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During the last fifteen years we have witnessed an explosive development in the area of
optimization theory due to the introduction and development of interior-point methods. This
development has quickly led to the development of new and more ejJicient optimization codes.
In this paper, the basic elements of interior-point methods for linear programming will be
discussed as well as extensions to convex programming, complementary problems, and
semidefinite programming. Interior-point methods are polynomial and effective algorithms
based on Newton 's method. Since they have been introduced, the classical distinction between
linear programming methods, based on the simplex algorithm, and those methods used for
nonlinear programming, has largely disappeared. Also, a brief overview of some
implementation issues and some modern optimization codes, based on interior-point methods,
will be presented. As of now, there is no doubt that for large-scale linear programming
problems these new optimization codes are very often more ejJicient than classical
optimization codes based on the simplex method.
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1. INTRODUCTION

During the last fifteen years we have witnessed an explosive development in the
area of optimization theory due to the introduction and development of interior-point
methods. This development has quickly led to the development of new and more
efficient optimization codes, particularly in the field of Linear Programming (LP).

The purpose of this paper is to survey the main aspects of this exciting
development. The paper is organized as follows. In Section 2 we briefly review the
main steps in the theoretical development of interior-point methods, mainly for LP. In
Section 3 the basic idea and key elements of interior-point methods for LP are
described. The extensions to some nonlinear programming problems such as linear and
nonlinear complementarity problems, convex programming problems, and
semidefinite programming are outlined in Section 4. Section 5 contains a brief
discussion on implementation issues in the development of modern interior-point
codes and ashort description of some commerciai and public domain linear
programming codes.
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2. BRIEF REVIEW

In this section we give a brief review of the main steps involved in the
development of interior-point methods for the linear programming problem (LP) and
for other optimization problems without any intention to be exhaustive.

It is not necessary to elaborate on the applicability of LP. The number of its
applications in industry, business, science and other fields is enormous. That is
probably the reason why advances in the the ory and practice of LP get significant
attention even outside the field of optimization.

Dantzig's simplex algorithm [16] for LP, developed in 1947, initiated strong
research into the area of LP and optimization in general. The main idea of this
algorithm is to "walk" from vertex to vertex along the edge of a feasible region (a
polytope) on which the objective function is decreasing. Its popularity is due to its
efficiency in solving practical problems. Years of computational experiments and
applications resulted in better and better variants of this algorithm, commonly called
pivoting algorithms. Computer implementations of some of these algorithms include
sophisticated numerical procedures in order to achieve accuracy, stability and an
ability to handie large-scale problems. Computational experience has shown that the
usual number of iterations to solve the problem is G(n) where n is the number of
variables in the problem. Another reason for the popularity of the simplex method and
its variants is their suitability for sensitivity analysis, which is extremely important in
practice. The combinatorial nature of the algorithm allowed a large number of
generalizations for combinatorial problems such as the transportation problem and
other network problems. Another generalization is the development of the pivoting
methods for the Linear Complementarity Problem (LCP). An in-depth review of the
methods for LCP can be found in [14).

Unfortunately, pivoting algorithms are not polynomial algorithms although they
are finite procedures. Klee and Minty [30], in 1971, provided an LP example for which
some pivoting algorithms need an exponential number ofpivots. In 1978, Murty [48]
provided a similar example for LCP. The good thing about these examples is that they
are artificial, that is, they have not been observed in practice. This discrepancy
between the worst-case complexity of pivoting algorithms and their successful
practical performance, led to strong research interest in the average complexity of
some pivoting algorithms in the early 80s. Adler and Megido [3] showed that for a
certain probability model the nu mb er of iterations of Dantzig's self-dual parametric

algorithm [16] is Q(min{n,mY)where n is the number of variables and m is the
number of equations. See also [56], [13], [39).

Although pivoting methods for LP and LCP have been a great success,
computational experience with these methods has shown that their efficiency and
numerical stability decreases as the problem dimension increases. One reason for this
is the inability of these methods to preserve sparsity; thus data storage requirements
increase rapidly. Another reason for this is the poor handling of round-off-errors,
These unfavorable numerical characteristics together with an exponential worst case
complexity (relaxed quite a bit with the artificiality of the examples in which it occurs
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and in the average-case analysis) justify the need for a better, hopefully polynomial
algorithm. This hope that a polynomial algorithm for LP exists was based on the fact
that LP is not a NP-hard problem [39]. Finally, in 1979, more than 30 years after the
appearance of the simplex algorithm, Khachiyan [29] proposed the first polynomial
algorithm for LP, the so-called ellipsoid algorithm, by applying Shor's original method
[55] developed for nonlinear convex programming. The publicity for this was
enormous and the news even appeared in the New York Times. Similarly as for the
simplex algorithm, immediate generalizations to convex quadratic programming and
some classes of Lep were made. Also Grotchel et al. [19] used an ellipsoid method as
a unifying concept to prove polynomial complexity resuits for many important
combinatorial problems. Unfortunately, computational experiments soon showed that
from a practical point of view the ellipsoid algorithm is useless. It performs much
worse than the simplex algorithm on most practical problems and the various
modifications could not offer much help. See [Il] for a survey.

In late 1984, Karmarkar [31] proposed a new polynomial algorithm for LP that
looked like it would perform well in practice. The ma in idea behind this algorithm is
quite different than that of the simplex algorithm. This method is not a finite
procedure, it is an iterative algorithm and the iterates are calculated not on the
boundary, but in the interior of the feasible region. This algorithm makes use of
projective transformations and the so-called potential function (Karmarkar's potential
function). It requires Otnl.; iterations where L is the size of the problem. In addition,
each iteration requires Gen3

) arithmetic operations. The appearance of this algorithm
start ed major research activity in the field of LP and other related areas, starting with
the field of interior-point methods. This powerful activity has lasted ever since and the
number of papers on this subject goes well into the thousands. For a while Kranich
[37] maintained a detailed bibliography on interior-point methods. Recently, Wright
has been maintaining a web site on interior-point methods
(http://www.mcs.anl.gov/home/otc/lnteriorPoin/) at Argonne National Laboratories
which includes a list of the most recent papers and preprints in this field.

Soon a connection to the barrier and the Newton-type methods was established
[20]. Renegar [54] proposed a first path-following Newton-type algorithm which

further improved the complexity to Ge../nL) number of iterations and this remains the
best known worst-case complexity for LP so far. Many researchers have proposed

different interior-point methods with G(nL) or even Ge ../nL) complexity. They can be
put into two main groups: the potential-reduction algorithms [64] that are based on the
constant reduction of some potential function at each iteration, and the path-following
algorithms [35] based on approximately tracing a so-called central trajectory or central
path studied first by Megiddo [45]. Actually, these two group s are not that far apart
because, with a certain choice of parameters, iterates obtained by the potential-
reduction algorithm stay in the so-called horn neighborhood of the central path. In
each group there are algorithms based on primal, dual, or primal-dual formulation of
LP. A different approach to interior-point methods is based on the concept of analytic
centers and this approach was first studied by Sonenvend [57]. An in-depth review of
many of the interior-point methods can be found in [66].
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Throughout the history of science and mathematics, it has been the case that a new
method is actually a rediscovered old method. This is exactly the case with interior-
point methods. The logarithmic barrier method was actually introduced by Frisch [18]
in 1955. The method of analytic centers was first suggested by Huard [23] in 1965.
Also, the affine-scaling algorithm proposed by Barnes [12] and Vanderbei et al. [61]
as a simplified version of Karmarkar's algorithm appeared to be just a rediscovery of a
method developed by Dikin [15] in 1967. Interior-point methods were extensively
studied in the 1960s and the resu Its were best summarized in the classic monograph by
Fiacco and McCormick [17] and it provided an in-depth analysis of the Sequential
Unconstrained Minimization Techniques (SUMT) to solve Nonlinear Programming
problems (NLP). Thus, eariy interior-point methods were developed for solving NP,
not LP. However, these methods were soon abandoned due to the computational
difficulties involved. Lootsma [41] and Murray showed [50] that the Hessian of the
logarithniic barrier function, with which the system needs to be solved at each
iteration, becomes increasingly ill-conditioned when the iterates approach an optimal
solution. These Confidential Page 4 24.05.00 computational difficulties, coupled with
the fact that for LP the simplex method performed reasonably well in practice, were
the main reasons why interior-point methods were not applied on LP. If they had
been, SUMT would have been shown to be a polynomial method for LP as was
formally shown by Anstreicher much later on [9].

There are several reasons for the success of interior-point methods when they were
rediscovered in 1985 following the appearance of Karmarkar's seminal paper [31].
First, they were immediately tried on LP and good polynomial complexity bounds
were established. Second, at each iteration of an interior-point method it was necessary
to usually solve the problems of a sparse linear system that becomes increasingly ill-
conditioned as we approach the solution. However, the ill-conditioning in the LP case
is less severe. Third, in the past two decades, hardware and software have improved so
much that it is now possible to avoid ill-conditioning and solve these sparse linear
systems efficiently and accurately. This is due the to the advances in numerical linear
algebra in general and in sparse Cholesky factorization in particular. See Andersen et
al. [4] for details.

One drawback of the first .interior-point methods was that they required a prior
knowledge of an interior feasible point. To find such a point, or to show that it does
not exist, may be just as difficult as so Iving the problem itself. Soon this restrictive
requirement was removed and infeasible interior-point methods were proposed by
Kojima et al. [32]. A particulariy successful approach was one by introduced Ye et al.
[70] (see also Xu et al. [63]) where a feasible primal-dual interior-point algorithm was
applied to the homogeneous, self-dual, always feasible reformulation of the original
LP problem. This reformulation has a slightly bigger dimension than the original
problem, but this is a small price to pay for the good properties that are obtained. One
such property is the one that allows for the detection of infeasibility in the original
problem.

A drawback with the nice O( j,;L) worst-case complexity result for some path-
following algorithms was that it was obtained by taking short steps, i. e., steps in a
small neighborhood of the central path. Computationally, that is undesirable and we
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would like to be able to take much bigger steps. Lustig's et al. implementation [38]
that actually employs large steps has been really successful although their
implementation does not even guarantee global convergence. Some other large-step
algorithms were proved to be globally convergent, however the best complexity for
these algorithms stays O(nL) , and this is worse than for short-step algorithms,
although they perform better in practice than the short-step algorithms. To bridge the
gap Hung and Ye [25] proposed an r-order algorithm with O(n(r+I)l'rL) complexity.
The main idea was that instead of just caIculating a search direction, r additional
higher-order corrections of a search direction are caIculated in each iteration, in order
to find a better search direction and, thus, redu ce the number of iterations. Earlier,
Mehrota [42] studied the implementation of higher-order methods but did not discuss
global convergence. He showed that the first correction gives the biggest improvement
in the practical performance of the algorithm. These types of algorithms are called
predictor-corrector algorithms and they are now dominant in practical
implementations. Also, computational experiments have shown that a primal-dual
formulation is superior to either a primal or dual formulation of the algorithrn [44].

Besides global convergence and polynomial worst-case complexity, a desirable
feature of an algorithm is its fast local convergence. Yamashita [69] was the first to
prove quadratic convergence of the polynomial prima I algorithm, but under the very
restrictive assumptions that the optimal objective value is known and that the iteration
sequence converges to a nondegenerate optimal vertex. Then, Zhang and Tapia [72]
showed that for a certain choice of parameters a polynomial primal-dual algorithm
converges quadratically for nondegenerate problems and superlinearly for degenerate
problems under the assumption that the iteration sequence converges. Finally, Ye et al.

[68] and Mehrota [43] proved that the Mizuno-Todd-Ye O(.[,;L) algorithm [49] is
quadratically convergent without any assumptions.

Interior-point methods are iterative algorithms and they produce only an
approximation to the solution of the problem. This approximation can be as good as
desired, thus, it is called an B -approximate solution. However, for LP problems it is
possible to recover the exact (vertex) solution of a problem if the B -approximate
solution is close enough to that exact solution [65], [46]. These procedures include
finite termination procedures and cross-over procedures. They transform interior-point
methods for LP to theoretically finite algorithms that can produce an exact solution to
a problem. For many problems in practice an B -approximate solution is sufficient, but
there are applications where an exact solution is needed which underscores the
practical value of finite termination and cross-over procedures as well.

The tradition of generalization from LP to other optimization problems continued
even more strongly in the case of interior-point methods. Many methods were first
extended to Lep, some of them still maintaining the best-known O( .[,;L) complexity.
See, for example [36], [67]. Although interior-point methods were originally
developed in the 1960s [17] to solve Nonlinear Programming problems (NLP), recent
in-depth analysis of interior-point methods for LP opened new research directions in
the study ofinterior-point methods for NLP. In their seminal monograph, Nesterov and
Nemirovskii [51] provided a unified theory of polynomial interior-point methods for a
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large class of convex programming problems that satisfies the so-called self-
concordancy condition. Significant advances have also been made in interior-point
methods for the Nonlinear Complementarity Problem (NCP) [10). Recently, the
development of interior-point methods for Semidefinite Programming (SDP) has been
a very active research area. This activity is partially due to the fact that many
important problems in combinatorics, control theory, pattern recognition, etc., can be
formulated as SDP. -See for example [6].

3. INTERIOR-POINT METHODS FOR LP

In this section we present a generic infeasible interior-point algorithm for the LP
problem. Consider an LP problem in its standard form: Given the data
b ER"', cER", A ER""" find x ER" that solves the problem

min
s.t.

cTx

Ax = b, (3.1)
x z O.

is called a vector of primal variables and the setThe vector x ER"
<1> p = {x :Ax = b, x ~ O}
is called a feasible region.

The corresponding dual problem is then given by

max bTy

s.t. ATy+s=c, (3.2)
s~O .

The vector y E R"' is called a vector of dual variables and the vector SER" is
called a vector of dual slack variables. Also, denote the dual feasible region as <1> d ...

There is a well known theory that relates primal and dual LP problems and their
solutions with weak and strong duality theorems being at its core. It will not be
elaborated on here since it can be found in any standard textbook on LP. See for
example [16).

Consider now a logarithmic barrier reformulation for primal problem (3.1).

"min cTx - Ji Llnx;
;=1

s.t. Ax = b,
x o O.

Problems (3.1) and (3.3) are equivalent in the sense that they have the same
solution sets. The Karush-Kuhn- Tucker (KKT) conditions for problem (3.3) are
derived from the Lagrange function of this problem

(3.3)

"L(x,y) = cTx - Ji Llnx; - /(Ax - b),
;=1

(3.4)
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and they are
\1,L(x,y) = c - j1X-1e - Aly = O,

\1 "L(x,y) = b - Ax = 0, (3,5)

x > O,
where X E R"XI' represents a diagonal matrix with the components of the vector
x E R" on its diagonal, e E R" is a vector of ones, and !l E Ris a parameter. Using the

transformation s = j1X-le system (3.5) becomes
Aly+S = c,
Ax s=b.x s-I),

Xs = ue.
(3.6)

The logarithmic barrier model for the dual LP problem (3.2) is
n

max bTy+ !lL)ns;
i=1

s.t ATy+s=c,
s> O.

The KKT conditions for the above problem are

\1,L(x,y,s) = ATy+s-c = 0,

\1yL(x,y,s) = b - Ax = °= 0,

\1,L(x,y,s) = j.JS-1e - x = 0,

s> 0,

(3.7)

(3.8)

or equivalently
A ly + S - c = 0, s > 0,

b=Ax = 0,

Xs = ue.

Combining KKT conditions for the primal (3.6) and dual (3.9) barrier models we
obtain the primal-dual KKT conditions

(3.9)

ATy+s-c =O,s > 0,
b-Ax=O,x>O, (3.10)
Xs = ue.

The above conditions are very similar to the original KKT conditions for LP.

Ary + s - c = 0, S;::: 0, ~Dual feasibility
b - Ax = 0, x ;:::° ~ Primal feasibility (3.11)
Xs = O. ~ Complementarity

The only differences between (3.10) and (3.11) are strict positivity of the variables
and perturbation of the complementarity equation. Although these differences seems
minor, they are essential in devising a globally convergent interior-point algorithm for
LP.
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Note that the complementarity equation in (3.11) can be written as xls = O. It is a
well known fact that x7s = bly - clx and therefore x7s can be viewed as a primal-dual
gap between objective functions. Hence, the complementarity condition in (3.11) can
be interpreted as the condition of primal-dual gap being zero, which is just another
look at the strong duality theorem for LP.

It is a well known fact that (x' ,y' .s ') is a solution to the problem (3.11) iff x' is a
solution of the primal LP problem (3.1) and (y' .s ') is a solution of the dual LP
problem (3.2). Thus, any barrier method for solving a problem (3.11) consists of the
solving of a sequence of systems (3.10) with different values J1k for the parameter J1.

If a strictiy monotone decreasing sequence {J1k} exists, such that lim J1k = O, then any
k-+OJ

accumulation point of the solution sequence {(xk ,yk ,Sk) }is a solution of the original
primal LP problem (3.1) and associated dual problem (3.2). More formally, the
generic barrier method can be stated as follows.

(BM) 1. Given J1k solve THE system (3.10).

2. Decrease J1k to J1k+1 .

3. Set k +- k + 1 and go to 1.

The standard method used for solving the system (3.10) in Step 1 in the above
algorithm is one step of the modified (dumped) Newton method while the standard
choice for J1k is

(3.12)

Note that the application of one step of the modified Newton method will provide
us only with an approximate solution to the system (3.10). However, it can be shown
that this is sufficient for the sequence of iterates to converge to the solution.

One step of the modified Newton method is formalized below.

(MNM) 1. Given an iteratexk
, find the search direction d , by solving the

linear system Vf(xk )dx = - f(xk) .
2. Find step size ak•

3. Update Xk to Xk+1 = Xk + akd,.

The symbol Vf represents derivative, gradient, ar the Jacobian of the function f
depending on the definition of the function f. The choice of ak in the original

Newton method is a, = 1. In the modified Newton method the choi ce of ak may be

a, =argmin!!f(xk +adx)II·
ae(O,I)

The good thing about this choice is that we get IIf(xk+')II::; IIf(xk)II, that is, dx is a
decreasing direction.

An application of the MNM algorithm to the system (3.10) can be viewed as an
application of MNM to the function
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[

Ax -b ]
Fr(x,y,s)= A7y+s-c

Xs- Yj.1e

Note that the original system (3.10) has been slightly modified by adding the
scaling factor y to the last equation, with the intention of increasing the f1exibility of
the algorithm. Thus, a search direction is a solution of the system

(3.13)

[d']k k k k k kVF,(x ,y ,S ) d, = -F,(x ,y ,S ),

d,

(3.14)

or equivalently

At this point we would like to comment on why the perturbed KKT conditions for
LP given by the system (3.10) were us ed instead of the original KKT conditions given
by the system (3.11). Suppose we apply the Newton method directly to the system
(3.11). Particularly, an application of the Newton method to the last (complementarity)
equation leads to

Sd, +Xd, '" -Xs,
or equivalent1y

si(dJi +xi(ds)i = -XiS" 'v'i = 1,... , n.

If Xi = O and Si > O for some index i, then an immediate consequence of the above
equation is (dx)i = O and the update Xi + a(dJi becomes O, and stays O forever. The

iteration sequence may get "stuck" at the wrong face of R: and never converge to the
solution. To avoid this "trapping" phenomenon we perturb the complementary
equation

Xs = ue, j.1 > O .

The step size is connected to the concept of the central path

r = {(x,s) :(x,s)feasible,Xs = ue.u > O}, (3.16)

that is, a trajectory parametrized by the parameter u . It has been shown by Megiddo
[45] that this trajectory leads to a strict1y complementary solution when j.1 ~ O. A
strict1y complementary solution is defined as a pair of solutions x ' and s' such that
x· + s' > O. Goldman and Tucker showed [21] that such a solution always exists for
LP if the primal and dual problems are both feasible. Moreover, Guler and Ye [22]
showed that the supports

p' = ti», > O} and Z' = ti>, > O}
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are invariant for all pairs of strictly complementary solutions. The neighborhoods
(horn neighborhoods) of the central path can be defined using different norms

N2(,8) = {(x,s):IIXs-J1eI12 ~,8J1 (3.17)

N",(,8) = {(x,s) :IIXs-J1ell., ~,8J1 (3.18)

or even a pseudonorm

N: (,8) = {(x,s): IIXs - J1el[ ~,8J1 }= {(x,s) :Xs ~ (1- ,8)J1} (3.19)

where IIz I[ = II-L and (z-) j = min{ Zj'O . These neighborhoods are related as follows:

r <;;;; N2(,8) <;;;; N",(,8) <;;;; N: (,8) . (3.20)

Hence, if a step size is chosen in such away that the iterates stay in the one of the
above horn neighborhoods we are guaranteed a eon ver gen ce of the method. Let

x(a)=xk «a d, s(a)=sk +a d:

The step size a is chosen in such away that (x(a),s(a)) belongs to one of the
above neighborhoods, i. e.,

a, = max{a' : IIX(a)s(a) - J1(a)ell ~ ,8J1(a), '<la E [O,a'] (3.21 )
where

J1(a) = xT(a)s(a) .
n

(3.22)

Although the Newton method is not necessarily globally convergent, by using the
above technique, global convergence is guaranteed. Moreover, fast local convergence
(quadratic or at least superlinear) is preserved. Now, the first step of the barrier
algorithm BM can be completed by calculating the new iterates

(3.23)

The second step of BM is the calculation of J1k+1us ing equation (3.22). It can be

shown that J1k+1< J1k as it is required. Finally, note that BM can produce only an

approximate solution. An iterate (xk,l ,Sk) is an s -approximate solution if

IIAxk -bll~cl" IIAryk +Sk -~II~cl)' (Xk/Sk ~c(i

for a given (cl' ,Cl) ,ce) > O.

The interior-point algorithm can now be summarized as follows:

(3.24)

Algorithm (IPM)

Initialization:

1. Choose,8, r E (0,1) and (cl"CO'C(;) > O. Choose (x", yO, so) such that

(x" ,so) > O and Ilxoso - J10elis ,8J1o where J.1o = (xofso .
n

2. Set k = O.
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Step:
3. Set , _ 'k _ T k _ ' (x·)r s'rJ, - b - Ax , rlJ - C - A y s, 11. = -- .

n

4. Check the termination. If

then terminate.

5. Compute the direction by solving a system

(3.25)

6. Compute the step size

a, = max{ a': IIX(a)s(a) - j.i(a)ell ~ fJj.i(a), \:j a E [O,a']},

where x(a) = Xk + ad "~sea) = s" + ad" j.i(a) = xT(a)s(a) .
n

7. Update
Xk+1 = x" +akdx'

hi k dy = y + a, y'

S'+I = Sk + akd,.

8. Set k = k + I and go to step 3.

The above algorithm has favorable convergence properties. For a certain choice of
the parameters and using the neighborhood N2 (fJ), the following convergence resuIts
can be obtained.

• Global convergence: The algorithm IPM will achieve an s - approximate
solution in o(F 10g1/c)iterations, where e = minkl',cIJ,cG}·

• Local convergence: For a sufficiently large k there exists a constant A.> Osuch
that X;+IS;k+1~ A.(X;kS;)2, \:ji = l,...,n.

There are many modifications and vanations of this algorithm. In fact this
algorithm represents a whole class of algorithms. We can consider different
neighborhoods of a central path. Because of the relation (3.20), if N2 (fJ) is used, the
algorithm IPM is called a short-step algorithm, and if N", (fJ) or N~ (fJ) is selected, the
algorithm IPM is called a long-step algorithm. Unfortunately, the price to pay for
taking bigger steps in a long-step algorithm is worse global convergence, that is,
algorithm needs O(n log1/c) to achieve an s - approximate solution. Details of the IPM
algorithm and the proofs of the convergence resuIts can be found in [66].

Note that in the algorithm IPM only one step of the modified Newton method
MNM was used to find an approximate solution of system (3.10). However, more
steps of the MNM method can be performed in each iteration in order to achieve better
approximation. The IPM algorithm is then called a higher-order algorithm. If only one
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5. Compute the direction by soIving system (3.25) with r = O

[
A O O l[d x 1 [ r,! 1O Ar J d = r' .

S' O x' / -;~s'
(3.26)
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additional step per iteration is performed, the algorithm is called a predictor-corrector
algorithm.

Predictor-Corrector Algorithm (PC-IPM)

InitiaIization:
1. Choose /32,jJ1,E(0,1) and (e; .e; ,.0(;) >0. Let /32 </31.Choose (XO,yO,so)

o r o
such that (x", so) > O and IlxoSO - f.lo -l- /32f.lO where Jio = ~.

n
2. Set k = O.

Predictor Step: .
3 S k _ k k _ I" k k (x' )'"s'. et r /' - b - Ax , rIJ - C - A Y - s 'P. = __ .

n
4. Check the termination. If

Ih~ll:::;e, Ilr~ll:::;.oD' (Xk)TSk :::;Ge'

then terminate.

6. Compute the step size

iX = max{ a' : IIX(a)s(a) - f.l(a)ell:::; .B1f.l(a), v a E [O,a']}.

7. Update

x=xk -n«;
ji = r' +ady'

S=Sk + ad,..
Corrector Step:
8. Set

- _ - - _ T - - _ (X)T s-r" - b - Ax, r/) - c - A Y - s , P = __ .
n

9. Compute the direction by soIving system (3.25) with r = 1

(3.27)

la. Update
Xk+1 = x* + dx'

Yk+1 = * +dy r>

S*+1 = s' +d.

Il. Set k = k +1 and go to step 3.
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Note that in the predictor step the direction is calculated in a larger neighborhood
whiIe in the corrector step direction with a unit step size is calculated to return an
iterate to a smaller neighborhood. Thus, the predictor-corrector algorithm PC-IPM can
be viewed as an algorithm that combines large and short steps. Quite suprisingly,
global convergence remains 0(";;; log1/E )and fast local convergence is preserved. In
addition, algorithms of this type show the best practical performance and are therefore
implemented in almost all modern interior-point codes. See [4], [42].

Note that both of the above algorithms (IPM and PC-IPM) are infeasible
algorithms, that is, a starting point is not required to be feasible. First interior-point
algorithms required the starting point to be feasible as well as all the subsequent
iterates. In this case, system (3.25) has to be modified to

[
A O O l[d, 1 [ O jO Ar I d = O .

S' O x' / :..x's' +w,«

(3.28)

The algorithms IPM and PC-IPM are also path-following algorithms since the
iterates are required to stay in the horn neighborhood of the central path «3.17)-
(3.19)). These algorithms are designed to reduce primal-dual gap (Ji) directly in each
iteration. There is another group of interior-point algorithms that are designed to
reduce prirnal-dual gap (Ji) indirectly in each iteration. What these algorithms reduce
directly is a certain potential function that is reduced for a constant in each iteration.
That is why they are called potential-reduction algorithms. The iterates of these
algorithms do not necessarily stay in the horn neighborhood of the central path. In this
section the generic potential-reduction algorithm will not be discussed in detail. They
can be found in [66]. We will only mention the most popular potential function, the so-
called Tanabe- Todd- Ye primal-dual potential function

"
t "<1>p(x,s)=plogx s- L,.logx;s;,

;=1

(3.29)

where p> n. Using this function, Ye [64] deveioped the potential-reduction algorithm
with 0(";;; log1/E) complexity, matching the best result obtained for path-following
algorithms. Actually, Karmarkar's algorithm is also a variant of the potential-reduction
algorithm with the so-called primal potential function

"
<1>p(x) = P log(cT x-Z)- L logx»

i=1

(3.30)

where p = n + I and z is a lower bound on the optimal objective value.

4. EXTENSIONS

In this section we discuss the extensions of interior-point algorithms to some
classes of NLP problems such as the linear complementarity problem, the nonlinear
complementarity problem, convex programming, and semidefinite programming. The
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algorithms are not stated in detail, only the key elements, mainly the calculation of the
search direction, are discussed.

Linear complementarity problem
The Linear Complementarity problem (LCP) is the problem of finding a pair of

vectors x E R", SER" that satisfy the following condition:

s = Mx+ q, xTs = 0, (x,s)~O, (4.1)

where ME R"X/I is a given matrix and q ER" is a given vector.

Different classes of LCP can be obtained by imposing different additional
conditions on the matrix M . The class most often analyzed and us ed in practice is a
class of monotone LCP where the matrix M is required to be positive sernidefinite.
Other classes include the P -matrices (matrices with all the principal minors positive),
the p' -matrices (sufficient matrices), and the Po -matrices (matrices with all the
principal minors nonnegative). There are also other formulations of LCP besides
problem (4.1), and this is called the standard LCP. A popular formulation is the
horizontal LCP

Mx+N:s=q, xTs=O, (x,s)~O. (4.2)

For an extensive analysis ofLCP see [14], [34].

Although LCP is not an optimization problem, it is closely related to optimization
problems because the KKT conditions for many optimization problems can be
formulated as LCP. For example, it is obvious that the KKT conditions (3.11) for LP
can be viewed as standard LCP with

(4.3)

A similar result can be obtained for the Quadratic Programming problem (QP). In
addition to serving as a unifying framework for the analysis of many optimization
problems, LCP also appears as a direct formulation of many practical problems in
engineering and other areas. See for example [2] and [14].

It is not difficult to formulate an interior-point method for LCP. The structure of
the algorithm IPM for LP from the previous section remains the same. However, one
step of the modified Newton method MNM is now applied to the different function

[
MX-S+q]

F(x,s) = xs .

Therefore, the search direction will be the solution of the system

(4.4)

(4.5)

where r' = Sk - MXk - q. We will skip other details of this algorithm; they can be
found in [66].
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The analysis and the resuits of the interior-point methods for LP can be repeated
almost completely for amonotone LCP and even for some larger classes of LCP such
as the LCP with sufficient matrices. See, for example, [34], [67], and [40].

The convex programming problem

A general Convex Programming problem (CP) can be formulated as finding a
vector x E R" that solves the problem

mm f(x)

S.t. g(x) s 0,
(4.6)

where f: R" ~ R and g: R" ~ R'" are smooth convex functions.

There is no need to elaborate the applicability of CP since there are numerous
applications in industry, finance and other areas.

The Lagrange function for this problem is

L(x,y) = f(x) + /g(x), (4.7)

where y ER'" is a vector of the Lagrange multipliers. Thus, the KKT conditions for the
problem (4.6) are

VxL(x,y) = Vf(x) +Vg(X)ly = 0,

g(x)+s=O,

v' S = 0,
(y,s) ;::O.

As with LP, the above KKT conditions (4.8) can be used to characterize solutions
of the original CP problem (4.6), but only if an additional assumption, known as the
constraint qualification, is satisfied at the solution of the system (4.8). A good
description of several types of constraint qualifications can be found in [47].

Most algorithms for CP search for a point that satisfies the KKT conditions (4.8) in
the hope that the constraint qualification will hold at that point. It is not difficult to
generalize the algorithm IPM for the LP, described in the previous section, to this
more general setting. The function to which we apply one step of the modified Newton
method MNM is cIearly visible in the system (4.8). The search direction is then
obtained as a solution of the system

(4.8)

[

'Il xxL(x,y) Vg(x/

Vg(x) °
° S

°1[dX
] [- (Vf(x) + Vg(xf y)1

I d , = -(g(x)+s) ,

Y d, - Ys + rf-! e
(4.9)

T

where f-! = y s . For the sake of simplicity, the index k in the iterate (x", yk ,Sk) that is
m

used in the system (4.9) was omitted. The other details of the algorithm were also
omitted and can be found in [51], [28].
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The convergence analysis of interior-point algorithms for CP is much harder than
the one for LP because system (4.9) is much harder to analyze for that purpose. The
polynomial global convergence for the general class of CP problems can not be
established [51]. In order to achieve it, additional assumptions on the smoothness of
the functions are necessary. The most general smoothness condition is the self-
concordant condition of Nesterov and Nemirovskii [51] which basically requires that
the third derivat ive of the barrier function along any direction is assumed to be
bounded in terms of its second derivative at all strictly feasible points. Other
conditions include the relative Lipschitz condition of Jarre [26] and scaled Lipschitz
condition of Potra and Ye [53]. An in-depth analysis of interior-point methods for CP
can be found in the seminal monograph ofNesterov and Nemirovskii [51].

The nonlinear complementarity problem

The standard LCP given by (4.1) can be generalized to nonlinear setting by
replacing the linear function Mx + q with the smooth nonlinear function f: R'" -+ R'" .
Thus, the Nonlinear Complementary Problem (NCP) can be stated as the problem of
finding a pair ofvectors x E R", SE R" that satisfy the following conditions

s = f(x), (x,s) Z O (4.10)

The analogue of monotone LCP with positive semidefinite matrix M is the
monotone NLP with amonotone function. A function f: R'" -+ R'" is monotone if

(VXI,X2 E RII)(XI_X2/(f(XI)- f(x2)zO), (4.11)

for all Xi ,X2 in the neighborhood of the positive orthant R:. Some other classes ofLCP
have their generalizations to NCP as well. See [33], [40].

The importance of NCP arose partially from the obvious fact that the KKT
conditions (4.8) for CP can be formulated as monotone NCP. Also, the monotone
variational inequality problem that has important practical applications, can be
formulated as monotone Nep. The monotone variational inequality problem can be
stated as a problem offinding a vector x· E R" such that

x· En, (4.12)

where n ~ R" is a closed convex set and <I>: R" -+ R" is amoriotone function.

The interior-point a1gorithm for NCP can be adapted from the one for LCP in a
straightforward way. The search direction is a solution of the system

(4.13)

where

The other details of this algorithm are omitted and can be found in [10].
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Similarly, as in the case of CP. in order to prove the polynomial convergence
resuits an additional smoothness condition has to be imposed on the function f. Most
papers analyze monotone Nep [10], [53], and [58] . There are few that deal with the
larger class of sufficient Nep [27] or [40] and even fewer that deal with the local
convergence [58] or [.tO].

Semidefinite programming

Interior-point methods for Semidefinite Programming (SDP) have recently been a
very active research area. SDP is an extension of LP in which symmetric matrices and
real vectors are included among the variables, and positive semidefinitness conditions
on the matrix variables are included in the constraints.

To define the standard form of SDP and its dual it is necessary to introduce some
notation. Let A" be the set of real symmetric n x n matrices, and define an inner product

GeH=trace(GH)= I GijHij .
i.j

(4.14 )

If GEN', we use G ~ O to denote positive semidefinitness and G > O to den ote
positive definiteness. Using this notation, we define the SDP as the problem of finding
a matrix X E A" that solves the problem

mm CeX
s.t. A(X) = b,

X~O,
(4.15)

whereA(X) = [AIX,. .. ,A ••Xr, with CEA",A. EA"for all k , and bER"'. The dual of
problem (4.14) is

max bT Y
s.t. AT (y) + S = C,

S~O,
(4.16)

where Al(y) = i>.A. and S E Am is a dual slack matrix. Note that the matrices
k=1

X,S E A" are not necessarily diagonal matrices as they were earlier in this section, and
in the previous section.

Although this is a nonlinear problem, the analogy with LP is apparent. In addition
the whole theory of solutions for primal and dual LP, such as the weak and the strong
duality theorem, can be generalized for SDP, and this makes the analogy with LP all
the more striking. Hence, as in LP, primal and dual SDP have a solution iff their
combined KKT conditions

A1(y)+S=C,
A(X) = b,
XS=O,
X~O, S~O

(4.17)

have a solution.
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Many important issues in control theory and structural optimization can be
formulated as the problem of minimizing the maximum eigenvalue of an affine matrix
which is a SDP problem [60]. Also, relaxations of some important combinatorial
problems such as rnax-cut, bisection, and max c1ique identification can be formulated
as SDPs [24]. Hence, if a polynomial interior-point method for SDP exists, then these
NP-hard combinatorial problems will have good polynomial (continuous)
approximation algorithms which will have far reaching consequences in developing
efficient codes that can handie large-scale problems of this type that often appear in
practice. Nestrov and Nemirovskii [51] showed that SDP satisfies the self-
concordancy condition and therefore it is possible to devise a polynomial interior-point
algorithm for this c1ass of problems. This is the reason for the recent explosion of
research activity in this area.

The main step in developing an interior-point algorithm for SDP is the application
of one step of the modified Newton method MNM to the function

IAT(Y)+S-Cj
F(X,y,S) =l A(~-b . (4.18)

The domain this function AIII x RIII X AIII differs from its range AIII x RIII X R"X/I , since
the product XS is not symmetric in general. Hence, the X component of the direction,
denoted by LiK is usually not syrnmetric, even when X and S are symmetric.
Therefore, it is necessary to reformulate the complementarity condition XS = O as an
equivalent symmetric condition. Zhang [71] has proposed the condition Hp (XS) = O
where Hp is the symmetrization operator defined by

Hp(M) = ±(PMr' +(PMrl)I), (4.19)

where Pis any nonsingular matrix. The direction (LiK,L1y,M)is then obtained by
solving

(4.20)

where Rc = C - Al (y) - L1Z and rb = b - A(X). It is not completely straightforward to
transform equation (4.19) into a system that can be solved by standard matrix
factorizations. The transformations depend strongly on the choi ce of the matrix P in
equation (4.18). Zhang [71] uses P = SI/2 whereas Alizadeh et al. [5] consider P = 1.

The convergence analysis of the interior-point algorithms for SDP is much more
difficult than in the case of LP because of the complicated duality structure of the

SDP. Nevertheless, polynomial O(..r;; log(1/li)) global convergence has been proven
[5], [66] as well as superlinear local convergence [52].
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5. IMPLEMENT ATIONS

In this section some implementation issues of interior-point algorithms for LP will
be discussed. A successful code has not only a good underlying algorithm with good
theoretical convergence properties but also a good implementation that enhances the
algorithm and makes it efficient and easy to use in practice. A through and detailed
analysis of the implementation issues for interior-point methods for LP can be found in
[4] and the references therein.

Calculation of the search direction

Computationally the most expensive step in algorithm IPM in Section 3 is the
calculation of the search direction by solving the system (3.25) that is shown once
again here.

(5.1)

where rxs = Xs - YI' e. The iteration index k has been omitted for the sake of
simplicity. It seems that this system is much larger than the original system in LP.
However, note that system (5.1) is in unreduced form and that it can be greatly
reduced. Eliminating ds and using the notation D = S-I/2 XI/2 , we obtain the following
form of the system

[- ~-2 A;I~:J= [rD - ;'-Irxsl
d, =X-I(rxs-Sd.).

(5.2a)

(5.2b)

The above form is known as an augmented form. The reduction can go even
further by eliminating d , from the system (5.2a)

(5.3a)

(5.3b)

d, =S-'(rxs+Xds)' (5.3c)

This form is known as the normal equations form.

The norma I equations form is used by most codes because the matrix AD2 AT in
equation (5.3a) is usually sp arse, symmetric, and positive semidefinite. Hence, it can
be factored by sparse Cholesky techniques for which algorithms and codes are well
developed and available. The success of the implementation of the Cholesky
factorization depends on the quality of its analysis phase which is reordering for
sparsity. Its goal is to find a permutation matrix P such that the Cholesky factor of
PAD2 ATpT is the sparsest possible. In practice, heuristics are used to solve this
problem since finding an optimal permutation is a NP-hard problem. Two such
heuristics, the minimum degree ordering and the minimum local fill-in ordering are
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particularly useful for impiementations of interior-point methods. Hovever, two major
difficulties remain. The first difficulty is that the matrix PAD2 Alp' may be ill-
conditioned. This often occurs when free variables are present in the primal LP. The
second difficulty is the handling of dense columns in A. If a column in A has
p nonzero components, then a px p dense block will appear in PAD1 A'P'. There are
several procedures available to overcome these difficulties, however they have limited
success.

When the difficulties mentioned above acctually occur during the solving of
norma I equations (5.3), researchers have recently suggested the use of augmented
systems (5.2). The matrix that appears in system (5.2a) is symmetric and indefinite
(usually sparse). Algorithms and codes for factoring this type of matrix are not as
highly developed or as widely available as sparse Cholesky codes. The best known
algorithms are the Bunch-Parlett and the Bunch-Kaufrnan methods. Recently,
researchers have been very busy trying to improve these algorithms or suggest new or
even better ones. A common characteristic of these algorithms is that they are less
sensitive to ill-conditioning and dense columns tha n the approach using the norma I
equations form.

Computational experiments have shown the advantage of the augmented system
approach over the normal equations approach when dense columns are present, even
though a larger system (dimension m + n) has to be solved as compared to the normal
equations approach (dimension n). In the case of very sparse matrices the approach
with the normal equations form was superior. A sophisticated combination of both
these approaches may be expected in future codes.

Termination

Unlike the simplex method, interior-point algorithms never find the exact solution
of LP but an approximate one. Most codes simply report an approximate solution that
satisfies the termination criteria similar to the one described in algorithm IPM in
Section 3. However, instead of taking absolute norms of the residuals, they usually
calculate the relative ones.

(5.4)

where 5 is usually 10-8.

As mentioned in Section 2, it is possible to recover the exact optimal basic solution
from the approximate solution. These procedures include finite termination procedures
and cross-over procedures ([65], [46]). They are not widely implemented in existing
codes since their complexity is similar to the complexity of the simplex method.

Starting points

The algorithm IPM from Section 3 is an infeasible interior-point algorithm that can
start from any point (x" ,yO .s") with (x" .s") > O and still converge. However,
computational analysis strongly suggests that the initial point should also satisfy two
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additional conditions. First, the point should be well centered, that is, the products
x~s~ should be similar for all i. Second, the point should not be too infeasible, that is,

the ratio 11(r,?, r,~ )11/flo of infeasibility to the duality measure should not be too large.

A popular heuristic for finding an initial point starts by calculating a point (x,y,s)
that is the solution of the two least square problems

minllxl12

minllsl12

s.t. Ax = b,

s.t. A1y+s=c.

(5.5)

(5.6)

Namely, vectors x,sare the vectors of the least norm for which the residuals rl',rJ)

are zero. The starting point is then defined as

(5.7)

where the scalars 5x,5,are calculated us ing certain formulas that satisfy the above
described conditions. For furtner details see [44].

Prior information is often available about the solution of LP, in the form of a
solution of the slightly perturbed problem, or an est imate of the optimal basis. The
interior-point method can use this information to construct a "hot" starting point which
often leads to convergence in fewer iterations than the "cold" starting points described
above. To construct a hot starting point from the estimate of the solution, we add small
positive values to the components of (x,s) that are at or near their lower bound of zero,
and possibly make slight adjustments to the large components of (x,s) as well. These
adjustments should be used in order to ensure that the centrality and infeasibility
conditions mentioned above are satisfied. Unfortunately the use of "hot" starting
points saves only a few iterations of the interior-point methods.

The consequence of the above discussion is that the simplex method remains much
more suitable for sensitivity analysis. Hence, when it is necessary to solve a sequence
of similar LPs we can use a mixed method. First, we use an interior-point method with
optimal basis recovery to solve the first problem, then we switch to the hot-started
simplex method to solve the remaining problems.

Presolving

The formulation of many practical LP problems contain data that is not necessary
such as those variables that are defined but never used, zero colurnns or rows,
duplicate rows or colurnns, a row with asingle nonzero element, etc. Most codes
(simplex and interior-point codes) include a procedure that is called a presolver whose
purpose is to detect and eliminate many of these un necessary elements from the data,
prior to activating the solver, that is, the code that solves the problem. Presolvers are
usually implemented by scanning through the rows and columns of A repeatedly until
no more reductions are found. Presolving is generally much less expensive than a
single iteration of IPM, so it is almost always beneficial. Detailed information about
presolving can be found in [1], [4].
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lnterior-point codes

Several efficient interior-point codes for the LP have been developed in recent
years. Almost all codes are based on Mehrota's predictor-corrector primal-dual
algorithm, similar to the PC-IPM algorithm described in Section 3, although they may
differ in many of the implementation details. Also, all codes accept input data in the
MPS format, which is a standard format developed decades age to allow the transfer of
input data between different codes based on the simplex method.

Some codes are callable; that is, the user can call them as a subroutine after having
filled in the appropriate data structures. The main appeal of callable codes is that they
are easily incorporated into larger software packages. Some codes have taken this a
step farther; they are available via model ing language interfaces. Modeling languages
such as AMPL and GAMS allow users to define their model s and data in intuitive
terms, defining data structures, variable names, and so on, in away that naturally fits
their application. The modeling language then does the hard work of converting the
user-defined model into a format acceptable to the LP code. After a solution is found,
it inverts the proces s, expressing the output from this code in terms of the users
original model. More information on AMPL can be found at
(http://achille.research.att.com/ampID and on GAMS at (http://www.gams.com/).
The latest development is that some codes allow users access to them over the Internet.
Hence, the downloading of the codes is not necessary any more. One such example is
Wright's PCx code developed at Argonne National Laboratories. It is available, along
with various other codes, at http://www.mcs.anI.gov/home/otc/Server/ and PCx is in
the directory lp.

There are several cornmercial codes available as well as the numerous public
domain research codes. Below, we have briefly described some of the codes in each
group.

CPLEX(CPLEXIBARRIER)

Language: C
Algorithm: Modified Mehrota's predictor-corrector with higher-order corrections, if
requested
Presolving: Yes
lnput: MPS, CPLEX format, AMPL, GAMS, binary file, callable
Vertex solution: Yes, ifrequested
Linear algebra: Sparse Cholesky factorization ofnormal equations with procedures to
handie ill-conditioning and dense columns
Availability: Cornmercial (CPLEX)
Additional information: http://www.cplex.com/barsolv.html

OSLlEKKBSL V

Language: Fortran
Algorithm: Primal barrier, Mehrota's predictor-corrector
Presolving: Offered in aseparate OSL routine, EKKPRSL
Input: MPS, GAMS, callable, a spreadsheet
Vertex solution: Yes, ifrequested
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Linear algebra: Sparse Cholesky factorization of norma I equations with procedures to
handie ill-conditioning and dense columns
Availability: Commerciai (IBM). Free benchmarking (subject to size restriction) is
available through the Internet at http:///www.research.ibm.com/osl/bench.html/
Additional information: http:///www.research.ibm.com/osl/

XPRESS-MP

Language: C and Fortran
Algorithm: Mehrota's predictor-corrector on the homogeneous self-dual model with
higher-order corrections, if requested
Presolving: Yes
Input: MPS, GAMS, the binary file from the XPRESS-MP model er
Vertex solution: Yes, if requested
Linear algebra: Sparse Cholesky factorization of the normal equations with
procedures to handie ill-conditioning and dense columns
Availability: Commerciai (DASH)
Additional information: http://www.dash.co.uk

BPMPD

Language: Fortran
Algorithm: Modified Mehrota's predictor-corrector with higher-order corrections, if
requested
Presolving: Yes
Input: MPS
Vertex solution: No
Linear algebra: Sparse Cholesky factorization of the normal equations with
procedures to handie ill-conditioning and dense columns
Availability: Publie domain
Additional information: Created by Meszaros,
ftp://ftp.sztaki.hu/pub/opla b/SOFTW ARE/BPMPD

LIPSOL

Language: Fortran (for sparse Cholesky), MATLAB (for the rest)
Algorithm: Modified Mehrota's predictor-corrector
Presolving: Some
Input: MPS, MATLAB binary, LPP (LP-Plain, a simple format suitable for small
problems)
Vertex solution: No
Linear algebra: Sparse Cholesky faetorization of the normal equations with
proeedures to handie ill-conditioning and dense eolumns
Availability: Publie domain
Additional information: Created by Zhang,
http://www.math.umbc.edu/-zhanglIipsol
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HOPDM

Language: Fortran
Algorithm: Modified Mehrota's predietor-eorreetor with higher-order eorreetions, if
requested
Presolving: Yes
Input: MPS, eallable
Vertex solution: No
Linear algebra: Sparse Cholesky faetorization of the norma I equations with
proeedures to handie ill-eonditioning and dense eolumns
Availability: Publie domain
Additional information: Created by Gondzio,
http://ecolll-info.llnige.ch/~Iogilab/software/ho pmd.htm I

LOQO

Language:C
Algorithm: Mehrota's predietor-eorreetor
Presolving: No
Input: MPS, AMPL, GAMS, eallable
Vertex solution: No
Linear algebra: Augmented system faetorization with proeedures to handie ill-
eonditioning and dense eolumns
Availability: Free for researeh purposes, a fee for eommereial use
Additional information: Created by Vanderbei. Also solves eonvex QP and general
eonvex programming problems. http://www.princeton.edu/~rvdb/

PCx

Language: Fortran (for sparse Cholesky), C (for the rest)
Algorithm: Mehrota's predietor-eorreetor
Presolving: Yes
Input: MPS, eallable, Internet aeeess
Vertex solution: No
Linear algebra: Sparse Cholesky faetorization of the normal equations with
proeedures to handle ill-eonditioning and dense eolumns
Availability: Publie domain.
Additional information: Created by Czyzyk, Mehrota, and Wright
http://www.mcs.anl.gov/home/otc/LibraryIPCx/

The above eodes have been tested on a standard set of LP problems ealled Netlib
(use anonymous ftp to netlib.att.eom (ed netlib/lp)). Some of them have also been
tested on another set of larger and more diffieult LP problems, available at the
University of Iowa (via anonymous ftp to eol.biz.uiowa.edu (ed pub/testprob/lp)).
These and other extensive numerieal experiments,along with eomparisons with the
best LP eodes based on the simplex algorithm have shown that good interior-point
eodes are mueh more effieient than the best simplex eodes on many if not all of the LP
problems [4].
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6. CONCLUSION

The rebirth of interior-point methods that followed the appearance of Karmarkar's
paper has had significant theoretical and practical consequences.

The first theoretical consequence is the unified treatment of Iinear and nonlinear
problems via the use of the modified Newton method. In the past, LP problems were
analyzed us ing the simplex method (which is also combinatorial in nature) while
nonlinear problems were analyzed us ing continuous methods that were very often
based on Newton-Iike methods. The second theoretical consequence is a very good
global and local convergence of interior-point methods for LP. These resuits were then
successfully extended to many cIasses of nonIinear programming problems.

One practical consequence is the development of efficient interior-point codes that
usually work much better than the best simplex codes. There are two key elements that
have contributed to their success. The first element is a good underlying algorithm.
The second element is the heavy use of modem matrix factorization algorithms that
have been modified to handle ill-conditioning and density. This is an excellent
example of how advancements in one field (matrix factorizations) enabled success in
another field (interior-point methods) and then further development in the latter field
initiates new research in the former field.

Interior-point methods are a very active research area and will remain so for years
to come. This research is concentrates on the development of efficient interior-point
algorithms for many cIasses of NP problems. The accompanying codes are still not as
developed as those for LP and their development is an ongoing process. Recently,
there has been a lot of research in the field of semidefinite programming problems
because of the ir applicability to many important combinatorial problems.

A weaIth of material on interior-point methods is available in [51], [66], [62],
[59], to name but a few. Up-to-date information on interior-point research is
available from Interior Point Online, a www site maintained at Argonne
National Laboratories at http://www.mcs.anl.gov/home/otc/lnteriorPoint/. General
information about LP, incIuding software information for simplex-base codes and
codes for network and integer programming can be found at the same site
http://www.mcs.anl.gov/home/otc/Guide/faq/.
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Goran Lešaja

METODE UNUTARNJE TOČKE I SUVREMENA PROGRAMSKA PODRŠKA
ZA OPTIMALIZAClJU

Sažetak
U radu su prikazane glavne metode za optimalizaciju koje se temelje na metodi unutarnje
točke. Prikazani su ključni elementi metoda unutarnje točke za problem linearnog
programiranja. a dana su i njihova proširenja za probleme nelinearnog programiranja.
Opisani su i najpoznatiji suvremeni programski paketi za optimalizaciju u kojima se koriste
metode unutarnje točke i naglašava se da su za probleme linearnog programiranja velikih
dimenzija ti programi često efikasniji od onih koji se temelje na simpleks metodi.

Ključne riječi: metode unutarnje točke, optimizacijski softveri, Newtonova metoda, linearno
programiranje, nelinearno programiranje, konveksno programiranje, semidefinitno
programiranje, algoritam Mehrota.
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