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Aggregation is one of the key issues in the development of intelligent systems, just like with
neurai networks, fuzzy knowledge based systems, vision systems, and decision-making
systems. From the point of view of a particular application the choice of the most appropriate
operator is an important part of system design. This paper gives a brief summary of the best
known operatorst- such as t-norms, t-conorms, uninorms, averaging and compensative
operators, and outlines their most important properties. Two new pairs of distances, based on
binary operations and their generalizations, are introduced, based on the fuzzy entropy
approach, and their properties are outlined.
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1. INTRODUCTION

In the original fuzzy set theory , connectives were formulated in terms of Zadeh' s standard
operations of minimum, maximum and complement. Since 1965, for each of these operations
several classes of operators, satisfying appropriate axioms, have been introduced. By
accepting some basic conditions, a broad class of operations for union and intersection is
formed by t-operators. The concepts of using t-norm and t-conorm were originally developed
by Menger [12] within the framework of the theory ofprobabilistic metric spaces. Since then
a great number (ofvarious types) oft-operators have been developed [4, 7]. From an algebraic
point ofview, t-norrns and t-conorms are commutative semigroup operations on [0,1] with the
neutral element 1 and O, respectively.

In many applications these conventional operators do not work well, and some
additional properties, like compensation behavior are required. Recently, in order to
get rid ofthese disadvantages, several generalizations have been introduced.

For one type of generalization of t-norms and t-conorms the concept of uninorm
was introduced by Yager and Rybalov [15]. The neutral element of uninorms can be
any number in the unit interval. The structure ofuninorms was discussed by Fodor et al
[5], and an overview of the classes ofuninorms is given in [2].

In this paper a new approach to construct uninorms is introduced. The definitions
are based on an entropy approach. The concept of an elementary entropy function,
derived from fuzzy entropy, forms the basis of our investigation. In fuzzy set theory
the entropy was introduced by De Luca and Termini [3]. They gave the axioms of
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entropy and an example of an entropy of a fuzzy set in the case of a finite universal set.
Kaufmann [8] showed that an entropy could be obtained as the distance between the
fuzzy set and its nearest crisp set. Knopfmacher [1O], and Loo [II] introduced a larger
class of entropy that contained the entropy proposed by De Luca and Termini and
Kaufmann as special cases. Yager [14] defined the entropy of a fuzzy set by the
distance between the fuzzy set and its complement.

In this paper new methods for constructing nove Ioperators are outlined. Based on
the entropy of a fuzzy subset, the concept of an elementary entropy function is
introduced. This function assigns a value to each element of a fuzzy subset and this
characterizes its degree of fuzziness. The new generalized minimum and generalized
maximum are defined as minimum and maximum entropy operations.

».

The definitions of the entropy-based fuzzy operators are generalized to the binary
operators defined on [0,1] 2 • The basic idea of the extension is the reformulation of the
entropy ofan element as a distance from the fuzziest element 0.5. The properties of the
new operators and their further generalization are also discussed.

Throughout this paper the following notations will be used: X is the universal set,
ff is the class of all fuzzy subsets of X, ~W is the set of non negative real numbers, A
is the fuzzy complement of A E XI' and IAI is the cardinality of A, and the distance of
the two elements x and y is denoted by d(x,y).

2. T-NORMS

Definition 1. Let T be a mapping:

T : [0,1] x [0,1] ~ [0,1]

T is a t-norm, if for all a,b,c E [0,1] T satisfies the following axioms:

ALa T(a,l) = a ,; that, is 1 is the neutral element of T,
A1.b T(a, b) = T(b,a) ;that is, Tis commutative,
ALe T(T(a,b),c) = T(a,T(b,c»; that is, Tis associative,
A1.d T(a, b) ~ T(a, c), if b < c ; that is, T is nondecrareas ing.

Remarks

1. T(O,x) ~ T(O,l) = ° implies T(O,x) = 0, that is, ° is an absorbing element of T.
2. From an algebraic point of view T is a commutative semigroup operation on [0,1]

with the neutral element 1.
3. Due to associativity, the extension of a t-norm for more than two arguments is

unique.

(1)

Definition 2. Given a t-norm T, the intersection oj two juzzy subsets A and B of the
universe X is defined as
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(2)

where

(3)

Basic t-norms
1. Minimum (Zadeh)

2. Product

Tu(x,y)= min(x,y)

T/,(x,y)= xy

, T[ (x, y) = max(x + y - 1.0)

( )
_{min(x,y) ifmax(x,y) = 1

Tw x,y - O otherwise

(4)

(5)

(6)3. Lukasiewicz t-norm

4. Weakest t-norm (7)

Definition 3. Let TI and T2 be two t-norrns. TI is said to be weaker than T2 (and

equivalently, T2 is stronger than TI) if TI (x,y)::; T2(x,y) for all (x,y) E [0,1r .
It is easy to see that for any t-norm

and for the four basic t-norms

Tw<TL<T/,<Tu'
This means that Tw is the weakest and Tu is the strongest t-norm.

(9)

3. T-CONORMS

Definition 4. Let S be a mapping

S: [0,1] x [0,1] ~ [0,1]

S is a t-conorm, iffor all a,b,c E [0,1] S in satisfies the following axioms:

A2.a S(a,O) = a; that is, O is the neutral element of S,
A2.b S(a, b) = S(b,a) ; that is, S is commutative,
A2.c S(S(a,b),c) = S(a,S(b,c»; that is, S is associative,
A2.d S(a,b) ~ S(a,c), if b < c ; that is, S is nondecreasing.

(10)

Definition 5. Given t-conorm S the union of two fuzzy subsets A and B of the
universe X is de fin ed as

A Us B = KX,,uAU\Tn (x ))1 x E X, ,uAU, n (x): X ~ [0,1] (11)

where
(12)
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Remarks

1. 1= S(O,I):'O:S(x,l) implies S(O,I)= I, that is, 1 is an absorbing element of S.
2. From an algebraic point ofview, S is a commutative semigroup operation on

[0,1] with the neutral element O.

3. Due to associativity, the extension ofa t-conorm for more than two arguments
is unique.

Basic t-conorms
1. Maximum (Zadeh) SAt (x,y)= max(x,y) (13)

2. Probabilistic Sum Sp(x,y)=x+ y-xy (14)

3. Bounded Sum SI.(x,y)=min(x+ y,l) (15)

4. Strongest t-conorm ( )_{max(x,y) ifmin(x,y) = ° (16)Sw x,y - .° otherwise

4. NEGA TIONS

Definition 6. Let N be a mapping

N:[O,I]~[O,I]

N is anegation if for all a,b E [0,1] N in satisfies the following axioms:

A3.a N(O) = 1 and N(1) = O,
A3.b N(a) ~ N(b), if a < b ;that is, N is monotonically nonincreasing.

The negation is called strict if it satisfies the following axioms:

A3.c N is a continuous function,
A3.d N is strictly decreasing,
A3.e N(N(a)) = a, that is, N is involutive.

(17)

Basic negations
1. Standard negation (Zadeh)

2. Sugeno type

N(x)= I-x

()
l-x

NJ. X =--,1>11+ A.x

( )_ {I if x = O
N x -

I O if x > O

N (x) = {I if x < 1
I ° if x = 1

(18)

(l9)

3. Intuitionistic negation (20)

4. Dual intuitionistic negation (21)
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5. DUALITY

It is easy to prave that S is a t-conorm if and only ifthere exists a t-norm T such

that for all (X,Y)E [O,IY
S(x, y) = NT(Nx, Ny) (22)

Dual basic t-norms and t-conorms in the case of standard negations are:

t-norms t-conorms

TM(x,y)= min(x,y)

TAx,y)= xy

TJx,y)=max(x+ y-1.0)

( ) {
min(x,y) if max(x,y) = 1

Tw x,y = .
O otherwise

SM(X,y)= max(x,y)

S,,(x,y)= x+ y-xy

SJx,y)=min(x+ y,l)

( )
_{max(x,y) ifmin(x,y)=O

Sw x,y - .
O otherwise

This duality allows us to trans late some praperties of the t-norms into the
corresponding praperties of the t-conorms. One such important property is the ordering
of the norms.

The duality changes the order, i.e., if ~, T2 are t-norms such that T, s T2 and SJ,
S2 are the du al t-conorms of TJ and T2' respectively, then SJ c.S2' Consequently, for
any t-conorm S

(23)

and for the four basic t-conorms

(24)

This means that SM is the weakest and S; is the strongest t-conorm. In summary,
for an arbitrary T t-norm and an arbitrary S t-conorm (not necessarily the dual of 1) the
following holds:

(25)

6. SOME BASIC LAWS

Throughout this section it is as su med that T is a t-norm, S is a t-conorm and N is a
strict negation.

Definition 7. T and S are idempotent if

T(x,x) = x, '<IxE [0,1] (26)
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S(x, x) = x, 'ix E [0,1] (27)

L'Proposition 1. [4]

1. T is idempotent if and only ifT=min.
2. S is idempotent if and only if S=max.

Definition 8. The absorption laws are

T(S(x,y ),x) = x, 'ix E [0,1]

S(T(x,y ),x) = x, 'ix E [0,1]

(28)

(29)

Proposition 2. [4]

1. T(S(x,y ),x) = x, 'ix E [0,1] holds if and only ifT=min.
2. S(T(x, y), x) = x, 'ix E [0,1] holds if and only if S=max.

7. UNINORMS

Uninorms are a type of generalization of t-norms and t-conorms where the neutral
element can be any nu mb er from the unit interval. The class of uninorms seems to play
an important role both in theory and applications.

Definition 9. [15]. A uninorm U is a commutative, associative and an increasing
binary operator with a neutral element e E [0,1], i.e.,

U(x,e)= x, 'ixE [0,1]. (30)

The neutral element e is clearly unique. The case e = 1 leads to t-conorm and the
case e = O leads to t-norm.

Proposition 3. [5]. Consider a uninorm U with a neutral element e.

(i) If e E p,l], then the binary operator 7;, defined by

7;, = U(ex,ey)
e

(31 )

is a t-norm.

(ii) If e E [0,1[, then the binary operator Su defined by

Su = U(e+(I-e)x,e+(I-e)y)-e
1-e

(32)

is a t-conorm.

Consider the following two linear transformations:
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According to Proposition 3, any uninorm U with a neutral element e E p,l[ has a
corresponding t-norm T and a t-conorm S such that

(i) U(x,Y)=qJ;I(T(qJ.(x),qJ«Y)))
(ii) ot»,y) = \fI;1 (T(\fI.{x ),\fI< (y)))

for all (X,Y)E [O,e]l.
for all (X,Y)E [e,lr .

The following proposition gives information concerning the other parts of the uni!
square.

Proposition 4. [5]. Consider a uninorm U with neutral element e, then

min(x,y) ~ U(x,y) ~ maxlx, y) for all (x,y) E [O,e]x [e,l]u [e,I]x [O,e].
This means that U acts as a mean on this domain (see Figure 1).

Proposition 5. [5]. For a uninorm U, one of the fo llowing two cases always holds:
(i) U is conjunctive (or and-like) uninorm: U(O, 1)=U( 1,0)=0;
(ii) U is disjunctive (or or-like) uninorm: U(O, 1)=U( 1,0)= 1.

Figure 1. The structure ofuninorms

For the given t-norm T and t-conorm S, the following propositions show the
construction of conjunctive and disjunctive uninorms that have T and S as underlying t-
norm and t-conorm.

Proposition 6. [2]. A binary operator U is a conjunctive uninorm with the neutral
element e E [O, I[ such that uC 1) is continuous on [O,e[ if and only if there exists a t-
conorm S such that

jqJ;1 (T(qJ.(x ),qJ.(y ))), if (x,y) E [O,eY
U(x,y)= \fI;I(S(\fI.(xt\fl.(Y))), if(x,Y)E [e,I]2

min(x,y t elsewhere

(35)

The uninorm characterized by the above proposition is denoted by Umin'
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Proposition 7 [2]. A binary operator U is a disjunctive uninorm with the neutraf
element e E [O, 1[ such that ot,O) is continuous on Je, 1] if and only if there exists a t-
norm T such that

j
lP;' (T(IP e (x ),IP e (y))), if (x, y) E [O,e ]2

U(x,y)= \fI;'(S(\fIe(X),\fIe(Y))), if(x,Y)E[e,I]2
. max(x,y), e1sewhere

The uninorm characterized by the above proposition is denoted by Um•x•

Ifthe underlying t-norm and t-conorm are the min and max operators, then the first
uninorms were given by Yager and Rybalov [15], using:

Uc(x,y)= {max(x,y), if (x,y)E[e, 1]2
min(x,y) elsewhere

and

(37)

U)x,y) = {min(x,y), if(x,Y)E[0,e]2
max(x,y), elsewhere

(38)

Ue is a conjunctive right-continuous uninorm and Ud is a disjunctive left
continuous uninorm.

The structure ofthese uninorms can be seen in Figure 2.

Figure 2. The structure of Umin and Umax'

8. AVERAGING OPERA TORS

Averaging operators represent a wide range ofaggregation operators [6].

Definition 10. An averaging operator Mis a mapping

(39)M: [0,1] x [0,1] -+ [0,1]

and it satisfies the following properties:
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A4.a M(x,x)= x, 'Ix E [O,I] ; idempotency,
A4.b M(x,y)= M(y,x), Vx,y E [O, I]; commutativity,
A4.c M(O,O)= O, M(l,l) = I,; boundary conditions,
A4.d M(x,y) ~ M(z, w), if x ~ z and y ~ w,; monotonicity,
A4.e M is continuous.

The next proposition shows that for any averaging operator M, the global
evaluation ofan action will lie between the worst and the best local rating [6].

Proposition 8. [6] If M is an averaging operator, then

min(x,y)~ M(x,y)~ max(x,y), V(X,Y)E [O,IY.
The best known averaging operators are shown in the following table:

(40)

Name. M
Harmonie mean
Geometric mean

Arithmetic mean
Dual of geometric mean

Dual of harmonie mean
Median

Generalized p-rnean

9. COMPENSATIVE OPERATIONS

2xy/(x+ y)

FY
(x + y)12
1 - J(i - x XI - y )

(x + y - 2xy )/(2 - x - y)

jY, if x ~ y ~a
medlx.y.c}» a, ~fx~a~y

x, if a ~x ~ y

((xP+yp)/2Y'P, p~l

We have see that for any t-norm and t-conorm the inequality T s TM s SM ~ S"
holds (see (25», which means that there are no t-operators lying between the minimum
and the maximum operators. This could be a disadvantage of the application of t-
operators as aggregation operators in several intelIigent systems, where fuzzy set
theory is us ed to handie uncertain information.

A union operator produces a high output whenever at least one of the input values
representing the degrees of satisfaction of different features or criteria is high. An
intersection operator only produces a high output when all of the inputs are high. In
real applications, for example in decision making, it would be necessary to a certain
extent for a higher degree of satisfaction for one of the criteria to be compensated by a
lower degree of satisfaction for other criteria. In this sense, the union provides full
compensation, while the intersection provides no compensation at all.
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To handie the problem Zimmermann and Zysno [17] have introduced the so-called
y-operator as the first compensatory operator. Since then, compensative operators have
been studied by several authors.

Definition 11. An operator M is said to be a compensative if and only if

min(x,y)~ M(x,y)~ max(x,y), \i(X,Y)E [0,1]'. (41 )

It can be seen that M includes the class of averaging operators and uninorms.
The y-operator [17]. The parameter y takes its values from the [0,1] interval and
indicates the degree of compensation.

(42)

10. FUZZY ENTROPY AND ENTROPY BASED OPERATIONS

10.1. Fuzzy entropy and the entropy function

Definition 12. Let Xbe a universal set and let A be a fuzzy subset of X defined as:

A~{(x,JiAx)~XEX,JiAx)E[O,l] .

The fuzzy entropy is a function

which satisfies the following axioms:

AE 1. e(A) = O if A is a crisp set.
AE 2. If A P B then e(A)~e(B); where A p B means that A is sharper than B, i.e.,

1JiAx)~Jin(x) for JiIi(X)~-
2

and
1

JiAX)~JiB(X) for Jin(x»-, for all XEX.
2

AE 3. e(A) assumes its maximum val ue if and only if A is maximally fuzzy. A is

defined maximally fuzzy when JiA(x) = ~ \ix EX.
2

AE 4. e(A)= e(:41 \iA E XI'.

Definition 13. Let A be a fuzzy subset of X The following function is said to be an
elementary entropy function of A:

(43)
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The special functions of the elementary entropy function are useful tools to
construct the entropy of fuzzy sets [13]. It can be shown, for example, that the
cardinality of the fuzzy sets

eDA = {(X, qJA (x)Xx E X,qJA(X)E [0,1]
is an entropy of A. It is easy to verify that this entropy is equivalent to the Hamming-
entropy which is generated by the Hamming-distance of A from the nearest crisp set
[9].

10.2. Entropy based operations

Definition 14. Let A and B be two fuzzy subsets of the universe of discourse X and
denote qJ A and tp B as their elementary entropy functions, respectively. The minimum
fuzziness minimum is defined as Tmin = Tmin (A, B) = {(X,f.1.T

m
" (x ))x E X, f.1.7~",(x) E [0,1] ,

where
if qJAX)<qJB(X)
if qJB(X)< qJAx)
if qJAX)=qJB(X)

(44)

The geometrical representation of the minimum fuzziness generalized intersection
can be seen in Figure 3.

0.5

X

Figure 3. The minimum fuzziness minimum

Definition 15. Let A and B be two fuzzy subsets of the universe of discourse X and
denote qJ A and qJ B as their elementary entropy functions, respectively. The minimum
fuzziness maximum is defined as Smin =SmJA,B).= {(X,f.1.s",,(X))XEX, f.1.sm,,(x)E[O,I] ,
where
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jJ.dX), if tp)x) < tpn(x)
f.Js :xa f.Jn(x), iftpn(x)<tpAx) .

max~)x ),f.JH(x )), if tp)x) = tpn (x)
(45)

Definition 16. Let A and B be two fuzzy subsets of the universe of discourse X and
denote tp A and tp 8 as their elementary entropy functions, respectively. The maximum
fuzziness minimum is defined as T,nax = Tmax (A,B) = {~,f.Jl;,JX ))x EX, f.Jl;,JX)E [0,1],
where

if tp)x»tpn(x)
if tpJ)(x) > tp)x)
if tp)x) = tpn(x)

(46)

Definition 17. Let A and B be two fuzzy subsets of the universe of discourse X and
den ote tp A and tpB as their elementary entropy functions, respectively. The maximum

fuzziness maximum is defined as Smax =Smax(A,B)={(x,f.Js,~,(x))xEX,Jls~Jx)E[O,ll,
where

if tp)X»tp8(X)
if tpB(X» tpJx)
iftp)x)=tpH(x)

(47)

The geometrical representation of the maximum fuzziness maximum is given in
Figure 4.

0.5

"~--~----------L-~--~~x

Figure 4. The maximum fuzziness maximum

Proposition 9. [13 l· The membership functions of Tmin, Tmax,Smin' s.: can be expressed
in terms of the conventional min and max operations as follows:
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J.1r = Jmin(u)x),J.18(x)) if J.1)x)~\-J.1IJ(x)
m;" 1maX(uA (X),J.1n (x)) if J.1)X) > i- J.1H(X)

= J min(u)x),J.1IJ(X)) if J.1Jx) < \- J.11J(X)
J.1s",;" 1max(u A (x ),J.1H(x)) if J.1Ax);:: \- J.11J(x)

Jmax(u)x),J.1n(X)) if J.1)x) < \- J.1H(X)
J.1T~,=1min(u)x),J.18(X)) if J.1Jx);:: \- J.1nCx)

Jmax(UAx),J.1n(X)) if J.1Ax)~ 1-J.1B(X)
J.1s=, =1min(J.1Jx),J.1B(X)) if J.1AX)<i-J.18(X)

(48)

(49)

(50)

(51 )

11. DISTANCE BASED BINARY OPERATlONS WITH RESPECT TO 0.5

The definition of the entropy-based fuzzy operators can be generalized to binary
operators defined on [0,1] 2. The basic idea of extension as reformulated is the
following: If the entropy of an element is less than the entropy of another element, it
means that its distance from 0.5 is greater than the distance from 0.5 of another
element.

Definition 18. The maximum distance minimum operator with respect to 0.5 is
defined as

jX' if d(x,O.5)> d(y,O.S)
To~ax(x,y) = y'. ~fd(x,O.S)< d(y,O.S).

minlx.j-], if d(x,O.S)=d(y,O.S)
(52)

Definition 19. The maximum distance maximum operator with respect to 0.5 is
defined as

jX' if d(x,O.S) > d(y,O.S)
s;;;x (x,y) = y, ~fd(x,O.S) < d(y,O.S).

max(x,ytlf d(x,O.S)= d(y,O.s)
(53)

Definition 20. The minimum distance minimum operator with respect to 0.5 is defined
as

jX' if d(x,O.S)< d(y,O.S)
To~in(x,y) = y, if d(x,O.S)> d(y,O.S).

min(x,y t if d(x,O.S) = d(y,O.S)
(54)
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lx' if d(x,O.S)< d(y,O.S)
s~n;n(x,y) = y, if d(x,O.S» d(y,O.S).

max(x,y), if d(x,O.S) = d(y,O.S)
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Definition 21. The minimum distance maximum operator with respect to 0.5 IS

defined as

Proposition 3.

rr:0.5

•

•
•
•
•
•

sr:0.5

•

•
•
•
•
•

Tmin
0.5

•

•
•
•
•

sr:0.5

•

•
•
•
•

162

(55)

The distance based operators have the following properties:

To~ax(O,x] = O, \ix E [0,1] ,that is, O is an absorbing element and To";axis
a conjunctive like operator,
T;~ax(x,x)= x, \ix E [0,1], that is, TO'~axis idempotent,
To~ax(1, x] = 1, \ix E p, 1],
To~a,(o.s,x)= x ,that is, 0.5 is the neutral element,

T;~ax is commutative and associative,

To~ax is increasing in each place of [0,1] x [0,1].

S;r(l,x)=I,\ixE[O,I],thatis, 1 is an absorbing element and s~n;xis
a disjunctive like operator,
S;;x (x, x] = x, \ix E [O,1] , that is, S;;x is idempotent,

S;r (O, x) = O, \ix E [0,1[,
S;;x (O.S,x) = x , that is, 0.5 is the neutral element,

S;;x is commutative and associative,

S;;x is increasing in each place of [0,1] x [0,1] .

TO~in(l,x) = x, \ix E [O, 1] ,that is, 1 is a neutral element and TO'~i" is a
conjunctive like operator,
To~in(x, x] = x, \ix E [0,1] , that is, To~i"is idempotent,
T~in (O, x] = x, \ix E [O, 1[,
To~in(O.S,x)= O,S .that is, 0.5 is an absorbing element,

To~inis commutative and associative.

s;;n (O, x) = x, \ix E [0,1] .that is, O is the neutral element and s~n~"is a
disjunctive like operator,
s;~n[x,x] = x, \ix E [O, 1] , that is, s;~n is idempotent,

s;~n(l,x)= x, \ix E p, 1],

s;~n(O.S,x) = O.S ,that is, 0.5 is the absorbing element,

S;;x is commutative and associative.
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Proof. The proof directly follows from the proof given by Rudas and Kaynak [13] for
the properties of the entropy-based operators. -

Corollary 1.

Consider the operators To";" and S~n;' . Then
(i) both are uninorms,
(ii) both are compensative operators.

Proposition 11. The pairs (T07' , s~n;x ) and (To~in , s;;n ) are dual operators in the
sense of equation(22).

Proof.

(I) Suppose first that d(x,O.S)= d(y,O.S), and assume that x S; y. This implies that
d(l-x,O.S)=d(l-y,O.S) and l-x~l-y,

1. NTo~ax(Nx,Ny)= 1- To~ax(1-x,l- y) = 1-(1- y)= y = S;;X(x,y).

2. NTo~in(Nx,Ny)= l-To~in(1-x,l- y) = 1-(1- y)= y = s;~n(x,y).
(II) Suppose now that d(x,O.S)< d(y,O.S), and assume that y < x < O.S. This implies

that d(l- x,O.S) < d(l- y,O.S) and 1- x < 1- y,
1. NTo~ax(Nx,Ny)= 1- To~ax(1-x,l- y) = 1-(1- y)= y = S~~s""'(x,y).

2. »u: (Nx,Ny)= 1- To~in(1- x,l- y) = 1- (1- x)= x = s~n~n(x,y).
(III) Suppose now that d(x,O.S)< d(y,O.S), and assume that O.S< y < x. This implies

that d(l- x,O.S) < d(l- y,O.S) and 1- x < 1- y,
I. NTo~ax(Nx,Ny)= 1- To~ax(1- x,l- y) = 1-(1- y)= y = S;s""'(x,y).

2. NTo~in(Nx,Ny)= 1- To~in(l- x,l- y) = 1- (1- x)= x = s;;n(x,y).
(IV) Suppose now that d(x,O.S) < d(y,O.S), and assume that x < O.S < y . This implies

that d(1 - x,O.S) < d(1 - y,O.S) and 1- x > 1- y,
1. NTo~ax(Nx,Ny)= l-To~ax(l-x,l- y) = 1-(1- y)= y = S;;X(x,y).

2. NTo~in(Nx,Ny)= 1-To~in(1-x,l- y) = 1-(1- x)= x = s;;~n(x,y).
All other cases are direct consequences of the commutativity of the operators. _

Proposition 4. The pairs (To~ax ,s;;;n ) and (To~in ,S;;;x ) satisfy the absorption law
given by equations(28) and (29).

Proof.

1. Suppose that d(x,O.S)< d(y,O.S). Then

To7X (s;;;n (x,y),x)= To~ax(x,x)= x, '<IxE [0,1],

s;;;n (To~ax(x,y ),x)= s;;;n (y,x) = x, '<IxE [0,1].

2. Suppose now that d(x,O.S» d(y,O.S). Then
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To";"'(s~n;"(x, y), x) = To'~"'(y,x) = x, Vx E [0,1],

s~n;"(To'~ax(x, y ),x) = s~n;n(x,x) = x, Vx E [0,1].

3. Finally, letbe d(x,O.S)=d(y,O.S) and x<y. Than

To";"'(S~l~n(x, y ),x) = T07" (y, x) = x, Vx E [0,1],

S~";"(To'~ax(x, y ),x) = s~n;n(x,x) = x, Vx E [0,1].

For the pair (Ton;in ,S:;;" ), the proof can be carried out analogously. •

12. GENERAL DEFINITION OF DISTANCE BASED OPERATION S

The generalization is based on the simle notion that 0.5 can be replaced by any
number e from the unit interval [O, 1].

Definition 22. The maxim um distance minimum operator with respect to e E [0,1] is
defined as

jX' ifd(x,e»d(y,e)
Temax(x,y)= y, ifd(x,e)<d(y,e).

minlx.y], if d(x,e)=d(y,e)
(56)

Definition 23. The maximum distance maximum operator with respect to e E [0,1] is
defined as

jX' ifd(x,e»d(y,e)
S;JaX(x,y)= y, ifd(x,e)<d(y,e).

max(x,y1 if d(x,e)=d(y,e)
(57)

Definition 24. The minimum distance minimum operator with respect to e E [0,1] is
defined as

i
x, ifd(x,e)<d(y,e)

T,min(x,y)= y, ifd(x,e»d(y,e).

min(x,y), if d(x,e) = d(y,e)

(58)

Definition 25. The minimum distance maximum operator with respect to e E [0,1] IS

defined as

jX' if d(x,e)<d(y,e)
s;m(x,y)= y, ifd(x,e»d(y,e).

max(x,y), if d(x,e) = d(y,e)
(59)

The min, max and the entropy-based operators are obtained as special cases.
Analoguous propositions, like the ones in Section 11, can be formulated and proved
for the generalized distance-based operators defined above.
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13. CONCLUSIONS

In this paper a new approach to generalizing the t-operators is given. These
distance-based operators are the reformulation of the entropy-based operator s
introduced by Rudas and Kaynak[ 13]. Two new pairs of dual operators are introduced.
namely the maximum distance minimum and maximum, and the minimum distance
minimum and maximum measured between an element and the most fuzzy. It was
shown that the maximum distance minimum and maximum are uninorms.
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Imre J. Rudas

PRILOZI POOPĆENJU T-OPERATORA: PRISTUP TEMELJEN
NA UDALJENOSTI

Sažetak

Agregiranje je jedan od ključnih problema u razvoju inteligentnih sustava, kao što su to
neuralne mreže, sustavi temeljeni na neizrazitom znanju, sustavi za raspoznavanje oblika i
sustavi za odlučivanje. Važan dio dizajniranja takvih sustava je izbor najprikladnijeg
operatora za agregiranje. U radu se daje prikaz dobro poznatih operatora, kao što su to t-
norme, t-konorme, uninorme, operatori usrednjavanja i kompenzacije, te se izlažu njihova
najvažnija svojstva. Polazeći od pristupa entropije operatora neizrazite logike, uvode se dva
nova para binarnih operacija temeljenih na udaljenosti, daju se i njihova poopćenja, te se
izlažu njihova svojstva.

Ključne riječi: t-operator, uninorme, operatori kompenzacije, operatori agregiranja, operatori
temeljeni na entropiji.
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