do as one is asked.

o Preliminary dictionary unit preparation

Changing adj.::::::> adjective reduces the multifacetedness of the meaning a full
stop can have.

The whole method implementation could use the upper dictionary unit fragment
RTF file, which has the following form:

{{\blilf2Uang1050 accommodating}{\f21lang1050 }{\ilf211ang1050 adjective}{\f21lang1050 Willing to do as one is asked.oar j)

Delimiters \b, \i and \lang1050 respectively mean font style bold, font style italie
and the language of code number 1050. The last piece of information is supert1uous,
so preliminary unit preparation should eliminate it. The grammar of the dictionary unit
can encompass the structure of the RTF file to which it belongs. Delimiter \par marks
the end of the given dictionary unit, so that it is easy to distinguish between different
units.

We shali, if and when required, asssume that the graphical features of the text
could already be separated in the source dictionary unit.

o Input BNF style grammar for the parser generator PARSER.EXE from the
development environment of PDC Prolog (Turbo Prolog, Visual Prolog)

DICTIONARY_UNIT = CONCEPT PART_OF _SPEECH DESCRIPTION
CONCEPT = symbol
PART_OF _SPEECH = adjective
DESCRIPTION = string

The input grammar syntax of the parser generator PARSER.EXE demands that
Prolog predicates which will represent individual (non-list) productions in a syntactic
analyser must be attributed to those productions. The details of the input grammar's
metagrammatic description is not discussed here. The syntactic analyser input
grammar designed for the BNF grammar in the example has the following form:

productions

DICTIONARY_UNIT = CONCEPT DESCRIPTION .> dictionaryUnit(CONCEPT,DESCRIPTION)
CONCEPT = PURE_CONCEPT PART _OF _SPEECH -> concepl(PURE_CONCEPT, PART _OF _SPEECH)
PURCCONCEPT = pureConcept(SYMBOL) .> pureConcept(SYMBOL)
DESCRIPTION = description(STRING) -> description(STRING)
SORT _OF _GRAMMAR_OBJECT = adjective -> adjective

o Generated parsing objects (parsing domains and predicates)

17

M ČlIbrilo. A conceptual prolog engine for automated dictionary-to-hypertex! mapping

/***

DOMAIN DEFINITIONS*---*.*- * * * *** * *********** ******************* ** * * * ****** ***1

DOMAINS
DICTIONARY _UNIT = dictionaryUnit(CONCEPT,PART _OF _SPEECH,DESCRIPTION)
CONCEPT = concept(SYMBOL)
PART_OF _SPEECH = adjectiveO
DESCRIPTION = description(STRING)
TOK = concept(SYMBOL); .

adiectivet);
description(STRING);
nil

/***_*_ff**

PARSING PREDICATES
*** /

PREDICATES
s_dictionary_unit(TOKL,TOKL,DICTIONARY _UNIT)
s_concept(TOKL,TOKL,CONCEPT)
s_parCoCspeech(TOKL,TOKL,PART _ OF_SPEECH)
s_description(TOKL,TOKL,DESCRIPTION)

CLAUSES
s_dictionary_unit(LL 1,LLO,dictionaryUnit(CONCEPT,PART _OF_SPEECH,DESCRIPTION))-

s_concept(LL 1,LL2,CONCEPT),
s_parCotspeech(LL2.LL3,PART_OF _SPEECH),
s_description(LL3,LLO,DESCRIPTION),I.

s_concept([t(concept(SYMBOL),JILL],LL,concept(SYMBOL)).-1.
s_concept(LL,_,J.-syntax_error(concept,LL),tail.

s_parcotspeech([t(adjective,JILL],LL,adjective).-!.
s_part_otspeech(LL,_,J.-syntax_error(part_otspeech,LL),tail.

s_description([t(description(STRING),JILL],LL,description(STRING)).-!.
s_description(LL ,-,J. -syntax_ error(description, LL), tail.

TOK is a shortcut of TOKEN, i.e. lexeme. A look at the generated predicates
proves them automatically generated by the difference list method. The pars er
generator PARSER.EXE inserts the syntax_error predicate in the code of the generated
predicates to handie errors. Generated predicates perform syntactic analysis us ing the
"trial and error" method. The unsuccesful trials do not mean the absolute inability to
recognise the structure of the input dictionary unit (transformed in the lexeme list).
Therefore, the recognition of the error should be postponed for as long as possible.

The possible strategy is simply to keep track of the error that occurred at the
deepest level in the source text. Each time the syntax_error predicate is called, we
should compare the cursor position of the current token with the cursor position of the
last syntax error. The fact that the new error occurs deeper into the source text may
mean that the parser simply tri ed to apply the wrong production. So, we should
temporarily save the new error (in an internal database predicate, say error, whose

18

Zbornik radova, Volume 22, Number 1(1998)

domain consists of error messages and cursor positions respectively). If at some point
the parsing process absolutely fails, that means that the currently saved error (at the
top of the internal database) actually is a syntax error (does not represent the
dictionary unit). Predicate syntax_error is not cornpletely implernented here. After all,
our Prolog engine is just a conceptual engine.

The lexical analysis of the input dictionary unit should be preeeded by its
syntactical analysis. The lexical analyser of the input dictionary units can be
implemented in several different ways. The only condition is that the returned list of
token s should belong to the TOKL domain, to maintain compatibility with parsing
predicates. Most of the work will be performed by the front!oken system predicate. The
lexieal analyser at hand is implemented and commented on in the HYPER.SCA
program (see Appendix A).

o ResuIts of the lexical and syntactical analysis of our sample dictionary unit

The HYPER.PRO program applied to the input dictionary unit formed as an input
string gives a Tokens list and the output term (dictionaryUnit), which is ready for further
structuring into the hypertext strueture.

Tokens -> [t(concept('accommodating'),J,t(adjective,J,t(description(' willing to do as one is asked ."),J]

Term ---> dictionaryUnit(concept('accommodating'),adjective,description(" willing to do as one is asked .'))

o Modelling the hypertext structure

Modelling the hypertext structure has three steps:

I. Forming and creating the physieal structure of nodes

2. Physical maintainance of the node structure (adding new nodes, deleting
already existing nodes, adding and deleting links between nodes, ete.)

3. Maintainance in use (real is ing different abstraction types in the hypertext
strueture).

In the Prolog context, the most suitable "data structure" for forming the physical
strueture of nod es (hyperbase) is a so-ealled external database. However, for
illustrating implementational aspects of our conceptual engine we shali use interna I
databases, connected with a complex term construction mechanism. The core
hypertext strueture encompasses a net of nodes.

We shali assume that the input into our modu le for strueturing dictionary units in
hypertetxt strueture is given in a list form.

dictionaryUnit(concept(CONCEPT) ,PART_OF_SPEE CH ,description(DESCRI PTION))

Generally, the implementations depend upon the chosen programming language
and environment, as well as the purpose of the system. The purpose of this system is
illustrative, meaning that we shalI give minimal (conceptual) implementation, to reach
the level of its structure, without considering the navigational aspeet.

19

iv! Čubri!o. A conceptual prolog enginefor automated dictionary-to-hypertext mapping

We shali assume that dictionary units have been structured in the interna! database
dictionaryUnitBase (with the save("dictUnit.dba",dictionaryUnitBase) predicate), and that
dictionaryUnit is its only predicate. Further, we shali assume that all video and audio
records have been arranged and saved in their corresponding interna! databases
("pictures.dba" and "sounds.dba") with picture(pictureName,pictureFile), and
sound(soundName,soundFile) predicates respectively. The names from the domains
pictureName and soundName mu st be equal to the values of the CONCEPT term
argument in the dictionaryUnit predicate structure, so that video and audio records can
be properly linked to their corresponding dictionary units. The mapping predicate will
operate on the three internal databases mentioned above, and map dictionary unit's
structure into the hypertext structure.

The assumed minimal hypertext structure is made of nodes and a few primitive
links. The links are to connect sound and picture names with the appropriate database
files. Each node shali represent a dictionary unit, and hyperfields shali represent its
textual, and where present, its video and audio traits. The node identifier must be
CONCEPT. Its domain is SYMBOL. The empty term is the defau!t value of picture and
sound hyperfields respectively when one ofthem does not exist.

Hypertext structure is static without links. Naturai lin ks exist here, for examp!e,
between the sound and picture names and their appropriate files. Generally, it is
naturai in this environment that links are provided within the application us age,
through different abstraction types and hypertext structure remodellings. Abstractions
and remodelling types can be predefined in a finished application OI' it cou!d be left to
the user to arrange them himselffrom irreducible cornponents.

Here, the hypertext structure (embedded through the main mapping predicate
dicttohyp) is given in a pseudo-Prolog code

DOMAINS

CONCEPT,PART_OF_SPEECH,SOUND,PICTURE= SYMBOL
DESCRIPTION= STRING
NODE= node(ID)
SOUNDJILE,PICTUREJILE = FILE

PREDICATES

dyct-to-hyp(node(CONCEPT),PART_OF_SPEECH,description(DESCRIPTION),SOUND,PICTURE)
/ * This is the core mapping predicate (for a static hypertext structure) * /

found(CONCEPT,PART_OF_SPEECH,description(DESCRIPTION))

/* This predicate finds (pops up) the dictionary unit in an internal database "dictllnit.dba" * /

soundFound(CONCEPT,SOUND)

/* This predicate finds the appropriate symbolic name for the sound file of the concept in case * /

pictureFound(CONCEPT,PICTURE).

20

Zbornik radova, Volume 22, Number 1(1998)

I * The same, but for the picture's symbolic name * I

link(SYMBOL,FlLE)

/* Links the symbolic narnes for the sound and the picture with the appropriate files. In
implementation, these two kinds of files should be distinguished by their exteusions * /

CLAUSES

dyet-to-hyp(node(CONCEPT) ,PART _OF _SPEECH, DESCRI PTION ,SOUN O,PICTU RE)-
found(CONCEPT,PART _OF_SPEECH,DESCRIPTION),
soundFound(CONCEPT,SOUND),
pietureFound(CONCEPT,PICTURE).

found(CONCEPT,PART _OF_SPEECH,DESCRlPTION):-
eonsu lt('d ietUnit.dba' ,dictionaryU nitBase),
retract(CONCEPT,PART _OF_SPEECH,DESCRIPTlON),!.

soundFound(CONCEPT,SOUND):-
consult("sounds.dba'), .
retract(sound(SOUND,J),
assertz(sound(SOUND,J),
CONCEPT =SOUND,!.

soundFound(CONCEPT,empty):-!.

pictureFound(CONCEPT,PlCTURE):-
consult("pictures.dba"),
retraet(pieture(PICTURE,J),

assertz(picture(PICTURE)),
CONCEPT=PICTURE,L

pictureFound(CONCEPT,empty):-I.

link(SOUND,SOUNDJILE):-

consult("sounds.dba"),
retract(sound(SOUND,SOUNDJILE)),
assertz(sound(SOUND,SOUNDJILE)).

link(PlCTURE,PICTURE_FILE):-
consult('pictures.dba'),
retract(picture(picture,PICTURE_FILE)),
assertz(picture(PICTURE,PICTURE_FILE)).

linkC,empty).

4. POSTPROCESSING

We can imagine an almost unlimited number of different kinds of abstraction that
we could realize in the hypertext structure of dictionary units. Here are a few ofthem:

Abstractions which

o group together all instances of a given concept
o give all verb forms of the verb concept given in the infinitive
o give all synonyms of the given concept
o give all homonym meanings of the given concept

21

M. Čubrilo. A conceptual prolog engine for automated dictionary-to-hypertext mapping

o gives all quasi-homonyms of the given concept (a quasi-hornonym of a given
concept we define as another concept which has an approximately similar
meaning or participates in the description of the first one)

o give some characteristic phrases for concept usage

Bere, we implement the abstraction which generates all· quasi-hornonyms of the
given concept (dictionary unit).

quasi_homonyms(CONCEPT,QUASI_HOMONYMS):-
dyct-to-hyp(node(CONCEPT),_,description(DESCRIPTION),_,J,
suspects(DESCRIPTION,POSSI8LE_QUASI_HOMONYMS),
quasi_homonyms(CONCEPT,POSSI8LE_QUASI_HOMONYMS,QUASI_HOMONYMS).

1* According to the description above every concept can have many hornonyrns * I

suspects(S,[HIT]) :- fronttoken(S,H,S1),
!,

suspects(S1,T).

suspectst, 0).

I * The suspects predicate takes a DESCRIPTION string as its input and gives as its output the list
POSSI8LE_QUASI_HOMONYMS of possible quasi-homonyrns. * I

quasi_homonyms(CONCEPT,POSSI8LE_QUASI_HOMONYMS,QUASI_HOMONYMS):-
findall(QUASI_HOMONYM,quasi_homonym(CONCEPT,POSSI8LE_QUASI_HOMONYMS,

QUASI_HOMONYM),QUASI_HOMONYMS).

quasi_homonym(CONCEPT,POSSI8LE_QUASI_HOMONYMS,QUASI_HOMONYM):-
element(QUASI_HOMONYM,POSSIBLE_QUASI_HOMONYMS),
additionaIConstraints(QUASI_HOMONYM),
dictionaryUnit(concept(QUASI_HOMONYM),_,description(DESCRIPTION)),
searchstring(DESCRIPTION,CONCEPT,J.

I * The quasi_homonym predicate takes the CONCEPT string (dictionary unit) and its list of possible
quasi-homonyms (POSSI8LE_QUASI_HOMONYMS) as inputs and gives a quasi-homonyrn (if it
succeeds). That is done by checking all the elements of the POSSI8LE_QUASI_HOMONYMS list if
their description contains the initial CONCEPT as a substring in their descriptions. Besides and
before that, the QUASI_HOMONYM string is checked for additional constraints. The searchstring is a
standard Prolog predicate and the predicate element is defined as usually. The predicate findalI is a
standard Prolog metapredicate , * I

5. CONCLUSIONS

We have considered the possibilities of an automat ed mapping of classical
information sources (dictionaries, statistical data, phone books, ...) into the hypertext
structure. The aim of that mapping is twofold. On the one hand, the aim is to
"preserve" the old and valuable information sources for use in new environment
(multimedia). On the other hand, the aim is to furhter enrich the old contents of such
information sources with new contents (such as sound, pictures and video clips) as

22

Zbornik radova, Volume 22, Number 1(1998)

well as to improve the old organizational structure, giving the user more possibilities
in everyday use. The core idea for achieving all of this is to interpret the information
sources in consideration as forma I languages. lt seems pretty hard, and yet is possible,
and we hope that the paper has made it clear.

APPENDIXA

Core structure of the application

Although we have on several occasions pointed out that our Prolog engine is
merely a conceptual engine, its groundings should, however, be verified in the Prolog
development environment. Here we give a minimal implementation of the main
module of the program, as well as its components and, in short, comment on sorne
important predicates, with a special emphasis on the procedure of making them
function in general conditions.

f===
HYPER.PRO - Demo of Parser Generator-

===*1
check_determ

CONSTANTS

DOMAINS
CURSOR = INTEGER
CURSORTOK = t(TOK, CURSOR)
MESSAGE = STRING
RESUL T = REAL
SOURCE = STRING
TOKL = CURSORTOK*

include 'd:\\pdc320\\hyper\\grammarl.dom'
% Parser domains (created by Parser Generator).

PREDICATES
expect(CURSORTOK, TOKL, TOKL)
syntax_error(MESSAGE, TOKL)

f The expect and syntax_error predicates handie parsing errors *1

include 'd:\\pdc320\\hyper\\hyper.sca'
include 'd\\pdc320\\hyper\\grammarl.par"
include 'd:\\pdc320\\hyper\\hyper.ui'

% scan/3
% s_dictionaryUnitl3
% useUnterface/O

CLAUS ES
expect(TOK, [TOK!L],L).

GOAL
user jnterface.

23

M. Ćubrilo. A conceptual prolog enginefor aUlomated dictionary-to-hypertext mapping

j*===
HYPER.UI Dietionary-To-Hypertext Demo of Parser Generator - Simple User Interfaee

==*j

PREDICATES
evaluateDietionaryUnit(SOURCE)
parse(TOKL, DICTIONARY _UNIT)
tokenize(SOURCE,TOKL)
userinterface

glueDeseription(TOKL, TOKL)
glue(TOKL,CURSORTOK,TOKL)

CLAUSES
evaluateDietionaryUnit(DietUnit) :-

tokenize(DietUnit, TOKENS),
glueDeseription(TOKENS,GLUED_ TOKENS),
write("lnTokens -> " GLUED_ TOKENS),
parse(GLUED_ TOKENS, TERM),
write("lnlnTerm ---> " TERM),
I.

evaluateDietionaryUnitU :-
sound(30, 300),
write("lnln«llIegal Expression»').

/* The evaluateDietionaryUnit predicate does the initial input string tokenization, glues token s of the
DESCRIPTION part back into the string, writes the list of token s, parses it into the resulting term and
writes ilon the screen "l

parse(TOKENS, TERM)-
s_dietionary_unit(TOKENS, UNUSED_ TOKENS, TERM),
UNUSED_ TOKENS = O

/* The parse and s_dietionary_unit predicates parse the input dictionary unit string into the appropriate
gramm ar term *j

tokenize(DietUnit, TOKENS) :- sean(O, DietUnit, TOKENS).

/* The sean predicate is doing the job of input string tokenization "l

glueDeseription(D,J·

9lueDeseription([t(eoneept(X) ,J ITAI L],[ti eoncept(X) ,JIT AI L1]):-
glueDeseription(TAIL,TAIL 1),1.

glueDescription([t(adjeetive,JITAIL],[t(adjeetive,JITAIL 1]):-
glueDeseription(TAIL,TAIL 1),1.

glueDeseription([t(deseription(X),JIT AIL],GLUED _TOKENS):-
glue([t(deseription(X) ,J ITAIL],t(deseription("") ,J, GLU ED_TOKEN S).

glue(O,t(deseription(X) ,J, [ti deseription(X) ,J]): -!.

24

Zbornik radova, Volume 22, Number 1(1998)

glue([t(description(X),JITAIL],t(description(Y),J, TAIL 1).-
concat(Y," ",Y1),
concat(Y1,X,Z),
glue(TAIL,t(description(Z),J, TAlL 1).

/* The glueDescription predicate glues tokens in the DESCRIPTION part of the dictionary unit back to
the str ing. glue predicate is doing the real job, using the standard tri ck which handies "boundary
conditions" */

userintertace .-
write("\n\n\n\nEnter dictionary unit string '),
readln(DictUnit),
I,

evaluateDictionaryUnit(DictUnit),
userjnterface.

userlnterface.

/* The userinterface predicate implements a minimal user interface (it reads the input string, evaluates
the dictionary unit according to parsing predicates) and writes resuIts (a list of token s and the
dictionary unit structure Prolog term) */

/*===
HYPER.SCA Dictionary-To-Hypertext Demo of Parser Generator

===*/
DOMAINS

NUMBER_OF_EXTRA_CHARACTERS =INTEGER
NUMBER OF SPACES = INTEGER

PREDICATES
is_a_space(CHAR)
scan(CURSOR, SOURCE, TOKL)
skip_spaces(SOURCE, SOURCE, NUMBER_OF _SPACE S)
stringJoken(SYMBOL, TOK)
counteUnc(INTEGER,INTEGER)

DATABASE

counter(INTEGER)

CLAUSES

counter(O).

counteUnc(Y,X).-
retract(counter(X)),
Y = X + 1,
asserta(counter(Y)).

/* The counter jnc predicate increments the current value of the database predicate counter */

is_a_space(' ').
is_a_space('\t').
is_a_space('\n').

25

Ai Ćubrilo. A conceptual prolog engine for automated dictionary-to-hypertext mapping

/* The is_a_spaee predicate defines a "space" in a dictionary unit string '!

sean(STARTING_POSITION, SOURCE, [t(TOKEN, LOCATION_OF_TOKEN)ITAIL])-
skip_spaees(SOURCE, NEW_SOURCE, NUMBER_OF_SPACES),
LOCATION_OF _TOKEN = STARTING_POSITION + NUMBER_OF_SPACES,
fronttoken(NEW_SOURCE, FRONTTOKEN, REST),
!,% Make the ease of eaeh token unimportant.
uppeUower(FRONTtOKEN, LOWER_CASEJRONTTOKEN),
string_token(LOWER_ CASEJRONTTOKEN, TOKEN),
stUen(FRONTTOKEN, LENGTH_OF _FRONTTOKEN),
NEW_STARTING_POSITION = LOCATION_OF_TOKEN + LENGTH_OFJRONTTOKEN,
sean(NEW_STARTlNG_POSITION, REST, TAIL).

seanC, _, 0).

/* The sean predicate looks for tokens in the input string (dictionary unit)'/

skip_spaees(SOURCE, NEW_SOURCE, NUMBER_OF_SPACES) :-
frontehar(SOURCE, CHAR, SOURCE1),
is_a_spaee(CHAR),
!,
skip_spaees(SOURCE1, NEW_SOURCE, NUMBER_OF_SPACESJN_SOURCE1),
NUMBER_OF _SPACES = NUMBER_OF_SPACESJN_SOURCE1 + 1.

skip_spaees(SOURCE, SOURCE, O).

/* The skip_spaees predicate counts and skips spaces between the two consecutive token s ./

stringJoken(adjeetive ,adjeetive): -l.

string_token(SYMBOL,eoneept(SYMBOL)):-
eounterjneC,O), !.

string_token(SYMBOL,deseription(SYMBOL)):-
eounterjneC,X),

X>O, !.

/* The string_token predicate makes a distinction between CONCEPT and DESCRIPTION parts in a
dictionary unit string and transfonns (where needed) graphical representation of a given token into
its textual equivalent ./

APPENDIXB

Yet another dictionary unit and its grammar

accessory (ak-sess-er-i) adj. additional, extra. --n. 1. a thing that is extra or useful or decorative, but
not essential, aminor fitting or attachment. 2. a person who helps another in a crime. ~ The spelling
accessory is now disused.

This dictionary unit is one of middle complexity in the ODME dictionary. Its grammar
is a generalization of our first example

26

Zbornik radova, Volume 22, Number J (J 998)

DICTIONARY_UNIT := CONCEPT DESCRIPTIONS
CONCEPT := CONCEPT_ONLY I CONCEPT_ONLY SPELLlNG
CONCEPT_ONLY = SYMBOL
SPELLlNG = Ipar SYMBOL rpar % left and right parentheses
DESCRIPTIONS = DESCRIPTION+ .
DESCRIPTION = MEANING I MEANING ARRAY_OF_MEANINGS
MEANING = PART_OF...:SPEECHEXPLANATION
EXPLANATION = STRING
ARRAY_OF_MEANINGS = dash_dash NUMERATED_MEANING+
NUMERATED_MEANING = NUMERALfull_stop MEANING
NUMERAL = INTEGER
PART_OF_SPEECH = adjective I noun

As already mentioned, this dictionary unit is of middle level cornplexity. We could additionally
refine its grarnrnar (splitting the description from the notes on usage, ...). The lexical analyser should
be augmented with the definitions of additional terminal elements (noun, verb....). The resulting
parsing predicate would also have amore complex structure. Of course, it would also grasp our first
dictionary unit sarnple, but with a lot of "empty" values. That means that the value empty must be an
element of the appropriate dornain of the core predicate (dictionaryUnit).

REFERENCES

[1] B. Campbell, 1. M. Goodman. HAM: A general purpose hypertext abstract
machine, The Journal of Communication of the ACM. VoL 31, No. 7, July 1988,
pp. 856 - 86l.

[2] P. Grag. Abstraction mehanisms in hypertext, in Hypertext '87 Papers, Chapel
Hill, NC, November 13-15,1987.

[3] PDC Prolog User's Guide, POC, Copenhagen, 1990.

[4] PDC Prolog Reference Guide, POC, Copenhagen, 1990.

[5] PDC Prolog Toolbox, POC, Copenhagen, 1990.

[6] P. Seyer. Understanding Hypertext: Concept and Applications, WINOCREST,
Blue Ridge Summit, 1991

[7] Visual Prolog: Visual Development Environment, POC, Copenhagen, 1996.

[8] Visual Prolog: Visual Programming Interface, POC, Copenhagen, 1996.

Received: 22 September 1998
Accepted: 2 February 1999

27

M Čubrilo A conceptual prolog enginefor automated dictionary-to-hypertex/ mapping

Mirko Čubrilo

KONCEPTUALNI PROLOG STROJ ZA AUTOMATSKO PRESLIKA VANJE
RJEČNIKA U STRUKTURU HIPERTEKST A

Sažetak

Ovaj rad razmatra mogućnosti preslikavanja strukture klasičnih izvora informacija
(rječnika, ...) u strukturu hiperteksta. Struktura hiperteksta omogućuje učinkovitije korištenje
preslikanih resursa (njihovo obogaćivanje novim, multimedijskim informacijama, povezivanje
s bazama podataka i strukturiranje baza znanja, ...). Ideja je u tome da se klasični izvori
informacija interpretiraju kao formalni jezici i ona će biti ilustrirana na primjeru klasičnog
rječnika, ali je jednako primjenjiva i na sve druge (slične) tipove klasičnih informacijskih
resursa. Prikladnu tehničku osnovicu za implementacije nalazimo u jeziku logičkog
programiranja Prolog. Metoda, pod nazivom Konceptualni Prolog s/roj, oblikovana je i
razvijena u tom okruženju.

Ključne riječi: klasični izvori informacija, hipertekst, baza znanja, baza podataka, Prolog.

28

