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In the present work, the fermentation process aimed at obtaining bio-ethanol start-
ing from ricotta cheese whey (RCW), a waste biomass rich in lactose, was simulated by
both a pure neural network model (NM) and a multiple hybrid neural model (HNM). The
simulation results showed that the developed HNM was capable of providing an accurate
representation of the actual time evolution of lactose, ethanol and biomass concentrations
even in conditions never exploited during model development. HNM predictions indeed
exhibited an average percentage error lower than 10 %, as compared to the experimental
data collected during RCW fermentation runs. The proposed methodology, leading to the
formulation of a hybrid paradigm, may allow overcoming some of the inherent difficul-
ties accompanying the development of reliable models that are called to describe the true

behavior of biotechnological processes.
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Introduction

Fermentations are inherently un-steady state
processes, usually performed in batch and fed-batch
mode of operation. Significant variations of raw
material properties and problems during bioreactor
start-up are commonly observed and have to be
tackled by proper control systems, which, therefore,
are called to suppress the influence of external dis-
turbances, to ensure the process stability and to op-
timize the process performance. The starting point
for the implementation of any kind of automatic
control is definitely represented by the availability
of a predictive model of the process under study.

Most of the available models aimed at describ-
ing the fermentation process are based on the exper-
imental measurement of extracellular metabolites
concentrations, i.e. substrate(s), product(s) and bio-
mass.! This modeling approach, however, is highly
unstructured and precludes any interpretation of the
actual cell physiology. The formulation of struc-
tured model, conversely, takes into account the mi-
croorganisms’ metabolism and, therefore, the con-
trol and the regulatory mechanisms taking place in
living cells, thus leading to a very complex reaction
network, which requires a considerable computa-
tional effort.!> Moreover, with the aim of validating
a rigorous structured model, advanced analytical
techniques are to be exploited to gain experimental
evidence of the actual intracellular metabolism.!
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Lei et al* developed a structured model for
Saccharomyces cerevisiae focusing on both oxida-
tive and oxido-reductive metabolism; on the basis
of several assumptions regarding the abiotic and the
biotic factors involved in the reaction, the authors
defined a set of 12 reaction steps. For each of the
steps, a Michaelis Menten kinetics was assumed
and, finally, 36 kinetics parameters were experi-
mentally estimated. Garcia-Ochoa et al.> developed
a semi-structured model for xanthan production;
the biomass growth was actually calculated by a
non-structured model, namely a logistic function,
but the product formation was described consider-
ing the cells metabolism, thus leading to a final re-
action mechanism that accounted also for intra-
cellular species. In order to avoid any measurement
of intracellular species, the assumption of a
pseudo-steady state order for both ATP and Cofac-
tor within the cell was formulated to identify three
key-components, corresponding to each of the
extracellular metabolites. From an accurate analysis
of the available papers, it is evident that fully mech-
anistic models aimed at describing the fermentation
process resulted in a series of complex reactions
whose resolution either necessitates a set of simpli-
fying hypotheses, which may not be applicable in
several cases, or is too onerous and time consuming
for practical purposes. An alternative approach to
theoretical modeling was actually represented by
black-box models (BBMs), which, however, do not
make use of any transport equation that might help
determining, on the basis of fundamental principles,
the mutual relationships existing between the inputs
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and the outputs. Among BBMs, Artificial Neural
Networks (ANNs) are noteworthy. ANNs are a
data-driven method capable of learning from exam-
ples; no a priori knowledge of the process is there-
fore necessary for their definition. ANNs are com-
posed of interconnected computational elements,
called neurons; each neuron receives input signals
from the related units, elaborates these stimuli by
an activation function and, eventually, generates an
output signal, which is transferred to other neurons.

A neural model is, generally, rather compli-
cated, since it requires many different connections
and, therefore, a great number of parameters to be
estimated. Moreover, it is worthwhile observing
that since extrapolation based on ANNs predictions
is an unreliable procedure, it is often necessary to
perform many different experiments in order to
train the network in an as wider as possible range of
significant situations.® Artificial neural networks al-
low reliable management of large sets of data and,
generally, are capable of describing the actual in-
put-output relationships even when trained with un-
reliable, missing, or noisy data.’

A reasonable trade-off between theoretical and
empirical approaches is represented by hybrid mod-
eling, leading to a so-called ‘“grey-box” model,
which allows predicting the behavior of complex
systems in a more efficient way. Hybrid model pre-
dictions are indeed given as a combination of both
theoretically based and “pure” neural network mod-
els, together concurring at the obtainment of system
responses. The main advantage of a hybrid system
is the possibility of describing some well-assessed
phenomena by as simpler as possible theoretical re-
lationships, leaving the analysis of other aspects,
generally difficult to interpret, to rather straightfor-
ward neural models.>!" The neural network ability
to properly manage unreliable or noisy data is
strongly improved when it is inserted in a hybrid
structure. This is due to the theoretical part of the
model that, among all the other tasks it is called to
accomplish, may perform as a filtering function that
limits the error propagation throughout the system
even when its inputs are perturbed.

When ANNSs are utilized in a hybrid model, it
is first necessary to identify the respective domain
of exploitation pertaining to either theoretical or
empirical models in such a way as to decide which
aspects of the process are to be described by a
BBM and which by the fundamental relationships.
Two kinds of HNMs can be generally defined de-
pending on the interactions existing between the
neural and the theoretical blocks. In a model based
on a parallel architecture (Fig. 1a), the inaccuracy
in the predicted value from the fundamental part is
minimized by the addition of the residuals calcu-
lated by the neural network.!? In a model based on a
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Fig. 1 — HNM structures. a) structure based on a parallel
architecture; b) structure based on a serial archi-
tecture

serial architecture (Fig. 1b), a process variable,
which is difficult to measure, is estimated by a neu-
ral network and then fed as input to the theoretical
block.!” Even though hybrid neural models so far
have not been so common, the serial architecture is
more popular in bioreactors modeling since it al-
lows exploiting the ANN as an estimator of kinetic
parameters.'>16

Feyo de Azevedo et al.® compared the perfor-
mance of hybrid and pure neural models in the case
of Baker’s yeast production achieved in a fed-batch
fermenter. In their work, the theoretical part of hy-
brid model was represented by a mass balance
equation written to describe the time evolution of
biomass concentration, whereas the ANN part was
appointed to determine the biomass specific growth
rate on the basis of the calculated biomass concentra-
tion. James et al.’ developed a grey-box soft-sensor
in order to estimate biomass concentration during
fed-batch fermentation of Alcaligenes eutrophus.
Zorzetto et al.'” proposed the application of two hy-
brid models to describe the batch fermentation of
beer. The first model, based on ANN, was formu-
lated to determine the specific growth rate of bio-
mass from temperature and substrate concentra-
tions; the second one, based on the Monod’s equa-
tion and on the predictions provided by the al-
ready-developed neural network, was used to calcu-
late the dependence of model parameters on tem-
perature.

The object of the present paper was to compare
different paradigms aimed at modeling the batch
fermentation of ricotta cheese whey (RCW), a
highly pollutant dairy waste, obtained as the main
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by-product in ricotta cheese production process.!’
RCW is mainly obtained in Italy but also in other
countries in the Mediterranean area. It is estimated
that Italian production amounts to about 1.0 Mt of
RCW per year, thus determining significant envi-
ronmental problems related to its disposal.!” Among
all bio-fuels, bio-ethanol is definitely the most com-
mon. Nowadays, nearly all bio-ethanol, however, is
obtained by fermentation of vegetable biomasses,
essentially sugar cane and cereals, thus contributing
to the observed increase of foodstuffs price. It is,
therefore, necessary to identify alternative renew-
able and non-vegetable sources for bio-fuels pro-
duction. RCW could potentially fit this requirement
and may potentially represent an interesting fer-
mentation substrate owing to its main characteris-
tics, namely the relatively high content of lactose
(w =135 %) that could directly be fermented into eth-
anol, and to its low cost, as determined by the fact
that it is actually a waste.'”?° The concentration
profiles of lactose, of ethanol and of biomass char-
acterizing the time evolution of RCW fermentation
process were predicted both by a pure neural model
and a multiple hybrid neural model, which was for-
mulated accounting for the transient mass balance
equations referred to the main components partici-
pating in the reaction. Finally, a simple analytical
model composed by two kinetic equations was pro-
posed to infer substrate and product concentration
profiles directly from biomass predictions, as pro-
vided by the developed HNM. As compared to the
studies already available in the literature, the nov-
elty of this paper is represented by the development
of a reliable multiple hybrid model, which allowed
predicting the true behavior of a fermentation pro-
cess aiming to obtain a second-generation biofuel.
It was intended, therefore, to show how the exploi-
tation of process engineering tools and, particularly,
of advanced modeling techniques represents a pre-
liminary, fundamental step for any further investi-
gation, e.g. process optimization, design of an effi-
cient control system, about the process under study.

Materials and methods

Data-driven models are actually based on ex-
perimental data and are called to provide a reliable
representation of the system behavior over an as
wider as possible range of operating conditions.
Therefore, the utilization of well-assessed methods
aimed at estimating the effects of process variables
on system behavior is definitely essential when
model identification is to be performed.?! The ex-
perimental data necessary to develop the models
whose performance is compared in this paper, were
obtained from a set of anaerobic fermentations car-

ried out on ricotta cheese whey. Each experimental
run actually consisted of two subsequent steps: the
inoculum culture preparation and the batch fermen-
tation carried out in a stirred anaerobic bioreactor.
Kluyveromyces marxianus (E.C. Hansen) Van der
Walt var. marxianus (CBS 397) obtained from
Centraalbureau Voor Schimmelcultures (Holland)
was used in all the fermentation experiments. The
inoculum culture was prepared adding a single
yeast colony to 150 mL culture medium containing
50 g L ! lactose, 10 g L' peptone, 5 g L' yeast ex-
tract (Fluka). The culture was kept at 37 °C for 12
hours in a 250 mL flask held in a temperature-con-
trolled bath (OLS 200, Grant) with a roto-transla-
tional external mixing of 150 rpm.

During each fermentation test, one liter of
RCW was fermented in a 2 L batch fermenter
(2611020002, Applikon) equipped with tempera-
ture, pH, and rpm controllers (ADI 1030, Applikon).
Two milliliters of fermentation broth were sampled
every hour to measure the time evolution of ethanol
and lactose concentrations. The analyses were per-
formed by injecting 20 pL of fermentation broth
into a Jasco HPLC, equipped with a refractive
index (RI 930, Jasco). The mobile phase was
orto-phosphoric acid ¢ = 1 % (Fluka), fed at a flow
rate of 1 mL min~'. The column was an Alltima
Amino NH, (Alltech).

The time evolution of biomass concentration
was measured by Bactoscan (Foss).

The operating conditions and the process vari-
ables were chosen according to the factorial design
method,? on the basis of the indications obtained
from both available literature information®-2* and
the results collected after a preliminary experimen-
tal analysis on RCW fermentation. In particular,
temperature (7) ranged between 32 °C and 40 °C;
pH was in the range 4-6; stirring rate (rpm) was
varied between 100 and 300 rpm; lactose concen-
tration (y°,) was changed between 45 g L' and
90 g L!. As far as 9%, was concerned, it is worth-
while remarking that the chosen lower bound ac-
counted for any possible lactose degradation due to,
for instance, an improper storage of RCW; whereas,
the chosen upper bound accounted for a possible
pre-treatment of RCW aimed at increasing, for in-
stance by ultrafiltration, the available lactose con-
centration. Actually, it should be observed that a
higher substrate concentration fed to the fermenter
usually leads to a higher ethanol concentration in
the stream flowing out of the bioreactor. This deter-
mines a lower cost for ethanol purification and,
therefore, an improved downstream processing. Ac-
cording to the factorial design method, 16 batch
runs were performed, each lasting 18 hours. With
the aim of evaluating the performance of the devel-
oped models, an additional fermentation run (run
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N°17) was carried out under a set of operating con-
ditions not belonging to that chosen to perform the
experimental design. Table 1 summarizes the condi-
tions in which each experiment was performed.
Considering that for each sample the concentration
of lactose, of ethanol and of biomass was actually
available, a total number of 969 experimental
points was exploited to train, test and validate the
performance of both the neural and the hybrid mod-
els developed in this paper.

Table 1 — Batch fermentation operating conditions

. . 0
Run N° | T [°C] Agitation level Yt

e
=
T

[rpm] [g L]
1 40 6 300 90
2 40 4 100 90
3 32 6 300 45
4 40 6 100 45
5 32 6 100 90
6 32 4 300 90
7 40 4 300 45
8 32 4 100 45
9 40 4 100 45
10 40 6 300 45
11 40 4 300 90
12 32 6 100 45
13 32 4 300 45
14 32 4 100 90
15 40 6 100 90
16 32 6 300 90
17 37 5 300 50

Development of the models

Neural model development

In order to model the fermentation process of
RCW, three neural networks were developed, i.e.
NMI1, NM2 and NM3, aimed at predicting, respec-
tively, the time evolution of lactose, ethanol, and
biomass concentration.

To determine the networks structure, it was
necessary to specify: a) the number of both input
and output variables; b) the number of layer(s)
composing the network; c) the number of neurons
composing each layer; d) the activation function of
each neuron. In the present case, all the proposed
neural models were characterized by the same set of

input variables: temperature (7), pH, reactor stirring
rate (rpm), initial lactose concentration (y°,) and
reaction time (7). It was indeed observed that the
above variables, among all the parameters that
could affect the reaction progress, exhibited the
highest influence on process performance. Each of
the developed neural model had a single output, i.e.
lactose, ethanol and biomass concentration, respec-
tively, for NM1, NM2 and NM3. As far as the iden-
tification of neural networks architecture was con-
cerned, both the number of hidden layers and the
number of neurons comprised in each layer were
determined according to a trial and error procedure,
described in section 3.3.

Hybrid neural model development

The developed hybrid neural models consisted
of a combination of a theoretical part, represented
by a system of transient mass balance equations
(eq. 1) and of a rather simple neural model.

(o _

a M

ds
‘—E=qX (D
- = X

dt Hp

where ¢ was the specific growth rate of biomass, ¢
was the substrate consumption rate function and u,
was the specific ethanol production rate. The theo-
retical model was aimed at predicting the concen-
trations of biomass (X), lactose (S) and ethanol (P),
whereas the neural model was set up to estimate the
parameters, u, ¢ and u,, necessary to determine the
actual reactions rates.

Egs. (1) were then approximated by the Euler’s
discretization and the discretized form was used re-
cursively to determine the biomass, lactose and eth-
anol concentration values at the successive time
step, t+A¢, on the basis of the knowledge already
achieved at time ¢. The values of parameters u, ¢
and u, at time ¢ strictly necessary to solve the
discretized form of the equations, were provided by
three independent neural networks, namely HNM1,
HNM2 and HNM3, estimating u, g and u,, respec-
tively

The kinetic parameters were subsequently pro-
cessed by some logic conditions (eq. 2) that verified
the physical reliability of networks outputs. In fact,
it is expected that, during the fermentation runs,
biomass and ethanol concentrations have to contin-
uously grow, whereas lactose concentration has to
monotonically decrease.
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[ir u<0=>u=0
sz g<0=>¢g=0 2)
if u,<0=>pu,=0

The “filtered” values of parameters u, ¢ and up
were finally fed to the theoretical part of the hybrid
model, thus allowing obtaining three “grey-box”
models characterized by a serial architecture and
having the general form shown in Fig. 2. The in-
stantaneous value of biomass concentration was
preliminarily estimated by HNMI. Then, the
so-calculated X(z) was fed to HNM2 and HNM3 to
determine, respectively, the time evolutions of both
lactose and ethanol concentration. The choice of us-
ing the values of X(?) as given by the developed hy-
brid model, instead of the corresponding measured
values, was aimed at testing the capability of the
models to provide good simulation results, even if
their inputs were bias affected.

Fermentation
experimental data
Mass balance equation

filtered kinetic parameter

Logic condition

kinetic parameter

* Output variable
M(t)

Fig. 2 — HNM general structure

Neural networks development

To identify the final architecture of both the
pure neural models and the neural part of each
HNM, an iterative trial-and-error procedure was
implemented in Matlab Neural Network Toolbox
Ver. 4.0.1. The procedure was based on the defini-
tion of a performance index that allowed estimating
the reliability of the simulation results. In the pres-
ent paper, the percentage error, £/%, between each
value of concentration, y,, as predicted by the
model, and the corresponding measured value, v,
was considered:

V) =7l

/% = L Tm
/% min (y ,,7,,)

100 3)

In particular, the convergence was considered
to be achieved as soon as in a whole batch run the
average value of ¢/% was lower than 10 %. The im-
plemented iterative procedure is schematically re-
ported in Fig. 3. As far as the pure neural model
was concerned, only the concentration values col-

Neural network o =n+1

training

A 4

Neural network
test

Fig. 3 — Neural network realization procedure

lected during the batch fermentation experiments
were actually exploited to train the networks;
whereas for HNM development it was necessary to
preliminarily determine the values of u, g, i, by in-
terpolating the collected experimental data. Of the
considered 17 batch runs, 15 experiments were
used to train and test the developed networks. The
experimental data were randomly split into two
groups, reserving 2/3 of data (570 points) to the
training phase and the remaining 1/3 (285 points) to
test neural networks predictions during their devel-
opment. A multi-layer perceptron (MLP) feed-for-
ward architecture was exploited to develop all the
networks;® the networks weights and bias were esti-
mated by the Levenberg-Marquardt algorithm with
Bayesian regularization to avoid lengthy cross vali-
dation.?® The neuron transfer function was chosen
as the hyperbolic tangent for all the layers, except
for the output layer where a linear transfer function
was used; the choice of these transfer functions was
actually supported by preliminary training tests.

On the basis of the above-described methodol-
ogy, 6 neural networks were eventually obtained: 3
networks, actually represented the pure black-box
models and 3 networks constituted the neural part
of the developed HNMs. The predictions of each
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model was finally validated using two complete ex-
periments (run N° 8 and run N° 17), corresponding
to a total number of 114 points, which were never
exploited either during the training or during the
test phases. It is worth noting that run N° 17 was
performed under a set of operating conditions not
belonging to those defined by the experimental de-
sign.

Constant yields model

With the aim of strengthening the theoretical
part of the proposed hybrid neural models, the pos-
sibility of inferring the concentration values of lac-
tose and ethanol directly from the amount of bio-
mass, as predicted by the hybrid model HNM1, was
also evaluated. In particular, the substrate consump-
tion rate, ¢, and the product growth rate, u,, of egs.
1 were calculated by defining two yield coeffi-
cients, which were assumed constant throughout the
fermentation progress. Actually, the assumption of
constant yield factors was widely used to model
biochemical reactors?®2° and allowed obtaining two
additional relationships having the following form:

s _ 1 dx
e v, dt
P_ 1w
{dz Sy o de
with
( AX X, — X,
Yr/s = Ao
j AS St=t0 - St=tp &)
AP Pt=tF - Pt=t0
Vs =3 e =< _—<
l ’ AS St=t0 - St=tp
where Y, was the yield factor of biomass toward

lactose, Y, was the yield factor of ethanol toward
lactose, #, and ¢ were the initial and the final time
of biomass exponential growth rate, respectively.
For each reaction run Y, and Y, were calculated as

the arithmetic means of the experimental yield fac-
tors, as measured during the course of reaction.

This alternative approach to model substrate
and product concentration profiles allowed replac-
ing HNM2 and HNM3 with egs. 4.

It is worth observing that the proposed theoret-
ical structure, although very common, is simpler
than other available models, which allow a more
precise description of the actual phenomena in-
volved in fermentation at the expense, however, of
a higher computational effort. The substitution
of HNM2 and HNM3 with egs. 4 has to be consid-
ered, according to authors’ intention, as a way to re-
duce the black-box nature of the developed hybrid

neural model, without significantly increasing the
required computational effort. Any exploitation of
more complicated theoretical model was far beyond
the scopes of the present paper, which, instead, was
aimed at proving that rather simple hybrid neural
structures were capable of overcoming some of the
inherent difficulties accompanying the rigorous
modeling of biotechnological processes.

Results and discussion

Table 2 summarizes the architecture of the net-
works developed according to the previously-de-
scribed trial-and-error procedure. It can be observed
that, due to the presence of the theoretical relation-
ships as expressed by eq. 1, the architecture of the
neural part of HNMs is simpler than that of the cor-
responding pure neural models.

Table 2 — ANNs architecture

Neural Number Number Number
Network of neurons of neurons of neurons
1t hidden layer |2"¢ hidden layer| output layer
NM1 8 5 1
NM2 10 10 1
NM3 10 4 1
HNMI1 6 5 1
HNM2 10 3 |
HNM3 10 ) 1

Figs. 4a-4b show a comparison between the
predictions provided by both pure neural model and
hybrid neural model when the experimental points
belong to the training/test dataset. In both cases, a
remarkable agreement is actually observed through-
out the considered time horizon. The average per-
centage error is much lower than 10 % and both the
models reproduce very well the actual time evolu-
tion of substrate, product and biomass concentra-
tions measured during lab-scale fermentation per-
formed on RCW. The performance of both the pro-
posed models is very similar and the corresponding
predictions tend to overlap.

Figs. 5a-5b show the behavior of both NMs
and HNMs when they are called to reproduce the
system behavior under a set of operating conditions
never exploited before, thus performing the
so-called model validation, e.g. a verification of the
generalization capability of the models. Actually,
the predictions provided by NMs and HNMs are
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rather different; the hybrid models, in fact, per-
formed very well in both the validation tests since
the calculated values of percentage errors are com-
parable to those obtained during the training/test
phases. These results indicate that hybrid models
not only do recognize the training points, but
the level of knowledge they have learnt during
training allows them to predict the system behavior
even when they are operated in unexploited condi-
tions.

On the other hand, pure neural models fail to a
large extent since their predictions, given as the
time evolutions of biomass, lactose and ethanol
concentrations, are characterized by an average per-
centage error of about 30 %, with peak values, re-
ferred to lactose concentration (Fig. 5a), as high as
60 %. This result confirms that pure black-box
models may provide reliable predictions strictly
within their definition domain, whereas they be-
come far less accurate when they are called to ex-
trapolate.

Therefore, for the process under study, the
combination of simple theoretical equations with
straightforward neural models fairly widens the ap-
plicability of pure neural models even outside the
training range, thus strengthening their perfor-
mance. The theoretical part of HNMs, indeed, plays
the role of filtering function with respect to the pre-
dictions of the neural part of HNMs, thus limiting
the introduction and the propagation of errors, typi-
cal of a black-box model, and determining a signifi-
cant improvement of model accuracy. This im-
provement is to be ascribed to the fact that the pre-
dicted kinetic constants are subsequently processed
by the theoretical part of the model. This sequential
transfer of signals, together with the chosen archi-
tecture, iteratively refines the estimation of the ac-
tual reaction rates. Therefore, also in conditions
never exploited before, HNMs exhibit a higher reli-
ability, as compared to a pure black-box models for
which any prediction outside the training range def-
initely represents a mere extrapolation. Moreover, it
is worth noting that the reported concentrations of
both lactose and ethanol have been obtained using
the estimation of biomass concentration, as pro-
vided by HNMI1. The choice to feed HNM2 and
HNM3 directly with the results provided by HNM 1
instead with the actual experimental data, was actu-
ally aimed at testing the consistency of hybrid mod-
els predictions even if their inputs were bias af-
fected.

After verifying the reliability of HNMs, the
possibility of inferring lactose and ethanol concen-
tration values, directly from HNM1 predictions by
a set of properly defined yield factors, was also ex-
plored. The aim of this attempt was to strengthen
the developed hybrid model by introducing two ad-
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ditional theoretical equations (eqs. 4) that might re-
place the function of both HNM2 and HNM3,
which, therefore, were dropped out. In other words,
it was intended to verify the actual necessity of de-
veloping HNM2 and HNM3, or, otherwise, if the
prediction of lactose and ethanol concentrations
could be calculated defining two yield coefficients
that were actually assumed constant throughout the
fermentation progress. Figs. 6a-b report a compari-
son, respectively for lactose and ethanol, between
the predictions obtained by the present hybrid mod-
els and those calculated replacing HNM2 and
HNM3 with eqgs. 4. It can be observed that the as-
sumption of constant yield factors, although widely
exploited to describe the behavior of biochemical
reactors, does not allow providing, in the present
case, an accurate description of both lactose and
ethanol concentration. This result can be interpreted
observing that, actually, for any given organism in
any given medium there is no a priori certainty that
yield factors keep constant during fermentation
progress. It was, in fact, observed that variations of
yield factor could be due to several phenomena, e.g.
the assimilation into cell mass, the provision of en-
ergy for cell synthesis, and the provision of energy
for maintenance.?

The possibility of exploiting eq. 4, therefore,
has to be preliminarily verified depending on the
characteristics of the particular reaction that is to be
performed. In the present case, it was proved that
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the constant yield factors model, even if based on
the same experimental data exploited to develop the
hybrid neural models, was not applicable to predict
the true time evolutions of lactose and ethanol con-
centrations on the basis of the sole knowledge of
the amount of biomass formed during the fermenta-
tion progress.

Conclusions

In the present work, a comparison among dif-
ferent modeling approaches aimed at predicting the
behavior of RCW batch fermentation process was
presented. The hybrid modeling approach showed
better forecasting capability than the pure neural
model proving that the proper coupling of the
un-steady state mass-balance equations and of a
neural model led to the definition of a very effec-
tive and versatile tool for the simulation of the pro-
cess under study. The proposed hybrid approach
could represent the basis for the development of
very robust and reliable models that might allow
implementing either advanced control systems or
novel optimization strategies particularly useful in
biotechnological field.

List of symbols

Y, —yield factor of ethanol toward lactose, —

Yy, — yield factor of biomass toward lactose, —

t,  — initial time of biomass exponential growth rate,
h

tr  — final time of biomass exponential growth rate,
h

i — generic network layer, —

n;  — number of neurons in the i” layer, —

P — product concentration, g L!

q — substrate consumption rate function, h™!

rpm — stirring rate, rpm

S — substrate concentration, g L™!
T  — temperature, °C
t — batch time, h™!
X - biomass concentration, g L'

y%. — lactose initial concentration, g L™

Y. — concentration value experimentally measured,
gLt

¥,  — concentration value predicted by the model,
gL'

e — percentage error, %

u — biomass specific growth rate, h!

u,  — specific ethanol production rate, h!
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