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Anomalous dimensions of anisotropic gauge theory operators 

David  G. Rober tson 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

and 

Frank Wilczek 1 
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA 

Received 1 September 1990 

The anomalous dimensions of the anisotropic dimension four operators in SU (N) gauge theory coupled to fermions are calcu- 
lated to lowest order. The possibility of comparison with numerical simulations is pointed out. 

1. Introduction 

Although great effort has been put into the numer- 
ical simulation of discretized gauge theories, there has 
been a notable paucity of quantitative analytic re- 
sults with which to compare the simulations. The 
running of the coupling constant according to the re- 
normalization group coefficient r, and some clever 
generalizations involving anisotropic cutoffs [ 1 ], are 
the only examples that come to mind. 

We have calculated the anomalous dimensions of 
certain gauge-invariant, generally anisotropic, di- 
mension four operators in SU(N) gauge theories 
coupled to fermions, using techniques of continuum 
perturbation theory. We shall argue that these anom- 
alous dimensions ought also to be readily calculable 
from the simulations. If  such calculations were done 
and agreed with the predictions, they would supply 
highly nontrivial verification that renormalized 
quantum field theory at weak coupling does indeed 
describe the short-distance behavior of the (nonper- 
turbative) lattice theory. There has been some doubt 
expressed about this recently [2 ]. Even if one be- 
lieves that such checks are redundant in principle, 

Research supported in part by DOE grant DE-FG02- 
90ER40542. 

their success would be welcome reassurance that in 
practice the lattice size has been taken sufficiently 
small to reproduce the continuum. 

We shall first give an account of the technique of 
calculation and of the results obtained, and then 
sketch how a comparison with numerical lattice gauge 
theory results could be implemented. 

2. The anisotropic anomalous dimensions 

Let us first consider the pure gluon theory, speci- 
fied by the lagrangian 

L~= - ~ ~ Fa~F~.  + (gauge fixing) + (ghosts),  
a , ~ , v  

(2.1) 

with the gluon field strength 

" ~ O~Au+g f ~4uA ~. (2.2) Fu .  = O~A. - a abc b c 

(We work in euclidean spacetime throughout. ) A ba- 
sis for the gauge-invariant dimension four aniso- 
tropic operators we wish to consider is provided by 
the six objects 

0 , 2 - ½  X F~2F~2, 013 -~1 X F~3F~3, .... (2.3) 
~t a 
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By reflection symmetry there is no mixing between 
these operators and e.g., 1, F’f2FY3, so that this set 
of operators is closed under renormalization #‘. 

Now, upon renormalization there are evidently 
three independent operator mixings which can occur: 

aP 
,2-Yb(OL3+014+0*3+0*4) 

-YcO34. (2.4) 

It is worth noting, however, that there are certain 
identifiable linear combinations of the O,,, multipli- 
catively renormalized, with anomalous dimensions 
that are combinations of y=, yb and yC. These are 

GI = 012 - 034 , (2.5) 

GII,~o012+034-t(013+0,4+023+024), 

with 

aP 
(2.6) 

~~G*I,=-(~,-~~,+~L)G,,I. 

There are two other operators of the same general 
form as Grr, and one of the same form as Gnr, which 
we do not display. Now, Gr is just F2, the lagrangian. 
Its anomalous dimension is closely related to the con- 
ventional beta function [ 31. The three G,r-type op- 
erators are linear combinations of the diagonal ele- 
ments of the energy-momentum tensor, and are 
therefore expected on general grounds to have van- 
ishing anomalous dimensions. 

The actual computation of the anomalous dimen- 
sions is straightforward, though somewhat laborious; 
it involves evaluating the diagrams shown in fig. 1. 
Before we present our results, however, a few re- 
marks about operator mixing in gauge theories are in 
order. 

As is well known, the renormalization of a compos- 
ite operator in general requires counter-terms propor- 

xl Other closed sets of anisotropic operators, containing FJ,,, 
etc., could also be considered. 

Fig. 1. 

tional to other composite operators of the same (or 
lower) mass dimension and carrying the same quan- 

tum numbers. Obviously it is very helpful if the num- 
ber of operators which mix together is fairly small, so 

that the calculation of the matrix of renormalization 
constants is not too difftcult. Life would be most 

pleasant in this regard if the counterterms needed for 
a gauge-invariant operator (i.e., one formally invar- 

iant under the usual gauge transformations of the el- 
ementary fields) were themselves gauge-invariant. 
Indeed it is somewhat frightening to contemplate the 
alternative, since the number of gauge-noninvariant 
operators which a priori might mix with a given gauge- 

invariant one is usually enormous. 
Actually, the truth is somewhere in between. We 

now briefly summarize the result of a rather involved 
analysis, which is fully presented in ref. [ 41. Define 

type I operators to be the formally gauge-invariant 
operators of interest. It can be shown that operators 
which mix with type I operators (and are not them- 
selves type I ) are of two special types: type IIa oper- 
ators, which are BRS variations of some other oper- 
ators, and type IIb operators, which formally vanish 
by the equations of motion. These three sets of oper- 
ators together form a closed set under renormaliza- 
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tion. In this basis of operators the renormalization 
matrix Zab , defined by 

o b a r e  7 /~ren (2.7) a ~g-'abt-/b 

takes a simple form. The operators of type II mix only 
with each other. Thus Zab has the block triangular 
form 

g i i , i i  / " 

So if we are willing to work on-shell and to refrain 
from looking at BRS null states, the renormalization 
constants ZLI that connect type I operators among 
themselves are adequate. They yield the physically 
correct, gauge-independent anomalous dimensions 
for the type I operators. 

The physical on-shell matrix elements, i.e. those 
with all external (momenta)  2 set to zero and with 
physical polarization vectors attached, of all type II 
operators vanish. Thus we can isolate the type I 
counterterms ZLI simply by ignoring the gauge-non- 
invariant operators, and evaluating all matrix ele- 
ments on-shell. Finally, from Z~,~ we compute the 
physically relevant gauge-independent anomalous 
dimensions. This is an eminently practical scheme, 
and is the one we employed. 

The calculation is slightly complicated by the fact 
that we must evaluate all matrix elements on-shell. 
Indeed, the two-gluon matrix elements of Ou~ at zero 
momentum transfer vanish on-shell, so to see this op- 
erator we must either consider three-gluon matrix 
elements or evaluate the operator insertions at non- 
zero momentum transfer. We chose the latter 
alternative. 

Our results are, for pure SU(N) gauge theory 

g2C h g 2 C  a g2C h 

Ya = 6 ( 8 n 2 ) ,  Yb=-- 8~C ' y ¢ = 6 ( 8 n 2 ) ,  (2.9) 

where CA is the Casimir invariant of the adjoint rep- 
resentation of SU (N): 

CAaab~-facdf bed , (2.10) 

with the f~b~ the structure constants of  the group. 
These results are consistent with the general expec- 
tations discussed above, namely y~=y¢ and ya+ 
4yb + ~ = 2fl(g)/g. We also checked the results by 
calculating the y's in the general Fermi-type gauge, 

and finding that they are independent of the gauge 
parameter. 

To include massless fermions, we augment the la- 
grangian (2.1) with the term 

~f= i  ~ ~Tyu Duq/, (2.11) 
,u 

where 

m • a a D u -Ou-lgAut  (2.12) 

and the t a are generators of SU(N)  in the fermion 
representation. The four new operators we must in- 
elude are 

Pl=i~yi  DIY, Pz=-i~itTzDz~l . . . . .  (2.13) 

We define additional mixing coefficients by 

0 
~ e~ = - r ~ e l  - ~o(e2-P3 +P4) 

- -  y f ( 0 1 2  + 0 1 3  + 0 1 4 )  - - ) 'h  ( 0 2 3  "1"024 "] ' -034) , 

(2.14) 

O12= (old terms) --Yk(PI +P2) -- Y~(P3+P4) • /z 

Evaluating the additional graphs of fig. 2 then yields 

g 2  1 4 
z,~= ~ (gCA +~T.) , 

g2C A g2C A 

Yt, = 8 ~ 2  , Yc----- 6 ( 8 1 ~ 2 )  , 

2g2CR 2g2CR 
~)d = 8 ~  2 , ~)e-- 3 ( 8 n 2 )  , 

4g2TR g2CR (2.15) 
y f = - - Y h  = 3(87~2 ) , ~k = --Yl~-- 3 ( 8 7 t 2 )  , 

where TR and CR are the index and Casimir invar- 
iant, respectively, of the fermion representation: 

Trt6ab=tr(tat b) , CR~ij= (t~t~)ij. (2.16) 

Again, we have a sum rule relating our anomalous di- 
mensions to the ordinary fl function: Y~+4?b+7¢= 
2fl(g)/g. Also, there must he four operators with zero 
anomalous dimension, corresponding to the diago- 
nal components of the energy-momentum tensor. 
This last condition provides a highly nontrivial check 
on the calculation, as it corresponds to the vanishing 
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/k 

Fig. 2. 

of the determinant of  the 9 × 9 matrix of  anomalous 
dimensions. 

As another check on the calculation we also com- 
puted the insertions of  the Pu into the Green function 
with two external fermions and one gluon. This 
amounts to considering the pieces of  the counter- 
terms proportional to qT~.Auq/rather than q?yu Ou~. 
The coefficients of these must come out the same, in 
order that they may be assembled into a gauge-invar- 
iant counterterm for OYu DuV. 

3. Applications 

The operators Our appear prominently in lattice 
gauge theory, as the limit, when the lattice spacing is 
small, of the operators 

1 
a2g----- ~ tr ( Uu~ - 1 ) ( U ~  - 1 ) ~ O,~. (3.1) 

Here Uu~ is the Wilson line integral around a pla- 
quette in the/ tv plane, and a 2 is the area enclosed by 
such a plaquette. Similarly, the fermion operators we 

have calculated above are simple objects on the lattice. 
The correlation function between Qu,, at nearby 

points, and possibly with different indices, can be 
calculated using the operator product expansion. The 
leading singularity as x-~0 is of  the form 

(GA(X)GB(O) > ..~ CgAa (X, g;/t) 1 +... (3.2) 

for any of the multiplicatively renormalized combi- 
nations GA appearing in (2.5). Here the dots repre- 
sent higher-dimension operators, and <gaa is a c- 
number function obeying the renormalization group 
equation 

( °  ° ) +f l~g  -YA--YB ~aB(X,g ; / t )=0 .  (3.3) 

Eq. (3.3) may be solved to yield 
/ . . . .  (r°+y°)/2bo 

C~AB().--Ix, g) =~,S I ~ - ~  ) ~Aa(X, g( t )  ) 

(3.4) 

to lowest nontrivial order, where 7g=gZy0A+ .... 
fl= - b o g 3 +  .... t - l n 2 ,  and g( t )  is the running cou- 
pling as usually defined. 

For sufficiently short distances, such that the effec- 
tive coupling becomes small, we may calculate :gga 
approximately using perturbation theory. The corre- 
lation functions of  the operators appearing in (2.5) 
may be obtained from the perturbative results for the 
Our. In lowest order perturbation theory the three 
distinct cases are, e.g., 

( x ~  2 2 ~ 2 "[- X2 - - X  3 - - X 4 )  
< 0 1 2 ( X ) 0 1 2 ( 0 ) >  = 27~4(X2) 6 ' 

2x~x 2 
< O 1 2 ( X ) 0 1 3 ( 0 ) > -  7~4(X2) 6 ' 

< 0~2(x)034(0) > = 0 ,  (3.5) 

where we have neglected &function singularities. 
Combining eqs. (2.6), (3.4), and (3.5) we obtain 
predictions for the correlation functions of  interest. 

Similarly, we find for the fermion operator prod- 
ucts in lowest order perturbation theory 

16 
< Pu(x)P.(O ) > - zt,,(x2)6 [ 2x2ux~ 

_X2XuXvg,uv l 2 2 2 1 2 2 - ~ x  (Xu+X, )+~(x  ) 1; (3.6) 

no summation is implied in this expression. 
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The anisotropic  operators  we have been discussing 
are in principle readily accessible on the lattice, as we 
have stressed before.  However ,  one subtlety ought to 
be ment ioned.  The correlat ion functions (3.5)  and  
(3.6)  vary rapidly  with distance (as 1 /x  s) even in 
free field theory. The interest ing Q C D  modif ica t ions  
of  this behavior  are minor  by comparison;  only pow- 
ers of  logari thms at small  x. Since there is some am- 
biguity concerning the correct  con t inuum interval  x 
to associate with pairs  of  extended operators  such as 
our  plaquet te  operators  on the lattice, an accurate 
compar ison  between the analyt ic  predic t ions  and the 
numerica l  results for the change of  the correlat ion 
function with dis tance would seem to be quite diffi- 
cult. For tunately ,  there is an al ternat ive procedure:  
to compare  the correlat ion functions in a fixed ge- 
ometry, as a function of coupling. The variat ion in this 
case will come only f rom the anomalous  d imens ions  
of  interest,  which thereby become practical ly 
accessible. 

Compar i son  between the analyt ical ly calculated, 
con t inuum correlat ion functions and lat t ice simula-  
t ions clearly is called for. 
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