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a b s t r a c t

Two new Ru(II) complexes, [Ru(bpy)2(1-COO-iqu)]+ (2; bpy = 2,2′-bipyridine, 1-COO-iqu− = isoquinoline-
1-carboxylate) and [Ru(bpy)2(3-COO-iqu)]+ (3; 3-COO-iqu− = isoquinoline-3-carboxylate), were pre-
pared and their crystal structures solved. The ground and excited state properties of 2 and 3 were
characterized and compared to those of [Ru(bpy)3]2+ (1). The presence of the oxygen atom in the Ru(II)
coordination sphere makes 2 and 3 easier to oxidize than 1. The Ru → bpy MLCT absorption and emission
of 2 and 3 are red-shifted relative to that of 1 in CH2Cl2, and the E00 energies were estimated to be 1.89 eV
and 1.95 eV from the low temperature emission of 2 and 3, resulting in excited state oxidation potentials
of −1.03 V and −1.10 V vs SCE, respectively. In addition to the short-lived emissive 3MLCT state, a long-
lived species is observed in the transient absorption of 3 in DMSO (� = 49 �s) and pyridine (� = 44 �s),
assigned to a solvent-coordinated complex. This intermediate is not observed for 3 in non-polar solvents
or for 2. The absence of the solvent coordinated intermediate in 2 is explained by the stronger Ru–O bond
afforded by the lower conjugation in that extends onto the carboxylic acid in the 1-COO-iquo−ligand,
compared to that in the 3-COO-iqu−ligand in 3. Transient absorption experiments also show that the
3MLCT excited state of 3 is able to reduce methyl viologen.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Emissive Ru(II) complexes have proved useful as the light-
absorbing units in cells for solar energy conversion [1–4], biological
sensing [5–11], and as therapeutics [12–14]. Owing to the require-
ment of strong luminescence or long-lived excited states for many
of these applications, the investigation of the molecular features
that affect the excited state properties of these complexes have
focused on those that result in an increase in the emission inten-
sity and lifetime [15–20]. Other photochemical applications of
Ru(II) complexes, however, require greater yield of alternative
photochemical products that often compete with luminescence,
such as isomerization for photoswitching [21], high quantum yield
photoaquation for DNA binding [22], photogenerated nitric oxide
[23–25], and access of the ligand field states for applications of the
complexes as molecular machines [15a,26].

It is well known that the emission from these systems, such
as the prototypical complex [Ru(bpy)3]2+ (1; bpy = 2,2′-bipyridine)
depends on the energy of the luminescent 3MLCT state relative to

∗ Corresponding author at: Department of Chemistry, The Ohio State University,
100 W. 18th Ave., Columbus, OH 43210, United States. Tel.: +1 6142926708.

E-mail addresses: turro.1@osu.edu, turro@chemistry.ohio-state.edu (C. Turro).

the ground state and to the low-lying non-emissive ligand-field
(3LF) states [27]. In general, ligand exchange photochemistry takes
place through the access of the 3LF states, which posses Ru–L(�*)
character, such that their population results in ligand dissocia-
tion [27–30]. Photoinduced ligand exchange is common for Ru(II)
complexes with monodentate ligands [31,32], however, such pho-
tochemistry stemming from bidentate ligands is not as efficient due
to the chelate effect [28,32,33]. The photostability of complexes
with bidentate ligands makes these systems useful for applications
where chemical bonds must remain intact, such as in luminescent
sensors.

In contrast, photoinduced switching applications require that
a photochemical reaction take place, but this reactivity must be
reversible. The 1,2-dithienylethene derivatives are examples of
such a system, where switching between the ring open and ring
closed isomers depends on the energy of light irradiation, such that
one can be converted into the other upon photon absorption of a
given wavelength [34,35]. Bistability is also exemplified in Ru(II)
complexes with dimethyl sulfoxide (DMSO) ligands, where DMSO
is able to coordinate to the ruthenium atom through either the sul-
fur (S-bound) or oxygen atom (O-bound) with the former being
more thermodynamically stable [36]. The S-bound isomer is able
to undergo isomerization to the O-bound complex by accessing the
3MLCT excited state through irradiation with visible light [36].

1010-6030/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Fig. 1. Molecular structures of (a) 2 and (b) 3.

In the present work, two new Ru(II) complexes are reported,
[Ru(bpy)2(1-COO-iqu)]+ (2) and [Ru(bpy)2(3-COO-iqu)]+

(3) (1-COO-iqu− = isoquinoline-1-carboxylate, 3-COO-iqu− =
isoquinoline-3-carboxylate), with molecular structures schemat-
ically depicted in Fig. 1. The 1-COO-iqu− and 3-COO-iqu− ligands
coordinate to the Ru(II) center via an aromatic nitrogen and a
carboxylate oxygen atom, which results in photophysical and
redox properties different from those of [Ru(bpy)3]2+ (1). Steady-
state and time-resolved emission, along with transient absorption
experiments were used to characterize the processes that follow
absorption of a photon by 2 and 3. A long-lived intermediate is
detected for 3 in coordinating solvents that is not observed in 2.
Calculations provide a basis to explain the differences observed for
the two complexes under similar experimental conditions.

2. Experimental

2.1. General

Ruthenium chloride hydrate, 2,2′-bipyridine (bpy),
isoquinoline-1-carboxylic acid (1-COOH-iqu), isoquinoline-3-
carboxylic acid (3-COOH-iqu), and methyl viologen dichloride
were purchased from Aldrich and used as received. Ru(bpy)2Cl2
was prepared by a published method and the product was
subjected to numerous CH2Cl2/H2O extraction cycles in order
to remove any trace [Ru(bpy)3]2+ [37,38]. [Ru(bpy)3]2+ (1) was
synthesized by typical methods and was precipitated from
acetone/ether to remove remaining free ligand [39].

2.2. Synthesis

2.2.1. [Ru(bpy)2(1-COO-iqu)]+ (2)
Ru(bpy)2Cl2 (8 mg, 16.5 �mol) was stirred in 40 mL

CH2Cl2/ethanol (80:20, v:v) with 1.2 equiv. of 1-COOH-iqu ligand
overnight. The initially purple solution turned red, was dried,
and the product was precipitated from acetone/ether. Further
separation of free 1-COO-iqu− ligand and another unidentified
product was accomplished by dissolving the mixture in ∼20 mL
of H2O and elution through a Sephadex G-15 column with 50 mM
NaCl. Two colored bands were apparent, and the second to elute,
which was also the major product, was collected. The eluent
was dried and the pure product was dissolved in CH2Cl2 and
filtered to remove the solid NaCl. X-ray quality crystals of 2 were
grown from layered CH2Cl2/n-heptane and the resulting structure
is shown in Fig. 2a. The MS parent ion peak was observed at
m/z = 586.1 for [Ru(bpy)2(1-COO-iqu)]+ with the expected isotope
pattern corresponding to the ruthenium. 1H NMR (400 MHz) in
DMSO-d6 (splitting, integration): 7.41 (m, 3H), 7.58 (m, 2H), 7.76
(t, 1H), 7.84 (m, 3H), 7.91 (d, 1H), 7.94 (d, 1H), 8.03 (m, 3H), 8.16
(m, 2H), 8.71 (d, 1H), 8.82 (m, 4H), 9.90 (d, 1H). Anal. Calcd. for
RuN5O2C30H22Cl–6H2O: C, 49.42; N, 9.60; H, 4.70. Found: C, 48.90;
N, 9.00; H, 4.64.

Fig. 2. ORTEP representation of (a) 2 and (b) 3 with thermal ellipsoids drawn at the
50% probability level. Hydrogen atoms were removed for clarity.

2.2.2. [Ru(bpy)2(3-COO-iqu)]+ (3)
The reaction of Ru(bpy)2Cl2 with 3-COOH-iqu and subsequent

purification and crystal growth was accomplished by a method
analogous to that described for 2. The crystal structure of 3 is shown
in Fig. 2b. The MS parent ion peak was observed at m/z = 586.1
for [Ru(bpy)2(3-COO-iqu)]+ with the expected isotope pattern cor-
responding to the ruthenium. 1H NMR (400 MHz) in DMSO-d6
(splitting, integration): 7.41 (m, 2H), 7.56 (t, 1H), 7.62 (d, 1H),
7.75 (m, 2H), 7.87 (m, 2H), 8.02 (m, 4H), 8.15 (m, 2H), 8.22
(d, 1H), 8.31 (s, 1H), 8.53 (s, 1H), 8.80 (m, 5H). Anal. Calcd. for
RuN5O2C30H22Cl–7H2O: C, 48.23; N, 9.37; H, 4.86. Found: C, 47.80;
N, 8.70; H, 4.80.

2.3. Instrumentation and methods

Absorption measurements were performed on a
Hewlett–Packard diode array spectrometer (HP8453) with
HP8453 Win System software and emission spectra were collected
on a SPEX FluoroMax-2 spectrometer. 1H NMR spectra were
recorded on a Bruker DRX-400 spectrometer. The identities of
2 and 3 in solution were confirmed by electrospray mass spec-
trometry (Micromass Q-Tof II, Waters) and carbon, nitrogen, and
hydrogen elemental analysis (Galbraith Laboratories, TN). Cyclic
voltammetry measurements were performed in CH3CN with 0.1 M
Bu4NPF6 as the supporting electrolyte on a BAS CV-50W (Version
2.3) instrument with a single-compartment three-electrode cell.
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The working electrode was a 1.0-mm diameter Pt disk (BAS)
with a Pt wire auxiliary electrode and a Ag/Ag+ pseudo-reference
electrode. Ferrocene (Fc) was used as a reference under the same
experimental conditions with E1/2(Fc+/0) = +0.43 V vs SCE [40].

Deoxygenation for the luminescence experiments was per-
formed by bubbling the sample with argon for ∼15 min and keeping
it under positive argon pressure during the experiment. Emis-
sion quantum yields (˚em) were calculated using [Ru(bpy)3]2+ in
CH2Cl2 (˚em = 2.9 × 10−2) as the reference actinometer by well-
established methods [41,42]. The emission lifetimes and transient
absorption signal were measured following sample excitation with
the 532 nm output from a frequency doubled Spectra-Physics GCR-
150-10 Nd:YAG laser (fwhm ∼8 ns, ∼5 mJ/pulse) with a home built
system previously described in detail [43]. Attenuated scattered
laser light yielded an overall instrument response function with
fwhm = 12.5 ns. Emission lifetime measurements in DMSO were
collected using a time-correlated single photon counting instru-
ment previously described pumped by a Nd-YLF laser (Coherent
Antares 76-s) used to pump a dye laser (Coherent 700 series, stil-
bene, tunable 410–480 nm, 1–4 MHz) with �exc = 470 nm (fwhm
∼3 ps) and with a ∼40 ps instrument response [44].

Both crystals of 2 and 3 were very thin, fragile red plates.
Data collections were done on a Nonius Kappa CCD diffractome-
ter at 200 K using an Oxford Cryosystems Cryostream Cooler. The
data collection strategy was designed to measure a quadrant of
reciprocal space with a redundancy factor of 4 for both [Ru(bpy)2(1-
COO-iqu)]Cl and [Ru(bpy)2(3-COO-iqu)]Cl, such that 90% of the
reflections in each quadrant were measured at least 4 times. A com-
bination of phi and omega scans with a frame width of 1.0◦ was
used. For 3, data was collected only out to a maximum 2� value of
45◦ because of the weakness of the diffraction pattern. Data inte-
gration was performed with Denzo [45], and scaling and merging
of the data was performed with Scalepack [45]. Crystallographic
details for both complexes are summarized in Table S1.

Both [Ru(bpy)2(1-COO-iqu)]Cl and [Ru(bpy)2(3-COO-iqu)]Cl
were determined to be P21/n by the teXsan package [46] based
on systematic absences and the intensity statistics. The structures
were solved by the Patterson method in SHELXS-86 [47]. Full-
matrix least-squares refinements based on F2 were performed in
SHELXL–97 [48]. In both 2 and 3 the asymmetric unit contains the
Ru complex, a chloride ion and a region of disordered solvent. It
was difficult to model this disordered region and to even identify
which peak in the electron density map was the Cl− ion for both
structures. In order to solve this problem for 2, one of the top peaks
in the difference map, which was not near any of the other peaks,
was assigned as the Cl− ion. No atoms were assigned in the rest of
this disordered region, and the SQUEEZE [49] program of PLATON
[50] was used to handle the solvent problem. This disordered region
occupies 911 Å3 per unit cell, and the electron density removed by
SQUEEZE is 258 electrons per unit cell.

Similarly, in [Ru(bpy)2(3-COO-iqu)]Cl, the asymmetric unit con-
tains a disordered region of chloride ions and/or CH2Cl2 molecules.
There are five obvious peaks in the disordered region and none are
within bonding range of each other. The five peaks were refined as
chlorides with their occupancy factors refined independently. For
both structures, the hydrogen atoms were included in the model
at calculated positions using a riding model with U(H) = 1.2 * Ueq
(attached atom). Neutral atom scattering factors were used and
included terms for anomalous dispersion [51].

The gas-phase molecular and electronic structure determina-
tions on complexes 1–3 and the 1-COO-iqu− and 3-COO-iqu− free
ligands were performed with density functional theory (DFT) using
the Gaussian03 program package [52]. The B3LYP [53–55] func-
tional together with the 6-31G* basis set was used for H, C, N, and
O [56], along with the Stuttgart/Dresden (SDD) energy-consistent
pseudopotentials for Ru [57,58]. All geometry optimizations were

performed in C1 symmetry with subsequent frequency analysis to
show that the structures are local minima on the potential energy
surface. Solvent effects were modeled by single point calculations
based on the gas-phase optimized structures using the polarizable
continuum model (PCM) [59,60]. Molecular orbitals were visual-
ized using Molekel 4.3.win32 [61]. The vertical singlet transition
energies of the complexes were computed at the time-dependent
density functional theory (TD-DFT) level by using the gas-phase
optimized structure for the ground state. The relative energies of
the free ligands, 1-COO-iqu− and 3-COO-iqu−, were computed as
the carboxylate substituent was rotated relative to the isoquinoline
unit. First, the ground state for each of the free ligands was deter-
mined with the same functional and basis set used for 2 and 3 and
confirmation that the computed structures were local minima on
the potential energy surface was accomplished by a frequency anal-
ysis. Then, the dihedral angle �(N5–C29–C30–O1), was adjusted
such that the carboxylate group was rotated in increments of 10◦

relative to the isoquinoline unit and single point energy calculations
were computed.

3. Results and discussion

3.1. Synthesis and characterization

Complexes 2 and 3 were synthesized from the reaction of puri-
fied Ru(bpy)2Cl2 (bpy = 2,2′-bipyridine) with a slight excess of the
corresponding isoquinoline carboxylic acid in CH2Cl2/ethanol. The
crystal structures of 2 and 3 are shown in Fig. 2, and data collection
parameters listed in Supporting Information (Table S1). The biden-
tate coordination of the isoquinoline carboxylate ligands through
the aromatic nitrogen and one of the carboxylate oxygen atoms
affords a pseudo-octahedral environment around the Ru(II) metal
center, with selected bond distances shown in Fig. 3a. All Ru–N
bonds from the nitrogen atoms in the bpy or isoquinoline lig-
ands in 2 and 3 are of similar length, ranging from 2.026(6) Å to
2.052(5) Å, and parallel the corresponding bond distances reported
for [Ru(bpy)3]2+, which average 2.057(3) Å [62,63]. Structural dif-
ferences surrounding the coordinated isoquinoline carboxylate
ligand are observed in 2 and 3, showing a longer C(29)–C(30) bond
length in 2, 1.531(8) Å, relative to that in 3, 1.481(12) Å (Fig. 3a).
Gas phase molecular structure calculations also predict a slightly
longer C(29)–C(30) bond length in 2 (1.536 Å) relative to that of
3 (1.518 Å). The lengthening of this bond in 2 compared with 3 is
indicative of reduced conjugation between the isoquinoline ring
and the carboxylate moiety in the former, resulting in greater neg-
ative charge on the oxygen atom coordinated to the metal center,
O(1). As such, the Ru–O(1) bond length is shorter in 2 than in
3, 2.061(4) Å and 2.088(5) Å, respectively (Fig. 3a), indicative of a
stronger metal–oxygen bond in the former. The shorter C(30)–O(2)
and longer C(30)–O(1) bond lengths in 2 compared to 3 are also con-
sistent with greater intraligand conjugation in the latter (Fig. 3a).

The difference in the extent of conjugation between the iso-
quinoline ring and the carboxylate group in 2 and 3 stems from
greater steric hindrance in the 1-COO-iqu− ligand in the former
than in 3-COO-iqu− in the latter. Fig. 3b shows the calculated rel-
ative energy of each free ligand, 1-COO-iqu− and 3-COO-iqu−, as
the dihedral angle, �(N5–C29–C30–O1), between the carboxylate
unit and the isoquinoline is systematically varied. It is evident
from Fig. 3b, that for 3-COO-iqu− the lowest energy conforma-
tion is found when the carboxylate and the isoquinoline moieties
are coplanar at � = 0.01◦. In contrast, the minimum energy for the
1-COO-iqu− ligand is calculated at � = −54.83◦, and the energy is
at a maximum when the two units are coplanar. In 1-COO-iqu−,
a coplanar conformation results in steric clashing between one
of the carboxylate oxygen atoms and the hydrogen atom in the

https://www.researchgate.net/publication/238170777_Ab_Initio_Molecular_Orbital_Theory_John_Wiley?el=1_x_8&enrichId=rgreq-b86233308d8cd7e439194e6cf9d46131-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ0OTg0MztBUzozMDczOTIxNDU3NTYxNjNAMTQ1MDI5OTQwNjY1NA==
https://www.researchgate.net/publication/200045664_International_Tables_for_X-Ray_Crystallography_Vol_3_Physical_and_Chemical_Tables?el=1_x_8&enrichId=rgreq-b86233308d8cd7e439194e6cf9d46131-XXX&enrichSource=Y292ZXJQYWdlOzI1NzQ0OTg0MztBUzozMDczOTIxNDU3NTYxNjNAMTQ1MDI5OTQwNjY1NA==
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Fig. 3. Selected bond lengths (Å) in (a) 2 and 3 and (b) the relative single point
energies of 1-COO-iqu− (�) and 3-COO-iqu− (©) free ligand as the carboxylate group
is rotated about the isoquinoline.

peri-position (H8) of the isoquinoline ring, which is alleviated by
twisting of the carboxylate group out of plane with respect to the
isoquinoline. This twisting that results from steric crowding by sub-
stituents located in the 1-position of naphthalene, the peri-effect,
is well established [64–66]. There is no steric strain with hydrogen
atoms of the isoquinoline ring when the carboxylate substituent is
in the 3-position, as found in 3-COO-iqu−, resulting in a coplanar
disposition between the carboxylate and the isoquinoline. These
results help explain the longer bond measured between the car-
boxylate and the isoquinoline carbon atoms in the 1-COO-iqu−

complex 2, and corresponding slightly shorter C(29)–C(30) bond in
3 stemming from the delocalization of the isoquinoline �-system
onto the carboxylate unit in 3-COO-iqu−.

3.2. Electronic absorption and emission

The electronic absorption spectra of 2 and 3 in CH2Cl2 are shown
in Fig. 4 with maxima and extinction coefficients listed in Table 1
The transitions observed at 295 nm with ε = 24,600 M−1 cm−1 in
2 and ε = 31,400 M−1 cm−1 in 3 are assigned as bpy ��*, sim-
ilar in peak position but less intense as that in 1 (290 nm,
95,200 M−1 cm−1) in the same solvent [67], as listed in Table 1. In
addition, 2 and 3 exhibit maxima in the visible region assigned
as arising from metal-to-ligand charge transfer (1MLCT) transi-
tions. The 1MLCT absorption maxima are observed at 341 nm
(4380 M−1 cm−1) and 499 nm (5310 M−1 cm−1) in 2 and similar
transitions were observed at 360 nm (6790 M−1 cm−1) and 500 nm
(5260 M−1 cm−1) in 3. The lowest energy transitions in both 2 and
3 are assigned as Ru → bpy 1MLCT and are red-shifted compared to
that of 1 at 452 nm (16,000 M−1 cm−1) in the same solvent [67]. The

Fig. 4. Electronic absorption (—), emission (�exc = 470 nm; —), and excitation
(�em = 700 nm; – – –) spectra in CH2Cl2 at 298 K and emission at 77 K (�exc = 470 nm;
– – –) in 4:1 (v/v) EtOH/MeOH glass of (a) 2 and (b) 3.

lower intensity of the 1MLCT absorption in 2 and 3 relative to that of
1 can be explained by the presence of an additional bpy ligand in the
latter [41,68]. It should be noted that the 1MLCT absorption max-
ima of both complexes show a small solvent dependence typical of
charge transfer transitions [69], shifting from 492 nm in CH3CN to
501 nm in CH2Br2 in 2 and from 494 nm to 506 nm in 3 in the same
solvents (Table 2).

Complexes 2 and 3 are weakly emissive at room temperature,
with representative emission and excitation spectra at 298 K in
CH2Cl2 and emission at 77 K in ethanol/methanol (4:1 v:v) glasses
shown in Fig. 4. Emission maxima and quantum yields of 2 and 3 in
CH2Cl2 are listed in Table 1. The excitation spectrum of each com-
plex overlays well with the corresponding absorption spectrum
(Fig. 4), indicating that the emission does not arise from an impurity
in the sample. The 298 K emission of 2 and 3 in CH2Cl2, with maxima
at 708 nm (˚em = 4.1(6) × 10−4) and 704 nm (˚em = 4.8(8) × 104)
respectively, are red-shifted and ∼2 orders of magnitude weaker
relative to that of 1 with maximum at 606 nm (˚em = 2.9 × 10−2)
in the same solvent (Table 1) [41]. The luminescence lifetimes of
2 and 3, 124 ns and 164 ns, respectively, are shorter than that of 1
(488 ns) in CH2Cl2 [41]. The excited state energies (E00) were esti-
mated to be 1.89 eV and 1.95 eV from the 77 K emission spectra of
2 and 3, in 4:1 (v/v) EtOH/MeOH, respectively (Fig. 4). The vibronic
progressions observed in the 77 K emission for 2 and 3 of 1270 cm−1

and 1206 cm−1, respectively, parallel that in 1, 1250 cm−1, under
similar experimental conditions [70]. The similarity of the various
emission properties of 2 and 3 to those of 1 can be used to assign
the luminescence in these complexes as arising from a Ru → bpy
3MLCT excited state.

The red shift in the Ru → bpy MLCT absorption and emission
of 2 and 3 compared to 1 is consistent with a smaller ligand-field
splitting in the former and is typical of ruthenium bis(bipyridyl)
complexes with ligands in their coordination sphere that are
weaker than bpy, such as cis-Ru(bpy)2Cl2 [68–71,72]. Since the
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Table 1
Photophysical and electrochemical properties of complexes 1–3.

Complex �abs/nm (ε/×103 M−1 cm−1)a �em/nm (˚em)a E1/2/V vs SCEb

1 290 (95.2), 352 (16.2) 606 (2.9 × 10−2) +1.29c, −1.33c, −1.53, −1.77
2 295 (24.6), 341 (4.38), 499 (5.31) 708 (4.1 × 10−4) +1.03d, +0.86, −1.38, −1.57, −1.83
3 295 (31.4), 360 (6.79), 500 (5.26) 704 (4.8 × 10−4) +1.20d, +0.85, −1.41, −1.63, −1.99

a In CH2Cl2 at 298 K.
b In CH3CN with 0.1 M tBu4NPF6; vs SCE.
c Consistent with Ref. [87].
d Quasi-reversible.

Table 2
Solvent dependence of the absorption and emission properties of 2 and 3.

2 3

Solvent �abs/nm �em/nm ˚em
a �abs/nm �em/nm ˚em

a

CH2Cl2 499 708 4.1 500 704 4.8
CH2Br2 501 710 4.2 506 713 3.9
Pyridine 497 713 1.3 500 721 2.7
CH3CN 492 739 0.57 494 738 1.9
DMSO 496 755 0.22 494 739 2.2
THF 497 743 1.6 497 747 1.4

a At 298 K, ×10−4, �exc = 470 nm.

energy of the �* orbital of the bpy ligands is not expected to shift
significantly upon variation in the coordination of the Ru(II) center
[43,73,68], the observed differences are likely due to the destabi-
lization of the metal t2g-type orbitals upon substitution of a bpy
ligand for 1-COO-iqu− and 3-COO-iqu− in 2 and 3, respectively.
This destabilization of the filled metal d-orbitals results in lower
energy Ru → bpy 1MLCT transitions explained by the presence of
the oxygen atom in the coordination sphere, which is a �-donor
and provides Ru–O(�*) character to the metal-centered highest
occupied molecular orbital(s) [28,68,73–76].

It is evident from Table 2 that the emission maxima and inten-
sities of 2 and 3 are highly dependent on solvent. As the energy
of the MLCT absorption and emission shifts to lower energy with
solvent, the emission intensities of 2 and 3 decrease. This trend in
the solvent dependence of the emission lifetimes of 2 parallel the
emission intensities, with � = 124 ns in CH2Cl2, 30 ns in pyridine,
and 4.3 ns in DMSO. Similar results were observed for 3 with life-
times of 164 ns in CH2Cl2, 93 ns in pyridine, and 59 ns in DMSO.
In general, the decrease in emission intensity and lifetime with
lower excited state energy can be attributed to larger non-radiative
decay rate constant to the ground state. This dependence, known
as the energy gap law, has been previously shown to be applicable
transition metal complexes of Ru(II), Os(II), and Re(I) that possess
emissive 3MLCT excited states [77].

3.3. Time-resolved absorption

The transient absorption spectrum of 3 in deoxygenated DMSO
is shown in Fig. 5. Immediately following the laser pulse, the tran-
sient absorption spectrum exhibits positive features from 340 nm
to 400 nm and ground state bleaching from 400 nm to 600 nm. The
decay kinetics measured for the signal at 370 nm and for the bleach
at 500 nm are ∼75 ns, which are within the detection limit of our
instrument, but are qualitatively similar to the 3MLCT emission life-
time of the complex in DMSO, 59 ns. Similar transient absorption
spectra were recorded in other solvents for both 2 and 3 imme-
diately after the laser pulse, which are similar to those previously
reported for the transient absorption spectrum of [Ru(bpy)3]2+ and
consistent with the 3MLCT state of the complexes [78–85].

In the coordinating solvents pyridine and DMSO, long-lived
transient signals were also observed for 3 with lifetimes of
49 �s and 44 �s, respectively. These long-lived transients are not

observed in CH2Cl2 and exhibit positive absorption features at
∼510 nm in both DMSO (Fig. 5) and pyridine (Fig. S1). This transient
species is believed to arise from a solvent-coordinated intermediate
of the type [Ru(bpy)2(�1-3-COO-iqu)(solvent)]+. The formation of
the long-lived transient may occur by breaking of the Ru–O bond,
allowing the solvent to coordinate to the metal. Although spec-
tral features corresponding to the 3MLCT state of 2 were observed
immediately after the laser pulse, there was no evidence of a long-
lived transient on the �s timescale for the complex in DMSO or
pyridine. It is hypothesized that the stronger Ru–O bond in 2
compared to 3, precludes the formation of the [Ru(bpy)2(�1-1-
COO-iqu)(solvent)]+ complex in the former.

3.4. Electrochemistry and electronic structure calculations

Complexes 2 and 3 exhibit single reversible anodic waves at
+0.86 V and +0.85 V vs SCE in CH3CN (0.1 M TBAPF6), respectively,
that arise from the metal-centered oxidation of each complex
(Table 2). These oxidation potentials show that 2 and 3 are easier
to oxidize than 1 by ∼0.4 V [86]. This ease in oxidation is consis-
tent with the destabilization of the filled t2g-type d-orbitals on the
metal in the presence of the coordinated �-donor oxygen atom.

Fig. 5. Transient absorption spectra of 0.2 mM 3 in DMSO (�exc = 532 nm) imme-
diately following the laser pulse (�) and 5 �s (©) after excitation. Inset: decay at
500 nm.
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Fig. 6. MO diagrams for 1–3, distinguishing the L(p�*) orbitals with bpy(�*) con-
tribution (—) from those with iqu(p�*) contribution (– – –). The LUMOs were set at
the same energy in all complexes.

A quasi-reversible redox couple was also observed in both 2 and
3 with Ep = +1.03 and +1.20 V vs SCE, respectively, assigned to the
oxidation of the isoquinoline ligand in each complex. In addition,
three well-resolved cathodic reversible waves were observed for
both 2 and 3. There is very little difference in the peak position
of the first two reduction peaks in 2 and 3, with E1/2 ≈ −1.4 and
−1.6 V vs SCE and correspond well with the first two reduction
potentials in 1 (Table 1). Therefore, they have been assigned to the
sequential reduction of each of the bpy ligands in 2 and 3. The third
reduction potential depends on the character of the isoquinoline
ligand with E1/2 = −1.83 and −1.99 V vs SCE for 2 and 3, respec-
tively (Table 2). Using the ground state oxidation potentials for 2
and 3, excited state oxidation potentials of −1.03 V (E00 = 1.89 eV)
and −1.10 V (E00 = 1.95 eV) vs SCE can be estimated, respectively,
such that these complexes are better excited state reducing agents
than 1 (−0.81 V vs SCE) by 0.2–0.3 V [86].

The calculated molecular orbital (MO) diagrams for 2 and 3
predict a set of three occupied metal-centered MOs that are com-
prised the highest occupied molecular orbital (HOMO), HOMO-1,
and HOMO-2, referred to as the Ru(d�) set (Fig. 6). In both 2 and 3,
the lowest unoccupied molecular orbital (LUMO) and the LUMO+1
are bpy(�*) followed by the LUMO+2, which is iqu(�*) in character,
consistent with the assignments made from the electrochemical
data. A decrease in the HOMO–LUMO gap of 0.41 eV and 0.35 eV
for 2 and 3, respectively, as compared to 1, is predicted when sin-
gle point calculations of the optimized gas-phase molecules are
performed in CH3CN. This result is in good agreement with the
experimentally determined decrease in the HOMO–LUMO gap of
0.38 V and 0.36 V for 2 and 3 from the electrochemistry data, as
compared to 1 in the same solvent. The similarity in the first reduc-
tion potentials for 1–3 show that the energy of the LUMO bpy(�*)
orbitals in all three complexes are not expected to vary among
the complexes. Therefore, the LUMOs of 1–3 were set equal with
respect to each other and the decrease in the HOMO–LUMO gap of 2
and 3 can be attributed to the destabilization of the Ru(d�) orbitals
(Fig. 6).

Time-dependent DFT (TD-DFT) calculations were performed in
the gas phase to predict the transition energies. Because of the
low dielectric constant of CH2Cl2, Ds = 6.7 [87], the TD-DFT cal-
culations on the gas-phase optimized structure accurately model
the experimental transition maxima. The calculated transitions for
2 and 3 at � > 305 nm are listed in Table 3 with the correspond-
ing oscillator strength (f ). The computational results confirm the
assignment of the lowest energy spin-allowed transitions for 2 and

Table 3
Calculated vertical singlet excitations and oscillator strength (f ) of 2 and 3.a

�abs/nm (f)

2 3

325(0.0307) 319(0.0206)
326 (0.0639) 325 (0.0252)
347 (0.0538) 345 (0.0336)
364(0.0566) 354(0.1101)
383 (0.0282) 369 (0.0304)
389 (0.0539) 371 (0.0225)
395 (0.0216) 375 (0.0367)
469(0.0481) 465(0.0368)
496(0.1067) 494(0.1082)

a Only transitions with f > 0.02 are listed; all transition assignments were made
from the character of the orbitals most involved in each transition and were deter-
mined to be Ru → bpy MLCT in character.

3 as Ru(d�) → bpy(�*) 1MLCT with the lowest energy peaks with
maxima at 496 nm (f = 0.1067) and 494 nm (f = 0.1082) for 2 and
3, respectively, in good agreement with the experimental maxima
listed in Table 1.

3.5. Excited state electron transfer

Owing to the relatively low emission quantum yield and shorter
lifetime of 2, the electron transfer studies were undertaken only
with 3. The transient absorption spectra of 3 in the presence of
6 mM methyl viologen (MV2+) collected after 6.5 �s and 104 �s
after excitation in deoxygenated DMSO are shown in Fig. 7. After the
excitation of 3 with MV2+ in DMSO, the transient absorption spec-
trum after 6.5 �s shows evidence of both the long-lived transient of
the complex with maximum at 510 nm and reduced methyl violo-
gen, MV•+, with as strong peak at ∼390 nm [88]. As expected from
the results in Fig. 5, the decay recorded at 510 nm (Fig. 7 inset; red)
corresponds to the long-lived species with a lifetime of 38 �s, but
after 104 �s the absorption features remaining correspond to MV•+

(Fig. 7). It is clear from the data in Fig. 6 that the electron transfer to
generate MV•+ stems from the 3MLCT excited state of the complex
and that the solvent-coordinated transient species is unaffected
by the presence of the acceptor in solution. Stern–Volmer plots of
the emission quenching of 3 by MV2+ results in a quenching rate
constant of 5.9 × 109 M−1 s−1, for which �G ∼ −0.67 V, is similar to
values reported by others for 1 [86,89]. It is evident from the inset
of Fig. 7 (black) that the decay at 390 nm is significantly longer than
that of the isomer, with a second order rate constant for the back

Fig. 7. Transient absorption spectra of 0.2 mM 3 in DMSO (�exc = 532 nm) in the
presence of 6 mM MV2+ 6.5 �s (©) and 104 �s (�). Inset: decays at 390 nm (black)
and 500 nm (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)
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electron transfer estimated to be ∼109 M−1 s−1 (�G ∼ −1.3 V), sim-
ilar to values reported for the bimolecular back electron transfer
from MV•+ to oxidized 1 [88].

4. Conclusions

Two new ruthenium(II) complexes possessing the isoquinoline
carboxylate ligands, Ru(bpy)2(1-COO-iqu)]+ (2) and [Ru(bpy)2(3-
COO-iqu)]+ (3), were synthesized and characterized, and their
crystal structures were determined. The 1-COO-iqu− and 3-COO-
iqu− ligands coordinate to the Ru(II) center via the aromatic
nitrogen and one carboxylate oxygen atom. The presence of the
oxygen atom in the coordination sphere reduces the ligand-field
splitting of these complexes compared to [Ru(bpy)3]2+ (1), thus
shifting the MLCT absorption and emission to lower energies and
making 2 and 3 easier to oxidize in the ground state and better
excited state reducing agents. Complexes 2 and 3 exhibit lower
emission quantum yields and shorter excited state lifetimes than 1,
with ˚em = 4.1 × 10−4 (� = 124 ns) and ˚em = 4.8 × 10−4 (� = 164 ns),
respectively (�exc = 470 nm). Transient absorption spectroscopy of
3 in DMSO and pyridine revealed the 3MLCT excited state a early
times and a long-lived transient assigned to solvent-coordinated
species that regenerates the starting material with lifetimes of
49 �s and 44 �s, respectively. It is believed that the initial excitation
results in the formation of both the 3MLCT and the solvent-
coordinated transient, and the former can reduce methyl viologen.
The solvent dependence of the decay of the 3MLCT states of 2
and 3 follow the energy-gap law. Calculations on the free ligands,
together with the crystal structures of the complexes and time-
resolved absorption, were utilized to explain the differences in
the photophysical properties. The greater excited state oxidation
potentials of the 3MLCT states of Ru(II) complexes with an oxy-
gen atom in the coordination sphere may also lead to new systems
for photoinduced electron injection to semiconductors with larger
bandgaps.
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