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Achieving a stable, human-like gait for humanoid robots is a challenging task. While a variety of techniques
exist to generate stable walking patterns, only little attention has been paid to the resemblance to the human gait.
Popular gaits, for example, apply the strategy to bend the knees and to swing the torso in the lateral direction in
order to ensure stability by shifting the center of mass. As a result, the walking patterns do not look very human-
like. However, human resemblance is an important aspect whenever robots are designed to coexist and interact with
humans. In this article, we present techniques to optimize a given, stable gait of a humanoid robot with respect to
human resemblance. To acquire human data, we use a full-body motion capture system. We propose four different
optimization algorithms that work at joint angle basis and use the joint angle difference as measure of similarity.
The experiments carried out with aHOAP-2robot in simulation demonstrate that all techniques generate a gait that
is significantly more human-like compared to the robot’s initial gate. As the results show, the optimization methods
based on hill climbing and policy gradient estimation yield the best performance.

Key words: Humanoid robots, Gait optimization, Human-like walking

Optimizacija držanja čovjekolikih robota utemeljena na podacima izčovjekovog hoda. Postizanje sta-
bilnog, čovjekolikog držanjǎcovjekolikih robota vrlo je zahtjevan zadatak. Iako postoji mnoštvo tehnikakoje se
koriste za postizanje stabilnih uzoraka hodanja, malo se pažnje pridaje sličnosti s ljudskim držanjem. Primjerice,
neke tehnike koriste strategiju savijanja koljena i njihanja torza u lateralnom smjeru kako bi se osigurala stabilnost
kroz promjenu položaja centra mase. Kao rezultat toga, uzorci hodanja nisu slǐcni čovjekovom hodu. Ipak, sličnost
čovjeku važan je aspekt u slučajevima kada su roboti izvedeni za suživot i interakciju s ljudima. U ovom sučlanku
predstavljene tehnike za optimizaciju danih stabilnih držanjačovjekolikog robota s ciljem sličnosti čovjeku. Za
prikupljanje podataka ǒcovjeku koristi se sustav za snimanje cjelokupnog gibanja tijela. Predložena sučetiri ra-
zličita algoritma optimizacije koji koriste zajedničku derivaciju kuta kao mjeru sličnosti. Eksperimenti provedeni
koristéci HOAP-2 robot pokazuju da svi postupci generiraju držanje koje je znǎcajno više naliǩcovjekovom držanju
u odnosu na pǒcetno držanje robota. Kao što rezultati pokazuju, metode optimizacije koje se zasnivaju na penjanju
uzbrdo i estimaciji gradijenta smjera daju najbolje rezultate.

Klju čne riječi: čovjekoliki roboti, optimizacija držanja,̌covjekoliko hodanje

1 INTRODUCTION

Recently, humanoid robots have been enjoying great
popularity and are now used as a research tool in many
groups worldwide. These types of robots possess human-
like actuators and sensors that allow them to act in environ-
ments designed for humans. One of the motivations behind
the research area of humanoid robotics is to develop robots
that are able to coexist with humans and interact with them
in a natural way.

Compared to wheeled robots, one challenge when work-
ing with humanoid robots is to design stable walking gaits
for their biped locomotion. In this context, a common
technique is to apply heuristics and to manually configure
walking patterns for humanoids and carefully choose their
parameters. For example, there exist techniques based

on central pattern generators (CPGs) to generate joint tra-
jectories using nonlinear oscillators [1, 2]. In these ap-
proaches, it is a challenging problem to find appropriate
parameters to achieve a stable gait. More computational
demanding methods use the concept of the zero moment
point (ZMP) [3] and rely on joint angle trajectories, which
are computed considering dynamic motion of the robot.
Here, an accurate model of the robot and its dynamics is
needed to ensure reliable execution.

Several approaches have been presented that aim at op-
timizing properties such as speed [4–6] or torso stabil-
ity [7, 8] of a humanoid’s walk. The resulting, optimized
walking patterns often look rather unnatural. However, the
resemblance to the human ideal should also be taken into
account when generating walking patterns for humanoid
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Fig. 1. The left and middle image show snapshots of the
robot’s initial gait. As can be seen, the robot’s torso moves
extremely in the lateral direction and the knees are unnatu-
rally bent. In the right image, a human wearing the suit of
the full-body motion capture system MVN is walking dur-
ing the acquisition of the human data.

robots. Since these robots are designed to coexist and in-
teract with humans, it is important that their motions look
human-like to guarantee a broad acceptance.

The first two images of Fig. 1 show snapshots of a typ-
ical humanoid’s gait. As can be seen, the robot shifts its
center of mass during walking to ensure stability. First, the
torso swings extremely in the lateral direction and, second,
the knees are unnaturally bent. These two concepts are of-
ten used in humanoid locomotion. However, the resulting
gait does not look very natural and human-like.

In this article, we consider the problem of achieving a
stable, human-like gait with a humanoid robot. We treat
this as an optimization problem and develop four algo-
rithms that work on joint angle basis. Our optimization
starts from an initial, stable gait of the robot obtained viaa
CPG. We consider the walk of a human recorded by a mo-
tion capture system (see right image of Fig. 1) as the ideal
gait the optimization is aiming at. We define the similar-
ity between the gaits in terms of joint angle difference be-
tween the human’s and the robot’s joint angle trajectories.
The advantage of working solely on the basis of joint an-
gles is that we do not need to incorporate expert knowledge
into the learning process, e.g., in form of a parameterized
gait [7] or in form of a segmentation into different walking
phases [9].

We extensively evaluated and empirically compared the
different optimization techniques in experiments carried
out in theWebotssimulator [10] with aHOAP-2[11] robot.
The results show that the optimization methods based on
hill climbing and on policy gradient estimation perform
best. However, all techniques are able to improve the ini-
tial gait so that it is significantly more similar to the human
gait.

The article is organized as follow. After discussing re-
lated work in the next section, we present the humanoid
robot used for the experiments in Sec. 3 and describe the
collection and preprocessing of human data in Sec. 4. In
Sec. 5, we introduce the algorithms we developed to opti-
mize the robot’s walk. Finally, we discuss the experimental
results in Sec. 6.

2 RELATED WORK

In the last few years, several techniques to optimize the
behavior or the motions of humanoid robots have been pre-
sented.

The vast majority of these approaches optimize the hu-
manoid’s walking speed for a given, parameterized gait.
For example, Faber and Behnke [4] applied an optimiza-
tion based on policy gradient reinforcement learning and
particle swarm optimization to increase the forward speed.
The authors used eight parameters of the gait and devel-
oped two feedback mechanisms that were included into
the optimization process. Niehauset al. [5] also applied
particle swarm optimization to speed up the walking ca-
pabilities of a humanoid. They considered 14 parameters
and performed an optimization of the parameters for differ-
ent walking directions to allow for omnidirectional walk-
ing. Hemkeret al. [6] applied sequential surrogate opti-
mization to searching for optimal values of the five chosen
gait parameters of forward walking. Geng [12]et al. pro-
posed a policy gradient reinforcement learning approach to
optimize the parameters of a neuronal sensor-driven con-
troller for a planar biped. Furthermore, several researches
applied machine learning techniques to optimize the gait
of quadruped robots (e.g. [13, 14]). Note that stability is
not such a serious problem with quadruped robots, which
makes optimization easier. In contrast to all techniques
presented above, our goal is not to optimize the speed of
a humanoid robot, which often leads to rather unnatural
looking walking behaviors. Instead, we aim at generating
a gait that looks more human-like than the initial walking
behavior of the robot.

Chalodhornet al. [8] used an imitation-based approach
to teach a humanoid robot stable walking. The authors
recorded human data with an optical motion capture sys-
tem. They proposed to search for appropriate actions lead-
ing to a stable robot gait in a dimensionality-reduced space
of the joint angles. The authors enforced stability by using
gyroscope signals to favor upright torso positions. From
the presented images, it seems that the human demonstra-
tor moved in a rather unnatural way in order to facilitate the
learning of the robot. Huanget al. [7] analyzed the char-
acteristics of the human gait in terms of change of a num-
ber of manually defined walking parameters when chang-
ing the step length and the walking cycle. Afterwards, they
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considered the learned characteristics and determined pa-
rameters for a walking pattern, which resulted in a high
upper-body stability of a humanoid robot. The authors
also used human motion data captured by an optical sys-
tem. Serhanet al. [9] proposed to extract “critical angles”
from human locomotion that influence the speed and step
length. They used a segmentation of the walking cycle in
eight phases and defined maximum angles for the differ-
ent phases. The authors presented experiments in which a
simulated biped robot with a 4 DOF trunk achieved a dy-
namic walk. To generate a human-like walking behavior
that can be adapted according to observations, e.g., barriers
or stairs, Denk and Schmidt [15] proposed to concatenate
previously learned walking primitives.

Regarding other tasks than walking, several researchers
have concentrated on generating motions for humanoids
that are optimal with respect to specific criteria. For ex-
ample, Haradaet al. [16] optimized motion primitives for
a humanoid robot in terms of joint torque, acceleration,
and angular momentum. The authors identified relevant
variables for the individual tasks (e.g., a reaching motion,
walking, or climbing). Faberet al.[17] proposed a strategy
for body and gaze control of a humanoid during human-
robot interaction. They considered different factors, i.e.,
tracking error, discomfort, and effort to control the pitch
and yaw joints to generate human-like turning motions of
the robot. Bobrowet al. [18] optimized the motion of
robots performing different tasks with respect to minimum
control effort. Svininet al. [19] considered the problem of
generating human-like reaching movements with a robotic
arm. The authors use an objective function that is based on
the minimization of hand jerk.

In the remainder of this article, we present our approach
to optimizing the walking motion of humanoids with re-
spect to human resemblance. Our optimization works on
joint angle basis and does not need to incorporate expert
knowledge, e.g., for defining appropriate parameters.

3 THE HUMANOID ROBOT

For our experiments, we use a simulatedHOAP-2from
Fujitsu [11]. The first two images of Fig. 1 show the sim-
ulated robot while walking. The robot has a weight of 7
kg and is 50 cm tall. The total number of its degrees of
freedom (DOFs) is 25, but we only consider 21 as rele-
vant for walking, i.e., we excluded head and hand joints.
Fig. 2 gives a detailed overview over the robot’s degrees of
freedom.

We use the model of theHOAP-2for theWebotssimu-
lator. The walking motion, which we take as a basis for our
experiments, was generated using a central pattern genera-
tor. In this gait, the robot shows an extreme lateral swing
and walks with strongly bent knees (see Fig. 1).

Fig. 2. Overview over the robot’s joints. There are six
degrees of freedom in each leg, five in each arm, two in
the head and one in the hip. The bold lines represent the
rotation axes of the joints. Illustration taken from [11].

There are obviously some differences between the hu-
man’s and the robot’s anatomy which can lead to differ-
ent behavior. One of the major issues is the fact that the
robot wears a “backpack” in which the processing unit is
located. Accordingly, the robot’s center of mass is shifted
to the back. Furthermore, certain degrees of freedom of the
human body are not represented by a joint in the robot’s
model, as detailed in the next section.

The given simulation model provides only a single pres-
sure sensor in each foot. We extended the simulated model
so that it has a sensor in the front and another one in the
back of each foot. We need this extension for our approach
of stability estimation.

4 DATA ACQUISITION AND PREPROCESSING

In this section, we describe how to acquire, process,
and transform human data into the joint angle trajectories,
which are finally used as input to our optimization frame-
work.

4.1 Recording Human Gait Data
For recording full-body motions of a human, we use

the Xsens MVN[20] system. This motion capture de-
vice consists of sixteen sensors, which include accelerom-
eters, gyroscopes, and magnetometers. The right picture
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Fig. 3. Position of the various segments which are cov-
ered by motion capture system MVN. Illustration taken
from [20].

in Fig. 1 shows the human demonstrator wearing theMVN
body suit. The system records the data with a frequency of
100 Hz. The output includes information about the posi-
tion and rotation of the 23 body segments. Fig. 3 illustrates
the positions of the segments used by the system.

Since we use a joint angle based representation, we
transform the rotation information into joint angles. Most
mappings of human joint angles to the robot’s ones are
straightforward. We simply ignore joint angles not existing
in the robot, e.g., the rotation around the torso’s yaw and
roll axes. Furthermore, we need to approximate a small
number of robot joints using the human data. For example,
we compute the shoulder joint angles using the upper arm
and neck orientation.

4.2 Data Preprocessing

After recording the data, we perform some data prepro-
cessing steps in order to get the input data for our opti-
mization framework. This preprocessing is necessary to
deal with noise in the captured motion data and with ir-
regularities in the human’s gait and to temporally align the
human’s and the robot’s trajectories.

4.2.1 Segmentation of Sequences

We first extract a sequence of five gait cycles (five
double-steps) of the human’s and of the robot’s gait which
we use for analysis and on which we perform the opti-
mization. Our experiments indicated that a number of five

double-steps was sufficient. The extrema in the robot’s
and the human’s knee trajectories are used to determine
the start and end of a sequence.

4.2.2 Noisy Data

Obviously, the captured human data is noisy to a certain
extend and the human’s motions are not always exactly the
same in each gait cycle. To reduce the influence of these
effects, we compute the average over different sequences
containing five human gait cycles. In particular, we use
Dynamic Time Warping(DTW) [21]. The main idea of
DTW is to match two sequences by warping the tempo-
ral position of data points in a way that the lowest overall
distance between both is found. The distance of two joint
angle trajectoriesM andN is defined as

dist (M ,N) =
∑

joint j

∑

time t

(Mj,t −Nj,t)
2
. (1)

The DTW algorithm finds the optimal matching between
data points and minimizes the overall distance of the se-
quences. Afterwards, the average over the two sequences is
computed by using data points corresponding to the same
time steps. We perform DTW in a tree-like manner and
subsequently match a sequence with the result of the pre-
vious DTW process.

4.2.3 Symmetry

In the recorded data, the trajectories of corresponding
lateral joints (e.g., the left and the right knee) of the hu-
man appeared to slightly differ. Such small asymmetries
can result in instable behavior of the robot. We therefore
compute the joint angle trajectories as the average over the
data points of corresponding left and right joints.

4.2.4 Uniform Gait Cycles

Afterwards, we eliminate irregularities within the dif-
ferent gait cycles of the captured human trajectories. This
includes different execution times of steps or also slightly
varying trajectories. We unify the trajectories correspond-
ing to different gait cycles by applying Fourier transforms.
The Fourier transforms yield amplitude representations of
the angle trajectories. We consider the frequencies corre-
sponding to a multiple of the number of gait cycles as regu-
lar and the other frequencies as irregular, i.e., a frequency f
is regular if and only if

f mod #double-steps= 0. (2)

Otherwise,f is calledirregular. Here, we use a normaliza-
tion of the frequencies with respect to the execution time of
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a sequence consisting of five double steps. We then set the
amplitudes of the irregular frequencies to zero. Finally, we
perform an inverse Fourier transform from the amplitude
spectrum based representation into the data points repre-
sentation.

4.2.5 Uniform Trajectory Lengths

For our optimization, it is necessary that the human’s
and the robot’s trajectory have the same length, i.e., the
same number of data points. We use the joint angle trajec-
tories of both knees and match the temporal position of the
peaks in the robot’s and the human’s knee motion. Then,
we perform a linear interpolation to estimate data points
and to achieve a uniform trajectory length. We choose the
length of the robot’s trajectory as the reference length.

5 GAIT OPTIMIZATION

The input to the optimization process are the robot’s and
the human’s joint angle trajectories which are computed as
described in the previous section. The goal of the optimiza-
tion is to adapt the robot’s joint angle trajectories towards
those of the human.

In an iterative fashion, we adapt the individual joint
angle trajectories over the entire walking sequence. In
each iteration, the relative change of an individual joint
angle is the same for all time steps of the walking se-
quence. For each time step, the new angle of an individ-
ual joint i is computed proportional to the difference be-
tween the robot’s original joint angleθrobi and the human’s
joint angleθhumi at that time step. Using the change fac-
tor 0 ≤ αi ≤ 1 for joint i, the joint’s new anglêθrobi is
computed as

θ̂robi ← θrobi + αi(θ
hum
i − θrobi ). (3)

Here, we omitted the time index due to readability.

Our optimization methods presented in the following
aim at adaptingαi for each jointi so that a stable walk
is achieved that is as similar as possible to the human’s
gait. Our criterion how to assess stability based on data
of the pressure sensors in the robot’s feet is detailed in
Sec. 6.1. As similarity measure, we use a quantity which
is based on the distance between the human’s and the
robot’s joint angle trajectories (the distance is computed
using Eq. 1). In particular, we compute in each iteration of
the optimization the similarity between the robot’s current
gaitM̂rob and the human’s gaitMhum given the robot’s
initial gaitMrob as

similarity(M̂rob,Mhum) =
dist(Mrob,M̂rob)

dist(Mrob,Mhum)
.

(4)

A similarity value of 0 means that there was no progress
towards the human gait, while a value 1 stands for a perfect
match. We consider the optimization to have converged
when the gain in the similarity is below a certain threshold.

In the following, we present the optimization methods
we investigated. According to the DOFs of theHOAP-
2, the search space of the optimization is 11-dimensional
since symmetric joints are always changed equally and the
hand joints as well as the two head joints are not considered
as relevant.

5.1 Single Component Sampling

First, we considered the simple approach of sampling
one jointi in each iteration whose change factorαi is in-
creased according to the change rate∆αi > 0:

αi ← αi +∆αi (5)

When the gait resulting from the new change factor
leads to a stable gait, we keep the increased change fac-
tor. If not, we refuse the change. If a certain number of
attempts to increase the change factor of jointi fail to gen-
erate a stable gait, we halve the change rate∆αi. Initially,
the change rate is the same for all joints. Note that in this
approach, all resulting joint angle trajectories are at least
as similar to the human as the original trajectories.

5.2 Correlation-based Optimization

The next approach considers the correlation between the
trajectories of the individual joints and allows for changing
all joints simultaneously. The idea behind this technique is
to take into account that the movements of certain joints are
related to each other. For example, the movement of a leg
during walking corresponds to several joint angle changes,
such as the ankle, knee, and hip joint.

During the optimization process, we therefore change
the trajectory of each joint according to the correlation
between this joint and the sampled joint. The correla-
tion between the robot’s jointsCorrob and the human’s
joints Corhum are learned for the robot from the initial
gait and for the human from the recorded trajectories. To
compute these correlations between joints, we consider the
individual joint angle trajectories as data points. The sym-
metric matrixCor then contains the correlation between
any two of the joint angle trajectories.

The pseudocode of the correlation-based optimization
can be found in Alg. 1. Since the correlation of the robot’s
and the human’s joints can be different, we perform a lin-
ear interpolation between these two values according to the
current change factor.generateJointAngleTrjthen com-
putes the new joint angle trajectories for the robot accord-
ing to Eq. 3. As before, we start with the same change
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Algorithm 1 Correlation-based Optimization.
correlationBasedOptimization(M rob ,Mhum ,∆α)

Input: Joint angle trajectories of the robot’s gaitM rob

and of the human’s gaitMhum , change rate for theN
individual joint angles∆α = 〈∆α1, · · · ,∆αN 〉.

Output: Joint angle trajectoriesM rob
opt of the most

human-like, stable gait found.

M rob
opt ←M rob ; α← 0;

Corhum ← computeCorrelation(Mhum )
Cor rob ← computeCorrelation(M rob)
while not convergeddo

r ← random(1, . . . , N )
for all i← 1 . . . N do
c← (1− αi) · |Cor robr,i |+ αi · |Corhumr,i |
α̂i ← αi +∆αi · c

end for
M̂ rob ← generateJointAngleTrj(M rob , Mhum , α̂)
if evaluate(M̂ rob) = stablethen

M rob
opt ← M̂ rob ; α← α̂

end if
end while
return M rob

opt .

rate∆αi for all joints, but decrease this value when there
is no success in several attempts in which the same joint
was sampled (this is omitted in the code to ensure read-
ability).

5.3 Hill Climbing

We furthermore developed an optimization technique
based on hill climbing. This approach tries in each iter-
ationD different change vectorsα, which are generated
by createCandidateand each of which contains change
factors for each individual joint. The change vectors are
sorted according to the associated similarity byinsertWith-
Priority (which can easily be done without actually gener-
ating the joint trajectories).

We then take the change vector yielding the best stable
result as starting point for the next iteration. In contrastto
the previous methods, we now allow three different change
rates. For each jointi, the change factorαi is modified ran-
domly by either+∆α, 0, or−∆α. In this way, there is a
higher flexibility in finding configurations since changes
in the opposite direction of the human are possible. The
similarity between the trajectories can be computed before
we evaluate the resulting gait in terms of stability. There-
fore, we sort the resulting gaits according to their simi-
larity and take the first gait evaluated as stable as starting
point for the next iteration. A precondition is of course,
that this gait has a higher similarity than the starting gait
of this iteration. Otherwise or when no trajectories leading

Algorithm 2 Hill climbing.
hillClimbing(M rob ,Mhum ,∆α,D)

Input: Joint angle trajectories of the robot’s gaitM rob

and of the human’s gaitMhum , change rate∆α, D
number of candidates evaluated in each iteration.

Output: Joint angle trajectoriesM rob
opt of the most

human-like, stable gait found.

M rob
opt ←M rob ; α← 0; P ← ∅; prev_sim← 0

while not convergeddo
for all j ← 1 . . . D do

insertWithPriority(P , createCandidate(α, ∆α))
end for
while P 6= ∅ do
α̂← dequeue(P )
M̂ rob ← generateJointAngleTrj(M rob , Mhum ,
α̂)
if similarity(M̂ rob ,Mhum) > prev_simthen

if evaluate(M̂ rob) = stablethen
M rob

opt ← M̂ rob ; α← α̂; P ← ∅
prev_sim← similarity(M̂ rob ,Mhum )

end if
else

P ← ∅
end if

end while
end while
return M rob

opt .

to a stable gait are among the test trajectories, we sam-
ple new change factors for the individual joints. If a cer-
tain number of attempts is not successful, we decrease the
change rate. Alg. 2 depicts pseudocode of the hill climb-
ing method. Initially, we use the same absolute value of
the change rate∆α for all joints, which is decreased as
described in Sec. 5.1 (this is omitted in the code).

5.4 Policy Gradient Optimization

Finally, we developed a method based on policy gradi-
ent estimation, which is a modification of standard policy
gradient reinforcement learning [22]. The idea is to eval-
uate a number of change vectorsα in order to approxi-
mate the gradient of the similarity for each dimension of
the search space and explore in the direction of the maxi-
mum. Since stability is a precondition in our application,
we also take this into account during the computation of
the gradient.

As in our hill climbing approach, we sampleD differ-
ent change vectorsα in each iteration to generate test gaits
around the current best gait. Again, the change rate∆αi is
set randomly to+∆α, 0, or−∆α for each jointi. In each
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iteration, allD resulting joint angle trajectories are exe-
cuted and the result is added for each dimensioni to one of
the categoriesS+

i , S0
i , orS−

i depending on the value of the
sampled change rate for this joint. To be more specific, the
progress with respect to the similarity (see Eq. 4) is added
for joint i to S+

i if ∆αi is positive, otherwise it is added to
S−
i or S0

i , respectively. If the resulting gait is instable, 0 is
added to the respective category. After evaluating each of
the test gaits, the average scoresAvg+i , Avg0i , andAvg−i
of S+

i , S0
i , andS−

i are computed. The corresponding val-
ues give an estimate of the gain in changing the joint an-
gle θi in this specific direction and indicate howθi should
be changed to improve the result. For each jointi, a change
factorδi is computed in each iteration as follows:

δi ←





0 if Avg0i > Avg+i and
Avg0i > Avg−i

Avg+i − Avg−i otherwise
(6)

Afterwards,δi is normalized and multiplied by the step
sizeη, which is a scalar. The final change factorαi for
joint i is then determined as:

αi ← αi + η · δi|δ| (7)

Thus, each joint is changed towards the direction yielding
the highest improvement withη determining the amount
of change. Also in this optimization approach, the change
rate∆α is decreased in case of no success.

6 EXPERIMENTS

We performed extensive experiments to evaluate the dif-
ferent optimization methods. Note that all methods will
converge to a local optimum, which is not necessarily the
global one. We carried out ten different experiments for
each of the learning methods in order to perform a sig-
nificance analysis, i.e., we performed ten restarts for each
optimization technique.

To evaluate the stability of the resulting gait in each in-
dividual iteration of the optimization, the robot executed
five gait cycles with identical joint angle trajectories. In
the beginning of each of these runs, the execution started
with the same stable motions (the initial ones, which were
obtained via the CPG) that were smoothly transformed into
the desired movements corresponding to the joint angle tra-
jectories from the optimization process. Thus, we mod-
ified the initial gait into the desired one by adapting the
joint angle trajectories moderately over a certain time in-
terval. In this way, we avoided instability resulting from
large changes in the beginning. Then, the robot executed
five gait cycles with identical joint angle trajectories. At
the end of each run, the trajectories were smoothly adapted
to stand still stably (similar to the beginning of the run). In
case the robot fell, the run was aborted.
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Fig. 4. Relative number of misclassifications according to
a given thresholdg. The red (solid) line shows the amount
of stable motions which are classified as instable according
to g. The black (dashed) line shows the amount of instable
runs, which are classified as stable. We chose a value of
0.5 forg.

6.1 Stability Evaluation

Since the execution of the trajectories in simulation is
noisy and varies in the different runs, it cannot be guar-
anteed that a gait is stable if the robot does not fall in a
single run. For example, the robot’s feet may not always
rest precisely on the ground. To assess whether executed
joint angle trajectories result in stable motions of the robot,
we therefore use two criteria. First, we carry out five rep-
etitions of the same executed motions. We consider a gait
as instable, as soon as the robot falls in a run.

To further analyze the gaits that were not classified as
instable so far, we use a second criterion. This is based on
the assumption that a stable motion should be regular in
the sense of foot contacts on the ground. To measure the
degree of regularity of a run, we use the pressure sensors in
the robot’s feet and process it in the following way: First,
we transform the data of each sensor into the amplitude
spectrum using the Fourier transform. Then, we compute
the ratio of the sum of the amplitudes of the regular (as de-
fined in Eq. 2) versus the sum of the irregular frequencies.
Since we use two sensors in each foot, we get a total of four
ratios. We use the worst, i.e., the smallest value to classify
the regularity of the run. If the value drops below a given
thresholdg, we consider the run as instable. Obviously,
using this criterion, stable motions can possibly be classi-
fied as instable. However, it also decreases the number of
instable results that are falsely classified as stable. Fig.4
shows the classification result on a test set depending ong.
While a low threshold filters out fewer instable motions, it
misclassifies only few stable gaits. For our experiments,
we chose a value of0.5 for g,which we found out to yield
good results.
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Fig. 5. Comparison of the different optimization meth-
ods. Hill climbing (HC) and policy gradient estima-
tion (PG) perform significantly better than the single com-
ponent (SC) and correlation-based (Cor) methods. All
methods are able to significantly improve the similarity to
the human gait. Shown are the mean and the 95% confi-
dence interval. Note that a similarity of 0 corresponds to
the robot’s initial gait.

6.2 Comparison of the Optimization Methods
The parameters used for the presented experiments are

the following: The single component method used∆α =
0.05, the correlation based method∆α = 0.1, the hill
climbing method∆α = 0.1 andD = 10, and the policy
gradient approach∆α = 0.1, D = 25, andη = 0.2. Note
that the∆α values may decrease in case no improvement
is achieved by the optimizations after five attempts.

Fig. 5 shows the results obtained with the different opti-
mization techniques. As can be seen, all methods are able
to significantly improve the initial robot’s gait. Hill climb-
ing and policy gradient optimization significantly outper-
form the two other methods. In comparison to single com-
ponent sampling, the advantage of these methods is that
several joints are adapted simultaneously. In policy gra-
dient optimization, the gradient can only be approximated
inaccurately and, therefore, it does not perform better than
hill climbing.

Fig. 6 depicts the evolution of the change factor for dif-
ferent joints over time. The results are shown for the most
human-like, stable gait found with hill climbing. As can
be seen, especially the knee joint can be highly adapted.
With hill climbing, the lateral swing can be reduced up to
12.23%. In Fig. 7, snapshots of the initial (left image) and
the optimized gait (center image) are depicted.

Interestingly, in several experiments with the hill climb-
ing and the policy gradient estimation, it came out that the
robot is leaned forward (see right image of Fig. 7). This
is similar to the behavior of humans when carrying heavy
loads. Thus, the robot learned how to walk stably and
human-like despite the fact that it does not explicitly know
about the different weight distribution.
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Fig. 6. Evolution of the change factor of selected joints
over time for the best gait found with hill climbing.

Fig. 7. Comparison of the lateral swing of the initial
(left) and the optimized gait (center). The robot learned
to lean forward such as humans do when carrying heavy
loads (right).

7 CONCLUSIONS AND FUTURE WORK

In this article, we presented an approach to generate
human-like walking patterns for humanoid robots. We in-
vestigated four optimization techniques, which work on
joint angle basis and do not need any further knowledge.
Our optimization starts with a gait for the humanoid ob-
tained by a central pattern generator and tries to optimize
it with respect to human resemblance in terms of joint an-
gle difference. For the optimization, we use human data
recorded by a full-body motion capture system.

We demonstrated in simulation experiments with a
HOAP-2 robot that all presented optimization techniques
are able to generate joint angle trajectories that are signifi-
cantly more human-like than the robot’s original gait. The
best performance showed methods based on hill climbing
and policy gradient estimation. We achieved these good re-
sults despite different anatomy and weight distribution of
the robot and the human and without explicitly modeling
these aspects.
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A drawback of this approach, which is solely based on
joint angle trajectories, is that the trajectories cannot be
modified in a temporal manner. For example, this could
be necessary when the motions of the arms yield an ac-
celeration that has an impact on the whole body dynamics
and could be used to compensate for other influences. A
possible solution could be to take additional means in the
optimization into account that allow for shifting or morph-
ing the trajectories over time. In future work, we will also
analyze the effects of adapting the frequency of the robot’s
gait since this highly influence the stability.

Furthermore, it should be investigated whether the re-
sulting robot behavior leads to increasing social accep-
tance. In our research, we concentrated on a limited set
of aspects that have an effect on the perceived human-
likeness. Further investigations should be concerned with
secondary properties such as the position of body segments
or a jerk-free motion. Additional psychological tests could
try to find the most important factors to receive a high so-
cial acceptance.
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