
UDe: 007
Original scientific paper

ASECURE KEY AGREEMENT PROTOCOL

Constantin Popescu
University of Oradea, Department of Mathematics, Oradea, Romania

E-mail: cpopescu@math.uoradea.ro
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1. INTRODUCTION

In a key agreement protocol two or more distributed entities need to share some key in
secret, and this is called a session key. Numerous Diffie-Hellman-based key agreement
protocols have been proposed over the years [1], [5], [Il], [12]. But many of them have
tumed out to be flawed [2], [10]. A number of desirable attributes of the key agreement
protocols have also bean identified [19] and nowadays most protocols are analyzed with such
attributes.

The authors [8] proposed a new authenticated key agreement protocol, which is resistant
to a smaII subgroup attack and to an unknown key-share attack and has some computational
advantage with about 2.5 integer multiplications for each entity. However, KaIiski showed in
[5] that this protocoldoes not possess tine unknown key-share attribute.

In this paper, we propose asecure key agreement protocol. The protocol is based on the
Diffie-Hellman key agreement [3], and has the desirable attributes discussed in [19]. We will
also present a multiple key agreement protocol which enables the participants to share two or
more keys in one execution of the protocol. The protocols described in this paper have been
described in the setting of the group of points on an elliptic curve defined over a finite field.
Suitable choices incIude the multipiicative group of a finite field, subgroups Z*n, where n is a
composite integer, and subgroups of Z*q of prime order q. Elliptic curve groups are
advantageous because they offer the same security as other group s but with smaller key sizes
and faster computation times.

2. A DESCRIPTION OF THE KEY AGREEMENT PROTOCOL

Many researchers have examined eIIiptic curve cryptosystems, which were firstIy
proposed by MiIIer [13] and Koblitz [6]. The elliptic curve cryptosystems, which are based on
the elliptic curve logarithm over a finite field, have some advantages over other systems: the
key size can be much smaller than the other schemes since only exponential-tune attacks have
been known so far, if the curve is carefuIIy chosen [7], and the elliptic curve discrete log-
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arithms might be still intractable even if faetoring and the multiplieative group discrete
logarithm are broken.

In this seetion we will describe the proposed key agreement protoeol which is specified
by the key generation and the protocol description.

2.1. Key Generation

In order to avoid the Pollard-rho [16] and Pohling-Hellman [l5] algorithms for the elliptic
curve discrete logarithm problem, it is necessary that the number of Fq-rational points on E,
denoted #E(F q), be divisible by a sufficiently large prime n. To aV9id the reduction algorithms
of Menezes, Okamoto and Vanstone [9] and Frey and Ruck [4], the curve should be non-
supersingular (i.e., p should not divide (q+l-#E(Fq))). To avoid the attack of Samaev [17],
Smart [18] on Fq- anomalous curves, the curve should not be Fq-anomalous (i.e., #E(F q) t- q).

Firstly, we will choose the elliptic curve domain parameters:

1. a field size q. where q is a prime power (in praetice, either q=y. an odd prime, or q=Z"].
2. two field elements a. b E Fq. whieh define the equation of the elliptic curve E over Fq

(i.e., / = x3 + ax + b in the case p> 3), where 4a3 + 27b2
;ć O.

3. two field elements xp and v, in Fq. which define a finite point P = (xp. Xy) of prime order
in E(F q) (P .;t O. where O denotes the point at infinity).

4. the order n of the point P.

The operation of the key generation is as follows:

1. Selects P of order n in the group E(F q).
2. Let Hbe a one-way hash function such as SHA-l [14].
3. Selects random integers SA, SB from the interval [I, n- I]. The value SA is a secret key of

the user A and SB is the secret key of the user B.
4. Computes the points YA = -SA. P and YB = -SB. P, which are the public key of a user A

and B respectively.
5. Let IDA be an identity information of a user A and IDB• can be the identity information

ofa user B.

2.2 Protocol Description

The key agreement protocol between A and B is as follows:

1. A generates random integers rs, kA (ephemeral keys) from the interval [I, n-I] and
computes QA. VA. points on E, such that

QA =rA.P, VJ.=-kA.P.

Asends the point VA to B.

2. B randomly selects integers rs. kB (ephemeral keys) from the interval [1, n-I] and
computes QB, VB. points on E, such that

QB = rB . p. VB = -kB. P.

B eomputes e» = H o.: xv,. XVA• IDB• ID,J and de = rs + eske + eBSB.where xQ,. is
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the x-coordinate of QB, xY, is the x-coordinate of VA and xY, is the x-coordinate of

VB. B sends VB, es. de to A.

3. A computes the point UB such that. UB = ds . P + en . VB + eB. YB and checks if es = H
(Xu, , Xy" Xy" IDB, ID,J. If it does not hold, then A terminates the execution.

Otherwise, A computes "

eA = H(xQ,' Xy" Xy" IDA, IDB)
dA = rA + eAkA + eAsA

where xu, is the x-coordinate of UB, xY, is the x-coordinate of VB, XQ, is the

x-coordinate of QA and xY, is the x-coordinate of VA. A computes the point KA, such

that
KA = -ku . VB.

and sends eA, dA to B.

4. B computes the point UA, such that UA = dA . P + eA . VA + eA . YA and checks if
eA = H (x; ' Xy , Xy , IDA, IDB). If it does not hold, then B terminates the execution., , ,
Otherwise, B computes

KB = -kB. VA.

The shared secret is the point K = KA = KB.

3. THE MULTIPLE KEY AGREEMENT PROTOCOL

In this section we will present a multiple key agreement, protocol which enables the
participants to share two or more keys in one execution of the protocol. The key generation is
the same as in Section 2. The multiple key agreement protocol between A and B is as follows:

1. A generates random integers rs. kAJ' ... , kA, from the interval [1, n - I] and computes the

points QA, VA" i = 1,... , n, such that

QA = rA . P, VA,

Asends the points VA, i = 1, ..., n to B.

2. B randomly selects integers rs. kBJ, ... , kB, from the interval [1, n - I] and computes

QB, VB, i = 1, ... , n such that

QB = r»: P, VB, = - kB, . P.

B computes
es =H( xQ ' xY' ... ' Xy ,xY' ... , Xy ,IDB, ID,J

• 61 ./1 AI 14"

n

ds = rs + es L kB, + esSB
;=1
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wli!ere XQ• is the x-coordinate of QB, xv., is the x-coordinate of VB, and xv,; is the

x-coordinate of VA i = I, ... , n. B sends VB ' i = I, ... , n, ee. de to A., ,

3. A cumputes the point UB, such that UB = dB 'P + eB L::I . VB; + es 'YB and checks if

es = H( XU ' Xv , ... , x, ' Xv , ... , Xv ,IDB, ID.J. Ifit does not hold, then A terminates
• 'I 'lO AI A,.

the execution. Otherwise, A computes
eA =H( xQ ' Xv , ... , x, ' Xv , ... , x, ,IDA, IDB)

A AL A" B\ 'II

n

dA = rA + eA L: kA; + eASA
;=1

where XQ, is the x-coordinate of QA, xv,' is the x-coordinate of VA;, xV, is the

x-coordinate of VB" i = I, ... , n. A computes the points KA; , such that

KA; = -kA; . VB;' i = I, ... , n.
and sends eA, dA to B.

4. B computes the point UA, such that UA = dA . P + eAL:~=I VA, + eA . YA and checks if

eA = H( XU ' Xv , ... , Xv ' Xv , ... , Xv ,IDA, IDB), where Xu is the x-coordinate of DA,
A AI A. B\ B" A

Xv ' is the x-coordinate of VA, XV ' is the x-coordinate of VB' i = I, ... , n. If it does not
A • 'i .

hold, then B terminates the execution. Otherwise, B computes
KB; =-kB;· VA"~ i=l, ...,n.

The shared secret keys are the points K; = KA; = K Bi' i = 1, ..., n.

4. SECURITY CONSIDERATIONS

We will prove that our protocol meets the following desirable attributes under the
assumption that the elliptic curve discrete logarithm problem is secure.

Known-Key Security: If the two entities A and B execute the regular protocol run, then
they cJearly share their unique session key K as above.

(Perfect) Forward Secrecy: During the computatiori of the session key Kfor each
entities, the random integers rs. kA, rs. ke still act on ito An adversary who captured their
private keys SA or SB should extract the random integers (ephemeral key) rs. kA, rs. kB from the
information QA, VA, QB, VB to know the previous or next session key between them. But, this
is the elliptic curve discrete logarithm problem.

Key-compromise Impersonation: Now, suppose the long-term private key SA of the user
A is discJosed. An adversary who knows this value can cJearly impersonate A. Also, the
adversary impersonates B to A knowing B'S long-term private key SB. For the personation to
succeed the adversary must know A'S ephemeral keys rs and kA. Also, in this case, the
adversary should extract rs and kA from A'S ephemeral public value, QA. and VA., to generate
the same session key K with A. This also is the elliptic curve discrete logarithm problem.

Key CODltrol~The key-control is impossible for a third party. The only possibility of a
key-control attack may be brought ou by the participation of the protocol B. But for the party
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B to make the party A generate the session key KB which is a preselected by B, for example
B should solve the equation KB = -ke . VA• This is the elliptic curve discrete logarithm
problem.

Unknown Key-Share: Suppose an adversary C tries to make A believe that the session
key is shared with B, while B believes that the session key is shared with C. To launch the
unk.nown key-share attack, the adversary C should set its public key to be certified even
though he does not know its correct private key. For this C makes it by utilizing the public
values (points) YA, YB and P. Letft (RI, ... , RJ = 2::=1 uR; where R;'s are points on E and
t = (tl" ... ,tJ are integers from the interval [I, n - I]. Then C should set his public key Yc as
Yc =ft(YA" YB, P). Suppose C got the value Yc certified as its public key and let's suppose the
following generalized model for an unk.nown key-share attack: Suppose that Vc =h (YA, YB,

P, VB) and Vc's = Jm (YA, YB, P, VAJ, where p = (PI, ..., pJ and m = (ml, ... , mi) are integers
from the interval [I, n - I]. For C to launch the unknown key-share attack successfully, it
should force A and B to share the same secret session key K = KA = KB through the protocol
run. In practice, through the protocol run, A and B get their session key KA and KB
respectively as in the case with those keys in the following equation:

KA = -kA. VB, KB = -kB· Vc·

The adversary C does not know SA, SB, kA, kB even though C can control the integer valu es
tj, Pj, mj. The adversary C can force the equation KA = KB to hold for many valu es of kA and
k». Now we can consider the following equation as an identical one for the variables kA and kB

kA. VB= kB. V~·
We can change this equation as the forrn a . P = O, by unfolding the values VA, Yc, Vc, V~
with respect to P. Then we are unable to solve equation tj, Pj, mj, since we do not have
sufficient inforrnation on SA, SB, kA, ke.

5. CONCLUSION

In this paper we proposed asecure protocol for authenticated key agreement based on the
Diffie-Hellman key agreement, which works in an elliptic curve group.

One disadvantage is that each participant has to generate two random numbers from the
interval [1, n-I] in one execution. Another disadvantage is that it requires entities slightly
more modular exponentiations or integer multiplications than other protocols (e.g. the
protocol of Law, Menezes, Qu, Solinasand Vanstone [8] or the protocol of Blake-Wilson,
Johnson and Menezes [19]). But, we have proven that our protocol meets the security
attributes (inclusive of the attribute of the unk.nown key-share) under the assumption that the
elliptic curve discrete logarithm problem is secure.
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PROTOKOL ZA USUGLAŠA VANJE SIGURNOSNIH KLJUČEVA

Sažetak

U ovom radu radi se o sigurnosnom protokolu za usuglašavanje sigurnosnih ključeva zasnovanom na
Diffie-Hellmanovon ključeva. Diffie-Hellmanov sporazum ključeva radi u grupi eliptičkih krivulja. U
radu se dokazuje da uvedeni protokol zadovoljava sigurnosna svojstva, pod uvjetom da je problem
diskretnih logaritama eliptičkih krivulja siguran. .

Ključne riječi: usuglašavanje autentifikacijskih ključeva, protokol, Diffie-Hellman, eliptičke krivulje.
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