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Match-to-sample is a timed task in which a subject is presented with a visual stimulus (the
probe) and must select a match to that stimulus (the target) from among an array of
distractors. These tasks are frequently employed as tests of basic cognitive abilities and
demonstrate consistent correlations with measures of intelligence. In the current study, a
match-to-sample task was modified to produce near-match conditions (trials for which no
exact match existed). Two factors were manipulated: type of discrepancy between the target
and probe (additive or subtractive) and degree of discrepancy between target and probe (1
element or 2 elements). It was hypothesized that introducing near-match conditions would
change the processing demands of the task, resulting in increased correlations between
decision time and fluid intelligence. Degree and type of discrepancy affected decision times:
participants required more time for 2 element discrepancies and additive type discrepancies.
Contrary to expectations, increased decision time on a task did not correspond to higher
correlations with fluid intelligence. For type, correlations were larger when participants needed
to mentally subtract elements from the target in order to make it match the probe (mean
radditive=.399; mean rsubtractive=.451). For degree, correlations were larger for trials where the
probe and target differed by one element (mean r=.470) than for trials where the probe and
target differed by two elements (mean r=.380). These results seem to indicate that the
relationship between the complexity of a task and general intelligence is not as straightforward
as has been commonly believed.

© 2011 Elsevier Inc. All rights reserved.
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No matter which theory of intelligence one supports, the
study of performance on elementary cognitive tasks (ECTs)
can inform the understanding of the basic processes involved
in more complex cognitive operations. Jensen (1998a)
characterized these ECTs as “so simple and so lacking in any
specific skill or knowledge content as to greatly limit the
possibilities of exactly what the subject must do to perform
successfully” (p. 207). They are typically nonverbal, chrono-
metric measures of reaction time, inspection time, working

memory capacity, and stimulus discrimination. ECT research
has shown moderate correlations between performance on
these tasks–defined by speed rather than accuracy–and a
general factor (see Jensen, 2006).

These basic cognitive tasks have been combined to predict
intelligence, almost as well as traditional intelligence tests
predict one another (Detterman, Mayer, Caruso, Legree,
Conners & Taylor, 1992). Additionally, Luo and Petrill (1999)
demonstrated that the addition of ECTs to a psychometric
battery did not alter the primary criterion validity of
intelligence tests– academic achievement– and offered an
increased understanding of the underlying mechanisms of
intelligence. In fact, Luo, Thompson and Detterman (2006)
found moderate correlations (up to r=.635) between aggre-
gate measures of what they refer to as tasks of basic cognitive
processes (TBCPs) and achievement measures (p. 103).
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Given the utility of ECTs in predicting general ability and
academic achievement, the primary purpose of this study was
to modify an existing ECT to produce a nearmatch-to-sample
task. Standard match-to-sample tasks were employed in
previous research as a measurement of stimulus discrimina-
tion or stimulus coding (Detterman et al., 1992; Luo et al.,
2006; Luo & Petrill, 1999). In Detterman, Luo, and colleagues'
administrations, the match-to-sample tasks included the
simultaneous presentation of a probe stimulus and an array
of six similar stimuli, one of which (the target) matched the
probe. Performance on this match-to-sample task (as indi-
cated by mean decision time) correlated strongly (r=−.70)
with measures of intelligence in intellectually disabled
participants (Detterman et al., 1992, p. 275); additionally,
Luo and Petrill (1999, p. 167) found moderate loadings (.42)
of this task on a general factor in a sample of elementary
school children.

In the previous studies, however, an exact match to the
probe stimulus has always been present. It is unknown how
participants will respond when no exact match exists. It is
possible that processing discrepancy between a probe and
target stimulus recruits additional cognitive mechanisms,
resulting in increased correlations between performance on
the task and general ability. This finding would be consistent
with previous research, summarized below, on the relation-
ship between task complexity and general ability.

One of the primary findings in ECT research is that g-
loadings (or correlations with general ability) increase as a
result of higher levels of complexity. However, the notion of
complexity is a bit unclear. Jensen (1998b) defined this
complexity as “information processing load” (p. 43) or “task
difficulty” (p. 44) in his examination of the Hick (1952)
paradigm. Hick quantified information processing load as the
number of binary decisions (bits) required to complete a task.
Consistent with the understanding of complexity as increased
information processing, Vernon and Weese (1993) argued
more complex tasks place greater demands on the informa-
tion processing system, resulting in tasks that increasingly
approximate complex IQ test items.

However, with the exception of the linear manipulation of
complexity (as defined by increasing information load) in the
Hick paradigm reaction time tasks, the relationship between
task complexity (as defined by task difficulty) and IQ has
often been examined across different tasks. For example,
choice reaction time, traditionally regarded as a fairly simple
cognitive task, tended to correlate roughly −.35 with IQ (see
Jensen, 2006 for a thorough account of this research). At the
opposite end of the complexity spectrum is workingmemory,
which has correlated up to −.96 with g (Colom, Rebollo,
Palacios, Juan-Espinosa & Kyllonen, 2004; Kyllonen & Christal,
1990). Vernon and Jensen (1984) examined a variety of ECTs
and found that as tasks increased in complexity–in this case
increased complexity was operationally defined as increased
mean response latency–the correlations between these tasks
and a general factor extracted from a battery of aptitude tests
increased accordingly. A potential criticism of this under-
standing of complexity has emerged in the striking differ-
ences between the tasks themselves: Vernon and Jensen
employed a variety of reaction time and working memory
tasks, which differed in many ways. For example, while
reaction time tasks can be accomplished with minimal

reliance on verbal or numeric processing, working memory
tasks often use letters or numbers as stimuli. Furthermore,
traditional working memory tasks have a greater range of
item difficulty than is typically found in reaction time tasks,
which could also contribute to higher correlations. Simply
stated, researchers have no way of knowing if changes in
correlations with general ability were due solely to complex-
ity or to other differences between the tasks. If task
complexity determined these correlations, then systemati-
cally altering a single task should produce changes in the
correlations with IQ, and these changes should be predictable
(e.g., correlations between decision time and intelligence test
scores should increase as the complexity of the task
increases).

Unfortunately, previous attempts to linearly manipulate
complexity within traditionally employed ECTs, match-to-
sample and choice reaction time, have met with little success.
A match-to-sample task modified to include increasing
numbers of alternatives, similar to a Hick paradigm, yielded
expected increases in decision time for participants, but not
significant changes in the task-IQ correlations (Frey &
Detterman, 2002). Similarly, a choice reaction time task
modified to include some additional numeric judgment–odd/
even or low/high–yielded increases in decision times, but
significant changes in the task-IQ correlations were absent
(Frey & Detterman, 2004).

It was possible that subject selection procedures–all
participants were students at a selective university–and
subsequent restriction of range of IQ in the Frey and
Detterman work served to disguise task-IQ correlations.
Certainly, an increased range of ability is warranted in the
current study. However, theirs was not the only research on
the relationship between task complexity and intelligence.
Indeed, even the expected changes in correlations between
reaction time (RT) and general ability across varying degrees
of information load have been elusive. Sheppard (2008)
examined 50 years of published results in the domain of
intelligence and speed of information processing, and, while
she reported a trend for RT×intelligence correlations to be
higher with increased bits of information processing, the
mean correlations reported were less clear. For example, the
mean correlations across studies between RT and intelligence
at 2, 3, and 5 bits were identical (r=.28; Sheppard, 2008, p.
536). Indeed, when discussing the change in RT-IQ correla-
tion with increasing numbers of bits, Jensen (1987, p. 165)
called the finding “a rather weak and erratic phenomenon”.

For the current study, then, a different type of complexity
manipulation was examined within a match-to-sample task.
Previous researchers have made assertions about complexity
across different types of tasks, or by increasing the number of
alternatives within a single task. The former understanding of
complexity is problematic, as it requires generalizations
across fundamentally different tasks. Support for the latter
understanding of complexity has been inconsistent; generally
the expected increases in decision time are present, but the
expected changes in correlations with intelligence are absent.
Therefore, it was hypothesized that changing a task from a
simple match-to-sample task to one where no exact match
exists would result in the necessary additional processing to
increase both decision times and task-IQ correlations.
Additionally, if processing discrepancy between a probe and
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target stimulus required additional cognitive resources, it was
expected that the degree of discrepancy between a probe and
target stimulus would affect decision times and task-IQ
correlations.

1. Method

1.1. Participants

1.1.1. University sample
Fifty-two undergraduates from a selective, private re-

search university were recruited as subjects. One participant
did not complete one of the tasks (Minus 2) but the data for
the remaining tasks were retained. Participants were 28
males, 23 females, and 1 who did not identify sex; they
ranged in age from 18 to 23 years (M=19.18, SD=1.07). The
students were members of a general psychology subject pool
and received course credit in exchange for their participation.

1.1.2. Community sample
In order to increase the range of IQ scores in the sample, 36

normal adult volunteers from communities in Northeast Ohio
were also recruited to serve as subjects. Participants in this
sample were 18 males, 17 females, and 1 who did not identify
sex; they ranged in age from 18 to 60 years (M=35.83,
SD=12.16). They received a $10 gift certificate to a local
entertainment venue or retail establishment in exchange for
their participation.

1.2. Materials

1.2.1. The CAT
The Cognitive Abilities Test (Detterman, 1988) was used

to test subjects' performance on a battery of computer-based
match-to-sample tasks (MTS; referred to as “stimulus
discrimination” or SD in the test manual). Subjects received
the standard MTS task (MTS-S), a Plus 1 task (MTS-P1), a
Minus 1 task (MTS-M1), a Plus 2 task (MTS-P2), and a Minus
2 task (MTS-M2). The differences between these tasks have
been detailed below; more generally, to produce the near-
match trials, illuminated square(s) were either added to or
subtracted from the probe stimulus, a 4×4 partially filled
matrix, resulting in an imperfect match to the target stimulus.
For all of these tasks, in order to start each trial, the subject
was required to press and hold down the spacebar (home
key). Once the home key was depressed, the patterns in the
probe, target, and remaining alternatives appeared. Subjects
were instructed to find the target, release the home key, and
indicate the position of the target by pressing a number (1–6)
on a standard keyboard. When the participant released the
home key, the screen cleared; this ensured participants had
actually found a match before releasing the home key.
Decision time was recorded as the time participants de-
pressed the home key. If participants released the home key
in error, they were instructed to press the spacebar again and
the trial stimuli reappeared, resulting in multiple decision
times for a single trial. In these circumstances, the multiple
decision times were summed.

Each task contained 8 practice and 72 actual trials.
Participants received auditory feedback on each trial; correct
trials were followed by a high-pitched beep and incorrect

trials were followed by a low-pitched buzz. Error trials were
re-administered for each task.

1.2.2. Match-to-sample standard (MTS-S)
The standard match-to-sample task window (see Fig. 1)

consisted of simultaneous presentation of a probe stimulus
(the pattern at the top center of the screen) and an array of six
alternatives below the probe. The alternatives were num-
bered (from left to right) 1 to 6. One of the six choices (the
target) was an exact match to the probe.

1.2.3. Match-to-sample plus 1 (MTS-P1)
This task was designed to be as similar as possible to the

standard match-to-sample condition, however, in MTS-P1
trials, no exact match to the probe stimulus existed in the
numbered array below it. One pattern in the numbered array
closely resembled the probe stimulus. Participants had to
select the pattern that most closely resembled the probe. The
probe and target differed by exactly one illuminated square
(participants mentally added one illuminated square to the
target to make the pattern exactly match the probe; see
Fig. 2).

1.2.4. Match-to-sample minus 1 (MTS-M1)
The target in MTS-M1 tasks was also one square different

than the probe. However, in this task, participants were
required to mentally subtract one illuminated square from
the target to obtain an exact match to the probe (see Fig. 3).

1.2.5. Match-to-sample plus 2 (MTS-P2)
This task was a near-match condition (similar to MTS-P1).

However, in this case participants mentally added two
squares to the target to make it exactly match the probe.
MTS-P2 was added to the task battery to determine if degree
of discrepancy (one square vs. two squares) affected decision
times (or correlations with general ability) of the Plus task
type (see Fig. 4).

1.2.6. Match-to-sample minus 2 (MTS-M2)
A fourth task near-match (MTS-M2) was included to

assess the effects of degree of discrepancy on key variables in

Fig. 1. A typical MTS task in the CAT battery. The target is in the #4 position.
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the Minus task type. MTS-M2 was also a near-match
condition (similar to MTS-M1) where two squares were
mentally subtracted from the target to obtain an exact match
to the probe (see Fig. 5).

1.2.7. Raven's APM
The Advanced ProgressiveMatrices (APM; Raven, 1962) was

the primary means of measuring intelligence in subjects from
both the community and university samples. The APM, a 36-
item nonverbal test of fluid reasoning ability, was selected for
three reasons: 1) it was available for subjects outside the
university subject pool, 2) it has been considered the purest
measure of fluid ability (Marshalek, Lohman& Snow, 1983), and
3) it has beenwidely used as an estimate of general intelligence.

Each problem in the APM contained an incomplete 3×3
matrix (i.e. 3 rows, 3 columns). The individual elements of the
matrix formed a specific pattern, with the bottom right
element missing. Subjects were presented with eight alter-
natives and asked to select the element that best completed
the pattern.

1.3. Procedure

All subjects completed an untimed administration of the
APM before beginning the CAT tasks, most immediately
before the CAT. In some cases however, there was as much as
a week or more between administration of the Raven's and
the CAT battery. These individuals experienced this delay for
one of two reasons: 1) subjects had taken the APM as part of
another study and data were obtained directly from that
experimenter to avoid test–retest contamination, or 2)
subjects took an extended amount of time completing the
APM and needed to complete the CAT battery at a later date
due to scheduling conflict. The experimenter gave oral
instructions on the APM, and completed the first item with
the subjects to demonstrate how to solve the problems. All
subjects completed the CAT with standard keyboard admin-
istration. Participants were seated approximately 40 inches
from the monitor. All university students were administered
the test on a standard desktop computer, while most (27 of
36) community volunteers completed the CAT on a laptop.

Fig. 2. MTS Plus 1 (MTS-P1). The target is in the #4 position.

Fig. 3. MTS Minus 1 (MTS-M1). The target is in the #4 position.

Fig. 4. MTS Plus 2 (MTS-P2). The target is in the #4 position.

Fig. 5. MTS Minus 2 (MTS-M2). The target is in the #4 position.
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However, the monitor size was the same across apparatuses
(15 in.), to ensure task equality.

Subjects were administered the CAT tasks in one of two
orders. In both orders, MTS-S was administered first to allow
subjects to become acclimated to the procedure of the match-
to-sample tasks before the near-match conditions. Both
orders also placed the more discrepant (Plus 2 and Minus
2) tasks before the less discrepant. This was done to ensure
that differences in decision times were not the result of
fatigue effects. Since all subjects received theMTS-S condition
first, they were considered sufficiently familiar with the
procedures to avoid practice effects influencing the later
tasks. Roughly half of the participants received the order
MTS-S, MTS-P2, MTS-M2, MTS-P1, and MTS-M1. The other
half received the order MTS-S, MTS-M2, MTS-P2, MTS-M1,
and MTS-P1.

2. Results

2.1. Preliminary analyses

All APM scores were converted to an IQ scale using
transformation data from the test manual (Raven, Raven &
Court, 1998, p. APM 102). The data were examined for
influential cases. A conservative multiple regression approach
to identifying influential cases was selected. IQ was regressed
on mean decision time (DT) for each task. A case was
considered unduly influential if its removal changed the
unstandardized b-coefficient of this regression by greater
than one standard error. No cases met this criterion, so all
data were retained for further analysis.

2.2. Order effects

Independent samples t-tests were conducted on the mean
decision times and DT×IQ correlations for each of the five
tasks to determine if there were any effects of the order of
task presentation on outcomes. All t-tests were non-significant
(all pN .100), indicating that it was appropriate to collapse the
data across order for the remaining analyses.

2.3. IQ differences

The overall mean IQ, as measured by the APM, was 109.9
(SD=13.6). The mean IQ for the university sample was 112.2
(SD=13.1), while the mean IQ for the community sample
was 106.5 (SD=13.8). Although both samples were above
the normative mean of IQ, this difference between groups
was statistically significant (p=.05). Furthermore, the age
difference between the two groups was substantial. There-
fore, sample differences on mean DTs, standard deviations of
DT, and correlations with IQ were examined.

2.4. Mean decision times (mean DTs)

Mean decision times for all tasks, corrected for outliers,
were computed for both the university and community
samples, as well as for the groups combined (see Table 1).
In order to correct for outliers within participants, any trial
decision time that was greater than three standard deviations
from the original mean was reset to three standard de-

viations. Following this adjustment, a mean and standard
deviation were recalculated. For all groups, the mean DTs
followed the same pattern (from shortest DT to longest): MTS
Standard (MTS-S), MTSMinus 1 (MTS-M1), MTS Plus 1 (MTS-
P1), MTS Minus 2 (MTS-M2), MTS Plus 2 (MTS-P2). The
pattern of these decision times provided evidence in support
of the stated hypothesis: the tasks where no exact match was
present yielded longer decision times, and the degree of
disparity between the probe and the target systematically
influenced DTs. The community sample had significantly
longer DTs for all tasks except for MTS-P2 (p=.06), which
was to be expected according to the negative correlation
between IQ and DT. Because the groups differed significantly
on key variables, notably age and IQ, the DT analyses were
conducted first on the combined groups, then on each of the
individual samples.

2.4.1. Combined sample
A repeated measures ANOVA demonstrated a significant

effect of task type on mean DT (F(4,344)=238.871; pb .001).
Subsequent pairwise comparisons, adjusted for multiple
contrasts using a Bonferroni correction, revealed that each
task's mean DT was significantly different from all others (all
pb .001). Repeating the analysis on each subsample produced
the same results.

2.4.2. Effect size
The effect sizes for all analyses above were large, ranging

from partial η2 of .657 to .812. This result indicated that the
majority of the variance in mean decision times was
accounted for by task type.

2.5. Mean decision time×IQ correlations

Themean DT× IQ correlations for all tasks are presented in
Table 2.

Table 1
Mean decision times (DTs; in seconds) and standard deviations (in
parentheses) corrected for outliers.

Task University samplea Community sampleb Overallc

MTS-S 1.817 (0.373) 2.348 (0.721) 2.034 (0.599)
MTS-M1 2.200 (0.539) 2.957 (1.066) 2.510 (0.876)
MTS-M2 3.472 (1.031) 4.133 (1.724) 3.746 (1.391)
MTS-P1 2.513 (0.687) 3.348 (1.374) 2.854 (1.099)
MTS-P2 4.364 (1.249) 5.081 (2.304) 4.657 (1.782)

aN=51; bN=36; cN=87.

Table 2
Mean DT×IQ correlations.

Task University samplea Community sampleb Overallc

MTS-S −.204 −.398 ⁎ −.358 ⁎⁎

MTS-M1 −.424 ⁎⁎ −.496 ⁎⁎ −.482 ⁎⁎

MTS-M2 −.342 ⁎ −.509 ⁎⁎ −.421 ⁎⁎

MTS-P1 −.392 ⁎⁎ −.410 ⁎ −.459 ⁎⁎

MTS-P2 −.377 ⁎⁎ −.284 −.340 ⁎⁎

aN=51–52; b=36; cN=87–88.
⁎ Correlation is significant at .05 level (2-tailed).
⁎⁎ Correlation is significant at .01 level (2-tailed).
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2.5.1. Sample differences
The individual task correlations with IQ in the university

sample were compared to the corresponding tasks in the
community sample to determine which tasks, if any, yielded
different correlations across groups. A Fisher's z-test for
independent correlations was performed on each of the task
pairings. No task was found to have significantly different
correlations with IQ across groups. Because no between-
group differences were found, the remaining correlation
analyses were performed only on the combined groups to
maximize statistical power.

2.5.2. Task differences
MTS-P2 had the lowest overall correlation with IQ,

followed by MTS-S, MTS-M2, MTS-P1, and MTS-M1. The
pattern of these correlations, presented in Column 3 of
Table 2, was examined to determine whether or not the
tasks varied significantly in terms of their respective
correlations. Several contrasts were found to be statistically
significant (see Table 3). Notably, the DTs in the minus type
tasks yielded significantly higher correlations with IQ than
the plus type tasks. Furthermore, there was a trend for the
less discrepant (MTS-M1 and MTS-P1) tasks to correlate
more highly with IQ than the more discrepant (MTS-M2 and
MTS-P2) tasks.

2.6. Standard deviations of decision times (SDDT)

Jensen (1998a) has suggested intraindividual variability
in decision times as a good predictor of general intelligence,
often higher than the decision times themselves (p. 226).
That is, participants with higher levels of intelligence would
be expected to have lower variability in decision times
within a task. In order to test this, participants' standard
deviations of decision times (once DTs were corrected for
outliers as described above), were computed and analyzed
for mean differences and for correlations with fluid
intelligence.

2.6.1. Task differences in SDDT
Standard deviations for each task (overall and separated

by subgroup) are presented in Table 4. A split plot ANOVA
yielded a significant effect of task type on intraindividual
variability (Wilks' Lambda=.257, F (4, 82)=59.140, pb .001).
This effect was quite large (ηp

2=.743). There was a significant
but small effect of group (F (1, 85)=3.957, p=.05,
ηp
2= .084), but no significant group× task interaction

(p=.123).

2.6.2. SDDT×IQ correlations
Correlations between standard deviations of decision

times and IQ are presented in Table 5. Once again, a Fisher's
z-test for differences between independent correlations
indicated no significant differences across groups (all
pN .15), indicating it was acceptable to collapse across groups
to maximize statistical power. Of the ten possible contrasts,
only one yielded a significant difference between SDDT×IQ
correlations across tasks. The SDDT of participants in the Plus
1 condition was significantly more correlated with IQ than
the SDDT of participants in the Plus 2 condition (t=−2.13,
pb .05).

2.7. Statistical power

The exploratory nature of this study made a priori power
analysis nearly impossible, as the magnitudes of the correla-
tions with IQ and size of differences between correlations
were unknown in advance. Observed power was acceptable
for analyses of mean differences (all N.90). When comparing
correlations with IQ across tasks, in order to obtain an
acceptable (N.80) level of power, over 1500 subjects would
have been required for some of the comparisons (i.e. MTS-S/
MTS-P2; MTS-M1/MTS-P1). Additionally, when looking at the
size of the differences (1% and 2% increment in explained
variance, respectively), it was unlikely that the results would
have been theoretically meaningful.

3. Discussion

Detterman (1987a) advocated for the creation of a
systematic program of research to investigate a number of
ECTs in hopes of furthering the understanding of the basic
mechanisms of intelligence. Luo and Petrill (1999) also
promoted the inclusion of ECT research in our understanding
of intelligence, precisely because these tasks tend to be

Table 3
Significant differences in decision time×IQ correlations across tasks.

Contrast t p

MTS-M1NMTS-S 2.67 b.01
MTS-P1NMTS-S 1.78 b.05
MTS-M1NMTS-P2 2.65 b.01
MTS-M2NMTS-P2 1.78 b.05
MTS-P1NMTS-P2 2.06 b.05

Note: All contrasts computed using t-tests for differences between related
correlations (see Cohen & Cohen, 1983, p. 57).

Table 4
Standard deviation of decision times corrected for outliers.

Task University samplea Community sampleb Overallc

MTS-S 0.65 0.86 0.74
MTS-M1 1.03 1.41 1.19
MTS-M2 1.86 2.03 1.93
MTS-P1 1.27 1.70 1.45
MTS-P2 2.49 2.85 2.64

aN=51; bN=36; cN=87.

Table 5
Standard deviation of DT×APM Correlations.

Task University samplea Community sampleb Overallc

MTS-S −.183 −.293 −.284 ⁎⁎

MTS-M1 −.272 −.443 ⁎⁎ −.395 ⁎⁎

MTS-M2 −.345 ⁎ −.204 −.282 ⁎⁎

MTS-P1 −.291 ⁎ −.446 ⁎⁎ −.400 ⁎⁎

MTS-P2 −.421 ⁎⁎ −.122 −.252 ⁎

aN=51–52; bN=36; cN=87–88.
⁎ Correlation is significant at .05 level (2-tailed).
⁎⁎ Correlation is significant at .01 level (2-tailed).
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subject to increased experimental control as compared to
traditional measures and may “resolve to a certain extent the
problem of a circular definition of intelligence” (p. 157).
However, others, notably Ceci (1992), asserted that even
elementary tasks are not necessarily simple, and the
underlying processes of these tasks may not be well
understood. Indeed, one of the common assertions about
ECTs, that increases in a task's complexity result in increased
task-IQ correlations, appears to have remarkably thin support
in the literature. It is with the goal of increasing our
understanding of ECTs and their relationship to intelligence
in mind that the present study, containing a systematic
manipulation of the complexity of a match-to-sample task,
was conducted.

3.1. Effects of type of discrepancy and degree of discrepancy

Partially consistent with the stated hypothesis, introduc-
ing a near-match condition sometimes resulted in increased
mean DT and DT×IQ correlations for a match-to-sample task
(see MTS-M1 vs. MTS-S and MTS-P1 vs. MTS-S). Interesting-
ly, correlations between DT and IQ for Minus tasks (MTS-M1
and MTS-M2) tended to be larger than these same correla-
tions for the Plus tasks (MTS-P1 and MTS-P2). It is important
to note that these taskswere identical in everyway except for
the mental operation subjects performed in order to resolve
the discrepancy between a probe and target stimulus. The
Minus tasks required that participants mentally subtract
element(s) from the target to make it exactly match the
probe, while the Plus tasks required that participants
mentally add element(s) to the target to make it exactly
match the probe.

According to a system theory of intelligence (see Detterman,
1987b), tasks which are designed to have identical input and
output processes but demonstrate predictable differences in
task-IQ correlations would likely be accessing different basic
cognitive mechanisms. Simply stated, a task that looks a lot like
another but yields a higher correlation between performance
and amore general IQmeasure is likelymeasuring an additional
cognitive component of intelligence. The results presented here
indicate that the Minus tasks may be accessing additional
cognitive processes than what are necessary to successfully
complete Plus tasks. In order to be more specific about the
processes involved, future research should examine this type of
manipulation in other tasks.

Correlations between DT and IQ for tasks where the probe
and target differed by only one element (MTS-M1 and MTS-
P1) tended to be larger than these same correlations for tasks
where the probe and target differed by two elements (MTS-
M2 and MTS-P2). Although the exact nature of the specific
processes in intelligence remains unknown, it is possible that
some aspect of performance on the ECTs studied here
involves learning the rules of the tasks themselves. This
explanation is particularly likely when one takes into account
the presentation of tasks in the present study. Although all
participants received a standard match-to-sample task first
and were therefore considered sufficiently practiced in the
task, more discrepant trials occurred before less discrepant
trials—that is Plus 2 andMinus 2 tasks always preceded Plus 1
and Minus 1. Possibly, the more discrepant tasks provided an
opportunity to learn the rules that governed responses on the

less discrepant tasks, resulting then in longer decision times
for the more discrepant trials but not in higher task-IQ
correlations. This was also supported by standard deviations
of decision times (SDDT) across tasks; participants weremore
variable in the Plus 2 and Minus 2 tasks, but their SDDT-IQ
correlations tended to be higher for the Plus 1 and Minus 1
tasks. If rule acquisition was really at work here, it is
important to note that the experience-dependent context
operates somewhat differently than verbal instruction. Pilot
testing for the near-match tasks indicated that precise verbal
instructions on the task rules in near match-conditions (i.e.,
“For the following tasks, you must add one square to one of
the six patterns at the bottom of the screen in order tomake it
exactly match the pattern at the top of the screen.”) did not
affect performance.

3.2. Relationship between decision time and task-APM
correlations

The most interesting finding in the present study was the
difference between difficulty as measured by decision time
and difficulty as measured by task-IQ correlations. Previous
research indicated that, as task decision times increased, task-
IQ correlations increased as well. The current study found the
opposite. More discrepant tasks (i.e. MTS-P2 and MTS-M2)
had longer decision times than their less discrepant counter-
parts (MTS-P1 andMTS-M1) but lower correlations with fluid
intelligence. Furthermore, plus type discrepancies (MTS-P1
and MTS-P2) had longer decision times and lower correla-
tions with IQ than their minus type counterparts (MTS-M1
and MTS-M2). The reason for this finding is unknown and
replication is warranted. Certainly, one may argue that,
whatever task complexity is, it has not been captured by
the manipulation of discrepancy between a probe and target
stimulus in a match-to-sample task. However, as complexity
is sometimes operationally defined as an increase in response
latency (Vernon & Jensen, 1984), the results presented here at
the very least indicate that caution should be employed when
making the assertion that increased complexity results in
increased correlations between a task and IQ.

3.3. Future directions

The presence of some differences in task-IQ correlations in
these near-match tasks is exciting and may be a preliminary
step in uncovering a basic component of intelligence, and it
seems this study raises some interesting questions about
previously understood conceptions of task complexity.
However, future research requires a fully randomized task
presentation to adequately address the effect of degree of
discrepancy on task-IQ correlations. Indeed it would be best
to present trials representative of all five task types randomly
within one task. This method would allow for a more precise
examination of the hypotheses in that subjects would not be
able to acquire the rules in the first few trials and apply them
to the rest of the task, confident that those rules do not
change. Additionally, more tasks for which there can be a
systematic manipulation of the task's complexity need to be
uncovered.
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