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ABSTRACT

Lehman, J. S., and Shaner, G. 1997. Selection of populations of Puccinia
recondita f. sp. tritici for shortened latent period on a partially resistant
wheat cultivar. Phytopathology 87:170-176.

Wild-type fungal population 851-WT was selected for shortened latent
period on cv. CI 13227 for five uredinial generations to study the adap-
tation of Puccinia recondita f. sp. tritici to partially resistant wheat cul-
tivars. Differences among wild-type and selected populations for traits
contributing to parasitic fitness (i.e., latent period, infection frequency,
and uredinium area and growth rate) were assessed in monocyclic infec-
tion experiments on susceptible cv. Monon and partially resistant cvs. Su-
won 85, Sw 72469-6, L-574-1, and CI 13227. Differences were greatest
among fungal populations on cv. CI 13227. The mean latent period of
selected population 851-C5 was 2 days shorter (~20%) than that of wild-
type population 851-WT. In addition, uredinia of population 851-C5 ex-
panded 40% faster and produced ~75% more urediniospores. On cv.

L-574-1, the selected population was also more fit than the wild-type
progenitor for initial uredinium area and growth rate and cumulative ure-
diniospore production. In contrast to wild-type and selected populations
on cvs. CI 13227 and L-574-1, selected population 851-C5 on cv. Monon
produced slower expanding uredinia with fewer urediniospores than did
population 851-WT on Monon. These results show that variation in the
latent period of P. recondita f. sp. tritici populations is partially under
genetic control and wild-type P. recondita f. sp. tritici populations con-
tain members reproductively more fit on partially resistant wheat culti-
vars but not necessarily on susceptible cultivars. Such members are capa-
ble of partially overcoming quantitative host resistance.

Additional keywords: general, horizontal, race-nonspecific, and rate-
reducing resistance; leaf rust; reproductive fitness; slow rusting; Triticum
aestivum.

The use of genetic resistance is the best approach for control of
wheat leaf rust. However, resistance often provides ephemeral pro-
tection, because populations of the leaf rust pathogen, Puccinia
recondita Roberge ex Desmaz. f. sp. tritici, respond to the selec-
tive pressures of resistant host cultivars and produce more virulent
phenotypes (33). Because of these changes in the pathogen popu-
lation, breeding resistant wheat cultivars is a continuing activity
(33). Cultivars that provide adequate levels of disease control and
have durable resistance (i.e., their resistance remains effective dur-
ing their prolonged and widespread use in environments favorable
for disease) are highly desirable (7,14).

Partially resistant wheat cultivars are suboptimal environments
for leaf rust development because they retard the establishment and
reproduction of the fungus. The fungus has a longer latent period
on partially resistant cultivars than on susceptible cultivars (27,29,
37,38) and produces smaller uredinia (29,37,38) that contain fewer
spores (27,35,38). In addition, the infection frequency of the fun-
gus is often reduced (27,29,37,38). These components of resis-
tance greatly reduce the rate of disease development in the field
because P. recondita f. sp. tritici is a polycyclic pathogen (8,13,
37). Partially resistant cultivars slow, but do not completely inhibit,
the spread of leaf rust. Disease is held to levels that are econom-
ically less harmful to grain production.

Partial resistance may be more durable than complete resistance
because it places less selection pressure on the pathogen and often
is genetically more complex than hypersensitivity (5,13,19,20,21).
The ability of pathogen populations to respond to the selection

pressure of partially resistant wheat cultivars has received very
little attention, however.

Selection experiments have been used to demonstrate polygenic
variation in traits of nonphytopathogenic fungi, including growth
rate in Schizophyllum commune (39), growth rate and spore size in
Neurospora crassa (30,32), and penicillin titer in Aspergillus nid-
ulans (26). To a lesser degree, selection experiments have been
used to study the variation in parasitic fitness of plant pathogens.
By selecting Uromyces appendiculatis, the bean rust fungus, for
increased fitness on bean cultivars, Alexander et al. (1) observed
slight or no changes in latent period, pustule size, and uredinio-
spore production of the pathogen population. In contrast, Kolmer
and Leonard (18) selected fungal populations of Cochliobolus het-
erostrophus for increased lesion size on corn and demonstrated
that the pathogen has the genetic variation to adapt to a partially
resistant inbred corn line. In another study, selection was reported
to increase the fertility (i.e., perithecial number) of this fungus
(17). Kolmer (15,16) conducted selection experiments on P. recon-
dita f. sp. tritici with either field collections or sexual populations
of rust on wheat cv. Chris (with adult-plant resistance genes Lr13
and Lr34) or Roblin (with resistance genes Lr1, Lr10, and Lr13).
Kolmer (15,16) found that populations reared for 8 and 12 uredin-
ial generations on cvs. Chris and Roblin, respectively, responded
to selection. Selected populations produced more spores per unit
area of leaf tissue or were composed of virulence phenotypes in
different frequencies relative to the initial population; yet, the cul-
tivars still expressed some degree of resistance.

The likelihood of populations of P. recondita f. sp. tritici adapt-
ing to partial resistance is difficult to assess. Short of continual
evaluation of pathogen diversity on a partially resistant cultivar
during wide-scale cultivation in environments favorable for dis-
ease, selection experiments may provide the best means of as-
sessing variation in parasitic fitness and of predicting the re-

Corresponding author: J. S. Lehman; E-mail address: jlehman@otterbein.edu

Publication no. P-1997-0102-02R
© 1997 The American Phytopathological Society



Vol. 87, No. 2, 1997  171

sponse of extant populations of P. recondita f. sp. tritici toward
partial resistance. The objective of this study was to determine
whether asexual populations of P. recondita f. sp. tritici contain
members adapted to partially resistant wheat cultivars. To ac-
complish this, we repeatedly selected a wild-type population of
P. recondita f. sp. tritici for shortened latent period on a par-
tially resistant cultivar and quantified pathogen responses to se-
lection.

MATERIALS AND METHODS

Populations of P. recondita f. sp. tritici. Population 851-WT, a
naturally occurring Indiana population of P. recondita f. sp. tritici,
was collected from 200 to 300 uredinia from volunteer seedlings
of wheat cv. Beau (CI 17420) on 20 November 1984 at the Purdue
Agronomy Farm, West Lafayette, IN. This population was increased
for one generation on susceptible cv. Morocco and stored at –80°C
until used in selection experiments. Among 24 single-uredinio-
spore isolates from population 851-WT, we detected only patho-
gen phenotype FBR (with virulence to host resistance genes Lr2c,
3, 3ka, 11, and 30) with the 12 Thatcher isogenic lines in the Prt
differential set (25).

In selection experiments, population 851-WT was selected for
shortened latent period on partially resistant cv. CI 13227 in the
greenhouse. Adaxial surfaces of 20 to 25 newly emerged flag
leaves (the uppermost leaf) of 10 to 15 plants of CI 13227 were
inoculated with urediniospores of population 851-WT suspended
in Soltrol 170 light mineral oil (Philips Petroleum Co., Hennepin,
OK). Inoculated plants were misted with water and Tween 20
(water-Tween 20: 1 drop of Tween 20 per liter of H2O) and placed
in a moist chamber at 20 to 22°C for 12 to 14 h. Uredinia typically
erupt from leaf surfaces of cv. CI 13227 over an interval of 6 to 19
days after inoculation; the plot of daily increase in number of
uredinia against day after inoculation yields a bell-shaped curve
slightly skewed to the right. Because of this distribution of latent
period for individual uredinia, urediniospores from early erupting
uredinia could be collected separately from those of later erupting
uredinia (i.e., truncation selection). After 9 to 11 days, infection
sites with short latent periods began to erupt and sporulate, and
spores were vacuumed from adaxial leaf surfaces of leaves with a
cyclone spore collector (41) attached to a model 13152 Gelman
(Ann Arbor, MI) pressure/vacuum pump.

A portion of the spores was stored at –80°C and used to form
population 851-C1, the product of one cycle of selection. The re-
mainder of the spores was used to inoculate 20 to 25 flag leaves of
10 to 15 healthy plants of CI 13227 for continued cycles of se-
lection. As uredinia erupted, we repeated the selection process that
favored uredinia with short latent periods. In total, population
851-WT was selected for shortened latent period for five asexual
generations of the fungus reared on CI 13227. In the early gen-
erations of selection, spores were collected from as few as 100
early erupting uredinia. In later generations, spores were collected
from more than 500 uredinia. Populations 851-C1 and 851-C5,
which were reared on CI 13227 for one and five asexual genera-
tions of selection, respectively, were increased and characterized
for fitness on susceptible and partially resistant wheat cultivars
along with population 851-WT.

Wheat cultivars. Five cultivars of winter wheat (Triticum aes-
tivum L. em. Thell) were studied, including susceptible cv. Monon
(CI 13278) and cvs. Suwon 85 (PI 157600), Sw 72469-6 (Stram-
pelli/69D-3607//Chokwang), L-574-1 (Wakeland/Blueboy), and CI
13227 (Wabash/American Banner//Klein Anniversario), which were
previously reported to be partially resistant (22,24,29,37).

Seedlings were vernalized at 3°C for 6 to 8 weeks under 12 h of
fluorescent light per day and transplanted individually in 400-ml
plastic pots containing a soil-peat mixture. Natural daylight in the
greenhouse was supplemented with incandescent and fluorescent
light for 16 h/day (~200 µE m–2 s–1) from the time of transplanting

to maturity. Day and night temperatures were 20 to 24 and 17 to
20°C, respectively.

Measurements of components of parasitic fitness and host
resistance. Six traits that characterize partial host resistance and
parasitic fitness were measured in monocyclic infection experiments
(experiments I, II, and III) conducted during March 1989, No-
vember 1990, and April 1991, respectively. In experiment I, newly
emerged flag leaves of each of the five cultivars were inoculated
with separate suspensions of populations 851-WT, 851-C1, and
851-C5 in concentrations of 20 mg of spores per 30 ml of water-
Tween 20 with a model 151 Devilbiss (Somerset, PA) atomizer. In
experiments II and III, the adaxial surfaces of flag leaves were
inoculated in a spore-settling tower (11) along with four plates of
1.5% water agar. We estimated a deposition of two to three viable
spores per mm2 of flag leaf based on spore density and percent
germination observed on the agar. For all experiments, inoculated
plants were misted with water-Tween 20 and placed in a moist
chamber at 20 to 22°C for 12 to 14 h.

In experiment I, uredinia on the whole leaf were counted on days
7 to 20 after inoculation. In experiments II and III, uredinia on only
a portion of the flag leaf, typically the middle 3 to 5 cm, were
counted each day. Mean latent period (MLP), the average time re-
quired for uredinia to erupt, was calculated from uredinial counts
taken on days 7 to 20 after inoculation based on the equation

MLP Pti i
i

n

=
=
∑

0

in which Pi is the proportion of uredinia relative to the final num-
ber of uredinia that appear on the ith day after inoculation, ti is the
ith day after inoculation, and n is the number of days after inocu-
lation when all uredinia have appeared.

In experiments II and III, five arbitrarily selected uredinia for
each population on individual flag leaves of each cultivar were
marked, and every 2 to 4 days throughout the expansion of these
lesions, their length (L) and width (W) were measured to the near-
est tenth of a millimeter with a Bausch & Lomb (Rochester, NY)
measuring magnifier. From these dimensions, uredinial area (UA)
was calculated using the equation for the area of an ellipse: UA =
(L) (W) (3.14)/4.

Uredinial area was regressed on day after inoculation, and rates
of uredinial growth, the slopes of the regression line, were cal-
culated. Regression equations with coefficients of determination
<0.70 were excluded from analyses of uredinial growth rate.

In experiments II and III, infection frequency (IF), defined as
the proportion of viable urediniospores applied per square milli-
meter of leaf tissue that give rise to uredinia, was calculated using
the equation

IF = (no. of uredinia/mm2 of leaf tissue)/
(no. of viable spores applied/mm2 leaf tissue)

Urediniospore production in experiments II and III also was mea-
sured. In experiment II, spores were collected from five individ-
ual, isolated uredinia on days 10, 14, 19, 21, and 27 after inocu-
lation with a modification of the spore collector described by Shaner
(34). Our collector differed in that (i) the main body was con-
structed from a 3 × 16-cm acrylic tube; (ii) suction was provided
by a 60-ml rubber suction bulb; and (iii) the silicon-coated micro-
scope slide was movable within the collector body. Once collected
on greased slides, images of the spores were displayed on a video
monitor connected to a microscope, and manually counted with a
digitizing pen and the Interactive Counting Program of the LeMont
Oasys Image Analyses System (State College, PA). Cumulative
urediniospore production was calculated by averaging the five es-
timates of spore production per uredinium for the same leaf and
totaling these averages for the five collection days.

In experiment III, spores were collected from 10 to 216 uredinia
on individual flag leaves on days 9, 11, 13, 15, 19, and 21 after
inoculation. Before uredinia erupted, a 3 or 5 cm length of the flag
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leaf was marked, and the spores produced from erupted uredinia
were collected with a small cyclone collector (41). Spores were
suspended in 10 ml of phosphate-buffered saline with 0.5% Tween
20. Spores in a 500-ml sample were counted with a model FN
Coulter counter (Coulter Electronic, Inc., Hialeah, FL). The aver-
age number of spores per uredinium was calculated by dividing
the total number of spores by the number of uredinia present on a
given collection day. The means for the six collection days were
totaled to calculate cumulative urediniospore production.

Experimental design and statistical analysis. Each experi-
ment was a factorial design with five cultivars, three isolates, and
four or five replications. Because the number of replications with-
in experiments varied, analyses were performed on means for each
cultivar-isolate combination averaged across replications within
experiments (i.e., unweighted means analyses) (9,28). The linear
additive model for the unweighted means analyses was

Yijk = µ + Li + Cj + LCij + Pk + LPik + CPjk + LCPijk

in which Yijk is the response of the ijkth individual subunit; µ is the
overall mean; Li is the effect of the ith experiment, i = 1,…,3
experiments for latent period and i = 1 or 2 experiments for anal-
yses of other components; Cj is the effect of the jth wheat cultivar,
j = 1,…,5 cultivars; LCij is the interaction effect of the ith experi-
ment with jth cultivar; Pk is the effect of the kth fungal population,
k = 1,…,3 populations of P. recondita f. sp. tritici; LPik is the
interaction effect of the ith experiment with the kth population;
CPjk is the interaction effect of the jth cultivar with the kth pop-
ulation; and LCIijk is the experimental error of unweighted mean
values (Eµ). The expected mean squares are given in Table 1.

A log10 transformation of mean latent period and cumulative ure-
diniospore production and an arcsine transformation of (IF)1/2 ef-
fectively eliminated the association between mean and variance that
existed for untransformed statistics (40). Values for initial and final
uredinial area and for uredinial growth rate were expressed as a pro-
portion of the values for cv. Monon inoculated with 851-WT, and un-
transformed data were analyzed. Duncan’s new multiple range test
(α = 0.05) was used to separate means for cultivars, populations, and
interactions (40). The coefficient of variation (CV) also was calcu-
lated for the analysis of variance for each fitness-resistance compo-
nent with the equation CV = (100s/Y) percent, where s is the sample
standard deviation and Y is the sample mean for components (40).

RESULTS

The infection types of uredinia for all isolates on flag leaves of
each cultivar indicated a compatible interaction. This shows that

the cultivars we studied lacked effective genes for hypersensitive
resistance in the adult plant stage.

Coefficients of variation, mean-corrected measures of error vari-
ance, were used to compare the precision of experiments involv-
ing the different components independent of unit of measure. Co-
efficients of variation for log10 cumulative urediniospore produc-
tion, log10 mean latent period, uredinial growth rate, initial ure-
dinial area, final uredinial area, and arcsine (IF)1/2 were 1.4, 3.3,
7.1, 11.9, 17.6, and 24.5%, respectively.

Differences in latent period. Populations differed significantly
for mean latent period (P = 0.043). The latent period of population
851-C5 was shorter than that of 851-WT or 851-C1 (Fig. 1). There
was no difference between the latent periods of populations 851-
WT and 851-C1.

Differences in latent period among cultivars were significant (P =
0.006). Cv. Monon had the shortest latent period; cvs. CI 13227,
Suwon 85, and Sw 72469-6 had the longest mean latent periods;
and cv. L-574-1 was intermediate (Fig. 1). Latent periods of CI
13227, Suwon 85, Sw 72469-6, and L-574-1 were 3.6, 3.3, 2.6,
and 1.7 days or 49, 44, 33, and 23% longer, respectively, than the
latent period of Monon.

The cultivar × pathogen population interaction was nonsignifi-
cant (P = 0.50); however, Duncan’s new multiple range test indi-
cated that the latent period of population 851-C5 on CI 13227 was
significantly shorter than the latent periods of population 851-WT
or 851-C1 only on CI 13227 (Fig. 2). Despite this shortening, the
latent period of 851-C5 on CI 13227 was still longer than the la-
tent period of any isolate on Monon. There were no differences in
latent period among the three populations on any of the other cul-
tivars.

Fig. 1. Mean latent period for flag leaves of Triticum aestivum inoculated with
three populations of Puccinia recondita f. sp. tritici. Mean latent period is
the weighted mean number of days from infection to production of secondary
inoculum (details given in text). Each bar represents the unweighted mean of
three experiments, with four or five replications averaged across three popu-
lations of P. recondita f. sp. tritici or five wheat cultivars. Cultivar or pop-
ulation means with a letter in common above the bar do not differ signifi-
cantly for log-transformed data according to Duncan’s new multiple range test
(α = 0.05).

TABLE 1. Expected mean squares (EMS) of the unweighted means analyses
of components of parasitic fitness and host resistance for Puccinia recondita
f. sp. tritici on Triticum aestivum

Source of
variationx df y EMSz Error term

Experiment (Li) e – 1
Cultivar (Cj) c – 1   σe

2/rh + rσLC
2 + liφC σe

2/rh + rσLC
2

LCij (e – 1) (c – 1)   σe
2/rh + rσLC

2 σe
2/rh

Population (Pk) p – 1   σe
2/rh + cσLP

2 + lcφi σe
2/rh + cσLP

2

LPik (e – 1) (p – 1)   σe
2/rh + cσLP

2 σe
2/rh

CPjk (c – 1) (p – 1)   σe
2/rh + σLCP

2 + lφCP σe
2/rh + σLCP

2

LCPijk (error Eµ) (e – 1) (c – 1)
  (p – 1)   σe

2/rh + σLCP
2 σe

2/rh

x Sources of variation in the linear additive model are explained in text.
y Letters e, c, and p refer to the number of levels of experiments, cultivars,

and populations, respectively.
z Variance components (σ2) are for experiment × cultivar (LC), experiment ×

population (LP), and experiment × cultivar × population (LCP). Variance
component σe

2 is for the pooled errors from experiments I, II, and III. rh is
the harmonic mean of the number of replications in experiments I, II, and
III. Fixed effects (φ) are for cultivar (C), population (P), and cultivar ×
population (CP).
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The difference between the mean latent period for 851-WT on
Monon and 851-WT on CI 13227 was 4.3 days (Fig. 2). This dif-
ference represents the total resistance for latent period of CI 13227,
because the latent period of wild-type pathogen populations on Mo-
non, previously reported as susceptible (24), reflects the response of
cultivars with little resistance for this trait. The difference between
851-C5 on CI 13227 and 851-WT on Monon was 2.3 days and rep-
resents the resistance remaining in CI 13227 (53%) after selection
of P. recondita f. sp. tritici on CI 13227. Thus, population 851-C5
overcame 47% of the resistance to latent period present in CI 13227.

Differences in infection frequency. Pathogen population was
not a significant source of variation in the analysis of arcsine (IF)1/2

(P = 0.87), and there were no differences among populations for
infection frequency. The infection frequency for cv. CI 12337 (0.05
uredinia per germinated urediniospore) was lower than that for
Monon (0.12 uredinia per germinated urediniospore). The other
cultivars were not different than Monon.

Differences in uredinium area and growth rate. Cultivar, but
not pathogen population, was a significant source of variation in
the analysis of initial and final uredinium area and uredinium
growth rate (P = 0.05 to 0.0043). Averaged across populations,
values for these traits were the same for cvs. Monon and L-574-1
and significantly larger than those for cvs. CI 13227, Sw 72469-6,
and Suwon 85 (Table 2). There were no differences among popu-
lations averaged across cultivars (Table 2).

For initial uredinium area (Fig. 3) and uredinium growth rate
(Fig. 4), population 851-C5 on cvs. CI 13227 and L-574-1 had
significantly larger values than the wild-type population. In con-
trast, values for uredinium growth rate for population 851-C5 on
Monon were less than for 851-WT on this cultivar (Fig. 4). Ure-
dinium growth rates were the same for populations 851-WT and
851-C5 on Sw 72469-6, but uredinia of population 851-C1 grew
significantly faster. For final uredinium area, there were no differ-
ences among populations on individual cultivars.

Differences in sporulation. Differences among cultivars for
cumulative urediniospore production were significant (P = 0.008).
Cv. L-574-1 produced as many spores as Monon, but cvs. Sw
72469-6, Suwon 85, and CI 13227 produced fewer spores (Table
2). Differences among populations averaged across cultivars were
nonsignificant.

TABLE 2. Uredinium area (UA)v, uredinium growth (UG) rate, and uredin-
iospore production (UP) for adult plants of five wheat cultivars inoculated
with three populations of Puccinia recondita f. sp. tritici

Relative UA Relative UA Relative UG Cumulative
(initial)w (final)x rate y UP z

Pathogen population
  851-WT 0.71 b 0.70 b 0.69 b 5,589 b
  851-C1 0.72 b 0.72 b 0.70 b 5,212 b
  851-C5 0.80 b 0.68 b 0.73 b 5,847 b

Wheat cultivar
  Monon 0.91 b 0.97 b 0.96 b 9,968 b
  L 574-1 0.91 b 0.94 b 1.00 b 7,540 b
  Suwon 85 0.59 a 0.60 a 0.59 a 4,099 a
  Sw 72469-6 0.68 a 0.44 a 0.39 a 3,015 a
  CI 13227 0.65 a 0.56 a 0.57 a 3,124 a

v UA (initial and final) was calculated using the equation UA = (L) (W) (3.14)/4,
in which L and W are uredinium length and width, respectively.

w Initial UA was expressed as a proportion of the UA for population 851-WT
on cv. Monon (0.128 mm2). Each value for the pathogen populations is the
unweighted mean of two experiments, with four or five replications aver-
aged across wheat cultivars. For populations of P. recondita f. sp. tritici,
mean initial UAs did not differ. Each value for wheat cultivars is the un-
weighted mean of two experiments, with four or five replications averaged
across populations of P. recondita f. sp. tritici. Within columns, cultivar means
with a letter in common are not significantly different according to Dun-
can’s new multiple range test (α = 0.05).

x Final UA was expressed as a proportion of the UA for population 851-WT
on cv. Monon (0.545 mm2). Each value for pathogen populations is the un-
weighted mean of two experiments, with four or five replications averaged
across wheat cultivars. For populations of P. recondita f. sp. tritici, mean
final UAs do not differ. Each value for wheat cultivars is the unweighted
mean of two experiments, with four or five replications averaged across pop-
ulations of P. recondita f. sp. tritici. Within columns, cultivar means with a
letter in common are not significantly different according to Duncan’s new
multiple range test (α = 0.05).

y UG rate was calculated from the regression of UA on day after inoculation
(details are given in text) and expressed as a proportion of the UG rate for
population 851-WT on cv. Monon (0.06 mm2/day). Each value for patho-
gen populations is the unweighted mean of two experiments, with four or
five replications averaged across wheat cultivars. For populations of P. rec-
ondita f. sp. tritici, mean relative UG rates do not differ. Each value for
wheat cultivars is the unweighted mean of two experiments, with four or
five replications averaged across populations of P. recondita f. sp. tritici.
Within columns, cultivar means with a letter in common are not signifi-
cantly different according to Duncan’s new multiple range test (α = 0.05).

z Cumulative UP is the cumulative number of spores per uredinium produced
at five or six samplings between 9 and 27 days after inoculation. Each
value for pathogen populations is the unweighted mean of two experiments,
with four or five replications averaged across wheat cultivars. For popu-
lations of P. recondita f. sp. tritici, production of urediniospores does not
differ. Each value for wheat cultivars is the unweighted mean of two experi-
ments, with four or five replications averaged across populations of P. recon-
dita f. sp. tritici. Within columns, cultivar means with a letter in common
are not significantly different according to Duncan’s new multiple range test
(α = 0.05).

Fig. 2. Unweighted means for mean latent period for flag leaves of Triticum
aestivum inoculated with three populations of Puccinia recondita f. sp. trit-
ici. Mean latent period is the weighted mean number of days from infection
to production of secondary inoculum (details given in text). Each bar is the
unweighted mean of three experiments, with four or five replications for cul-
tivar-population combinations. Combination means with a letter in common
above the bar do not differ significantly for log-transformed data according
to Duncan’s new multiple range test (α = 0.05).

Fig. 3. Unweighted means for relative initial uredinium area (UA) for flag
leaves of Triticum aestivum inoculated with three populations of Puccinia
recondita f. sp. tritici. UA is calculated based on the equation UA = (L) (W)
(3.14)/4, where L and W are uredinial length and width, respectively. UA is
expressed as a proportion of the UA of population 851-WT on cv. Monon
(0.128 mm2). Each bar is the unweighted mean of two experiments, with four
or five replications for cultivar-population combinations. Combination
means with a letter in common above the bar do not differ significantly
according to Duncan’s new multiple range test (α = 0.05).
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The cultivar × isolate interaction was significant (P = 0.0041)
for cumulative urediniospore production. Population 851-C5 on
CI 13227 produced more spores than did populations 851-WT and
851-C1 (Fig. 5). Despite these increases in sporulation, population
851-C5 on CI 13227 produced fewer spores than any population
on Monon. Population 851-C5 on L-574-1 produced more spores
than did 851-WT but no more than 851-C1. Spore production by
851-WT and 851-C1 on L-574-1 were the same. On Monon,
population 851-C5 produced fewer spores than 851-WT. How-
ever, spore production for population 851-WT and 851-C1 on
Monon were the same. On Sw 72469-6, selected populations pro-
duced the same amount of spores as did population 851-WT.

The difference between spore production for 851-WT on Monon
and 851-WT on CI 13227 was 9,234 spores and represents the to-
tal resistance of CI 13227 for this component of resistance (Fig. 5).
The difference between 851-C5 on CI 13227 and 851-WT on Mo-
non was 7,371 spores and represents the resistance remaining (80%)
after selection on CI 13227. Selected population 851-C5 overcame
20% of CI 13227’s resistance for sporulation. Similarly, popula-
tion 851-C5 adapted to overcome 45% of the resistance of L-574-1.

DISCUSSION

For polycyclic plant pathogens, the time required to produce
offspring and the number and survivability of offspring influence
population fitness. Individuals with short latent periods produce
offspring earlier, allowing additional cycles of infection, which
results in faster rates of disease development. Because of the cor-
relation between latent period and disease development in the field
(4,23,37), knowledge of variation in latent period for populations
of P. recondita f. sp. tritici on partially resistant wheat cultivars
and the response of these populations to selection should be useful
in predicting durability of host resistance. We previously observed
that 42 to 49% of the variation in latent period between single-
uredinial isolates on partially resistant cv. CI 13227 was under
genetic control (24). In addition, there was evidence to suggest that
gene(s) governing latent period in CI 13227 interacted specifically
with gene(s) governing latent period in the pathogen. These re-
sults suggest that natural selection should operate in favor of in-
creased parasitic fitness. As a result, partial resistance for latent
period may be rendered increasingly less effective.

Not all fitness and resistance components were measured with
equal precision. Analyses of cumulative urediniospore production
and mean latent period could detect smaller differences in para-
sitic fitness between wild-type and selected populations than anal-
yses of other fitness components. However, it takes more time to

collect latent period and sporulation data than to collect data for
infection frequency and uredinium area and growth rate. Although
measurements of initial uredinium area and growth rate are not as
precise as those for mean latent period or cumulative uredinio-
spore production, they may be useful if large numbers of pathogen
isolates are to be screened or if differences between populations
are large. Measurements of infection frequency lacked precision
and were not useful in characterizing the fitness of P. recondita
f. sp. tritici populations. Similar observations have been reported
by others (3,6,31).

The error associated with certain components of parasitic fit-
ness and host resistance is not necessarily an inherent feature of
the component. Large coefficients of variation for the analysis of
arcsine (IF)1/2 could be due to the method by which spores were
deposited on leaves. In the spore-settling tower (11), spores “settle
out” on the inoculation table in nonuniform patterns. Four plates
of water agar were placed in the tower for each inoculation to esti-
mate the distribution of spores across the table, and they revealed
that spore distributions were uneven, which precluded an accurate
estimate of spore deposition on each leaf. In addition, the inevit-
able “spotty” misting of flag leaves during the 12- to 14-h moist
period after inoculation could reduce precision. High coefficients
of variation for the analyses of initial and final uredinium area and
growth rate may be due to the fusion of uredinia as they expand or
to the formation of satellite rings of uredinia surrounding aging
primary uredinia. Neither occurrence allows precise measurement
of uredinium length and width, which were used in calculations of
uredinium area. These problems tend to be greater for older ure-
dinia and could explain the higher coefficient of variation of final
uredinium area relative to that of initial uredinium area. Because
uredinium growth rate was calculated from regression analyses in
which regression equations with coefficients of determination <0.70
were excluded, it is not surprising that coefficients of variation for
uredinium growth rate were lower than those for initial and final
uredinium area.

Based on response to selection, the variation in latent period of
population 851-WT on CI 13227 appears to be partially under ge-
netic control. Because the intensity of selection or the selection
differential was unknown, heritability of latent period could not be
calculated from the response to selection (12). Because popula-
tions responded to selection, a portion of the variation in latent
period between isolates of P. recondita f. sp. tritici must be ge-
netic. Selection for five asexual generations on CI 13227 resulted
in the pathogen population overcoming 47% of the resistance for
latent period in CI 13227; 53% of the resistance was still effective.

CI 13227 appears to have four genes of unequal effects and with
epistasis that control latent period (36). Analysis of F7 families of
a recombinant inbred population indicated that genotypes that car-
ried the plus allele for long latent period at the locus with the
greatest effect had an average latent period that was 35% longer
than the latent periods of genotypes with the opposite allele. If se-
lection for greater fitness in the pathogen led to genotypes of P.
recondita f. sp. tritici that overcame the effects of this one gene,
they would reduce the mean latent period on CI 13227 from about
12.5 days to 9.2 days according to this model. If a gene at one of
the other three loci is overcome by the pathogen, this would re-
duce mean latent period from 12.5 to from 10.6 to 11.7 days, de-
pending on the particular locus, which is about the magnitude of
reduction in mean latent period we observed after five cycles of
selection. The partial adaptation toward resistance for latent pe-
riod in CI 13227 may be due to the absence of individuals with
genotypes that allow them to overcome all four genes controlling
latent period in CI 13227 (i.e., individuals favored in selection only
had greater fitness toward the minor gene). The genes controlling
latent period in CI 13227 may include host Lr genes for resistance
to leaf rust. CI 13227 has Klein Anniversario, an Argentine wheat,
in its pedigree. Klein Anniversario carries resistance gene Lr3ka
and may carry gene Lr34 (2). CI 13227 may have inherited Lr34,

Fig. 4. Unweighted means for relative uredinium growth rate for flag leaves
of Triticum aestivum inoculated with three populations of Puccinia recondita
f. sp. tritici. Uredinium growth rate is calculated based on the regression of
uredinium area on day after inoculation (details given in text) and expressed
as a proportion of the uredinium growth rate of population 851-WT on cv.
Monon (0.06 mm/day). Each bar is the unweighted mean of two experiments,
with four or five replications for cultivar-population combinations. Combi-
nation means with a letter in common above the bar do not differ signifi-
cantly according to Duncan’s new multiple range test (α = 0.05).
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which may contribute to its increased latent period. Drijepondt and
Pretorius (10) demonstrated that the latent period of P. recondita
f. sp. tritici on wheat line RL6058 with Lr34 was 2.2 to 2.7 days
longer than on susceptible cv. Thatcher. Kolmer (15,16) found that
populations repeatedly exposed to cultivars with adult-plant resis-
tance genes Lr13 and Lr34 produced more spores per unit area of
leaf tissue and were composed of virulent phenotypes in different
frequencies compared to unselected populations; yet, the cultivars
still expressed some degree of resistance.

Although selection was for decreased latent period, population
851-C5 on cvs. CI 13227 and L-574-1 produced more spores than
did population 851-WT on these cultivars, but it produced fewer
spores than 851-WT on cv. Monon. Increased sporulation of popu-
lation 851-C5 on CI 13227 could be due to pleiotropic effects of
the genes controlling latent period or linkage between the genes
controlling latent period and sporulation.

Selection for shorter latent period on CI 13227 also changed spor-
ulation on L-547-1 and Monon. These changes could be the result
of epistasis or linkage. The fact that population 851-C5 sporulated
22% less on Monon than did 851-WT suggests that if a diversity
of partially resistant wheat cultivars were grown in a region, adap-
tation to one might be offset by reduction in fitness on another.
This would stabilize the pathogen population and contribute to the
durability of resistance.

The differences in initial uredinium area and growth rate be-
tween populations 851-WT and 851-C5 on CI 13227 and L-574-1
were likely due to factors discussed for sporulation (i.e., pleio-
tropy or linkage). On cvs. Monon and Sw 72469-6, uredinia of
selected populations 851-C5 or 851-C1 grew slower than those of
population 851-WT. The response of populations on Monon can
be explained by linkage in repulsion for uredinium growth rate in
different cultivars. For Sw 72469-6, the response does not parallel
selection. Uredinia of population 851-C1 grew faster than uredinia
of 851-WT, but uredinia of 851-C5 did not. These results imply
that P. recondita f. sp. tritici genotypes that have short latent peri-
ods on CI 13227 show considerable variation for uredinium growth
rate on Sw 72469-6.

Our research shows that wild-type populations of P. recondita f.
sp. tritici contain members capable of overcoming to some degree
the partial resistance of some wheat cultivars. The question of the
durability of partial resistance, therefore, depends on the intensity
of natural selection. If natural selection is mild, the frequency of
individuals capable of overcoming partially resistant hosts would
remain unchanged or be altered only slightly. If natural selection
is intense, frequencies of more fit members should increase and
render at least part of the resistance ineffective. However, indi-
viduals selected from a wild-type population on one cultivar may
have greater or lower fitness on other partially resistant cultivars.
Further, given that selection in the field may not be as severe as
our selection procedure, pathogen populations could retain a high
level of polymorphism to partially resistant cultivars, perhaps
showing only locally increased fitness on specific cultivars.
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