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Abstract. The purpose of this paper is to introduce and study a new concept of strong
fuzzy real-valued double A- convergence sequences with respect to an Orlicz function. Also,
some properties of the resulting fuzzy real-valued sequence spaces are examined. In addi-
tion, we define the double A-statistical convergence and establish some connections between
the spaces of strong double A-convergence sequence and double A-statistical convergence
sequence.
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1. Introduction and background

After the pioneering work of Zadeh [25], a huge number of research papers have
appeared on fuzzy theory and its applications as well as fuzzy analogues of the
classical theories. Fuzzy set theory is a powerful hand set of modelling uncertainty
and vagueness in various problems arising in the field of science and engineering.
It has a wide range of applications in various fields; population dynamics, chaos
control, computer programming, nonlinear dynamical systems, etc. Fuzzy topology
is one of the most important and useful tools and it proves to be very useful for
dealing with such situations where the use of classical theories breaks down.

Statistical convergence of single sequences of fuzzy numbers was first deduced by
Savas and Nuray [8]. Since the set of all real numbers can be embedded in the set of
fuzzy numbers, statistical convergence in reals can be considered as a special case of
those fuzzy numbers. However, since the set of fuzzy numbers is partially ordered
and does not carry a group structure, most of the results known for the sequences
of real numbers may not be valid in fuzzy setting. Therefore this theory should not
be considered as a trivial extension of what has been known in a real case.

Savas [12] introduced and discussed fuzzy real-valued convergent double sequences
and showed that the set of all fuzzy real-valued convergent double sequences of fuzzy
numbers is complete. The concepts of the double lacunary strongly p-Cesàro summa-
bility and double lacunary statistical convergence of fuzzy real-valued sequences were
studied in [13]. Also, bounded variation double sequence spaces of fuzzy real num-
bers were studied by Tripaty and Dutta in [20].
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In this paper, we introduce and study the concept of strong A-summability with
respect to an Orlicz function. We also examine some properties of this sequence
space.

Before we state our main results, first we shall present some definitions.
Since the theory of fuzzy numbers has been widely studied, it is impossible to

find either a commonly accepted definition or a fixed notion. We therefore begin by
introducing some notions and definitions which will be used throughout.

A fuzzy real number X is a fuzzy set on R , i.e., a mapping X : R → I(= [0, 1]),
associating each real number t with its grade of membership X(t).

The α−cut of fuzzy real number X is denoted by [X]α, 0 < α ≤ 1, where [X]α =
{t ∈ R : X(t) ≥ α}. A fuzzy real number X is said to be upper semi-continuous if
for each ε > 0, X−1([0, a + ε)), for all a ∈ I is open in the usual topology of R.

If there exists t ∈ R such that X(t) = 1, then the fuzzy real number X is called
normal.

A fuzzy number X is said to be convex if X(t) ≥ X(s)∧X(r) = min(X(s), X(r)),
where s < t < r.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I) and throughout the article by a fuzzy real number we mean that
the number belongs to R(I).

The additive identity and multiplicative identity in R(I) are denoted by 0̄ and
1̄, respectively.

Let D be the set of all closed and bounded intervals X = [XL, XR]. Then we
write

X ≤ Y , if and only if XL ≤ Y L and XR ≤ Y R , and

ρ(X,Y ) = max
{|XL − Y L|, |XR − Y R|} .

It is obvious that (D, ρ) is a complete metric space. Now we define the metric
d : R(I)xR(I) → R by

d(X, Y ) = sup
0≤α≤1

ρ([X]α, [Y ]α),

for X, Y ∈ R(I).
Applying the notion of fuzzy real numbers, fuzzy real valued sequences were

introduced and studied by Nanda [7], Nuray and Savas [8], Savas ([12, 13, 14, 16]),
Savas and Patterson ([15]), Tripaty and Dutta ([18, 19]) and Tripaty and Sarma
([22, 23]). A fuzzy double sequence is a double infinite array of fuzzy real numbers.
We denote a fuzzy real-valued double sequence by (Xmn), where Xmn are fuzzy real
numbers for each (m,n) ∈ N× N.

We now give the following definition:

Definition 1. Let A denote a four-dimensional summability method that maps the
complex double sequences x into a double sequence Ax, where the mn-th term of Ax
is as follows:

(Ax)m,n =
∞,∞∑

k,l=1,1

am,n,k,lxk,l.
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A two-dimensional matrix transformation is said to be regular if it maps every
convergent sequence into a convergent sequence with the same limit. In 1926 Robison
presented a four- dimensional analog of regularity for double sequences in which
he added an additional assumption of boundedness. This assumption was made
because a double sequence which is P-convergent is not necessarily bounded. Along
these same lines, Robison [11] and Hamilton [4] presented a Silverman-Toeplitz type
multidimensional characterization of regularity. The definition of the regularity for
four-dimensional matrices will be stated next, followed by the Robison-Hamilton
characterization of the regularity of four-dimensional matrices.

Definition 2. The four-dimensional matrix A is said to be RH-regular if it maps
every bounded P-convergent sequence into a P-convergent sequence with the same
P-limit.

Theorem 1. The four-dimensional matrix A is RH-regular if and only if

RH1: P-limm,n am,n,k,l = 0 for each k and l;

RH2: P-limm,n

∑∞,∞
k,l=1,1 am,n,k,l = 1;

RH3: P-limm,n

∑∞
k=1 |am,n,k,l| = 0 for each l;

RH4: P-limm,n

∑∞
l=1 |am,n,k,l| = 0 for each k;

RH5:
∑∞,∞

k,l=1,1 |am,n,k,l|, is P-convergent

and

RH6: there exist positive numbers A and B such that
∑

k,l>B |am,n,k,l| < A.

Recall in [5] that an Orlicz function M : [0,∞) → [0,∞) is a continuous, convex,
non-decreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and M(x) →
∞ as x →∞.

Subsequently, Orlicz function was used to define sequence spaces by Parashar
and B.Choudhary [9] and others. An Orlicz function M can always be represented
in the following integral form: M(x) =

∫ x

0
p(t)dt, where p is known as a kernel of

M , right differential for t ≥ 0 , p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing and
p(t) →∞ as t →∞.

Let s
′′

denote the set of all double sequences of fuzzy numbers.
We give the following definitions for fuzzy double sequences.

Definition 3 (see [10]). A fuzzy real-valued double sequence X = (Xkl) is said to
be convergent in the Pringsheim’s sense or P -convergent to a fuzzy number X0, if
for every ε > 0 there exists n0 ∈ N such that

d (Xkl, X0) < ε for k, l > n0,

and we denote by P − limX = X0. The fuzzy number X0 is called the Pringsheim
limit of (Xkl).

Let c
′′
(F ) denote the set of all double convergent sequences of fuzzy numbers.

Definition 4 (see [13]). A fuzzy real-valued double sequence X = (Xkl) is bounded
if there exists a positive number M such that d (Xkl, 0̄) < M for all k and l. We
will denote the set of all bounded double sequences by `

′′
∞(F ).
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2. Main results

Definition 5. Let M be an Orlicz function and A = (am,n,k,l) a nonnegative RH-
regular summability matrix method. We now present the following sets of double
sequence spaces:

ω
′′
0 (A,M, p)(F )

=



X ∈ s

′′
: P − lim

m,n

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

= 0, for some ρ > 0



 ,

ω
′′
(A,M, p)(F )

=



X ∈ s

′′
: P − lim

m,n

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

= 0, for some ρ > 0



 ,

and

ω
′′
∞(A, M, p)(F )

=



X ∈ s

′′
: sup

m,n

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

< ∞, for some ρ > 0



 .

Let us consider a few special cases of the above sets.

1. If M(x) = x for all x ∈ [0,∞), then the above classes of sequences are denoted
by ω

′′
0 (A, p)(F ), ω

′′
(A, p)(F ), and ω

′′
∞(A, p)(F ), respectively.

2. If pk,l = 1 for all (k, l) ∈ N ×N , then we denote the above classes of sequences
by ω

′′
0 (A,M)(F ), ω

′′
(A,M)(F ), and ω

′′
∞(A,M)(F ), respectively.

3. If M(x) = x for all x ∈ [0,∞), and pk,l = 1 for all (k, l) ∈ N × N , then we
denote the above spaces by ω

′′
0 (A)(F ), ω

′′
(A)(F ), and ω

′′
∞(A)(F ), respectively.

4. If we take A = (C, 1, 1),i.e., a double Cesàro matrix, we denote the above
classes of sequences by ω

′′
0 (M,p)(F ), ω

′′
(M, p)(F ) and ω

′′
∞(M, p)(F ), respec-

tively.

5. If we take A = (C, 1, 1) and pk,l = 1 for all (k, l) ∈ N ×N , then we denote the
above classes of sequences by ω

′′
0 (M)(F ), and ω

′′
∞(M)(F ), respectively.

6. If we take A = (C, 1, 1),M(x) = x, for all x ∈ [0,∞) and pk,l = 1 for all
(k, l) ∈ N×N , then we denote the above classes of sequences by ω

′′
0 (F ), ω

′′
(F ),

and ω
′′
∞(F ), respectively.

7. Let us consider the following notations and definitions. The double sequence
θr,s = {(kr, ls)} is called double lacunary if there exist two increasing sequences
of integers such that

k0 = 0, hr = kr − kr−1 →∞ as r →∞,
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l0 = 0, hs = ls − ls−1 →∞ as s →∞,

and let h̄r,s = hrhs, θr,s be determined by

Ir,s = {(i, j) : kr−1 < i ≤ kr & ls−1 < j ≤ ls}.

If we take

ar,s,k,l =
{ 1

h̄r,s
, if (k, l) ∈ Ir,s;

0, otherwise.

We write (see [16])

ω
′′
0 (θ, M, p)(F )

=



X ∈ s

′′
: P − lim

r,s

1
h̄r,s

∑

(k,l)∈Ir,s

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

= 0, for some ρ > 0



 ,

ω
′′
(θ, M, p)(F )

=



X ∈ s

′′
: P − lim

r,s

1
h̄r,s

∑

(k,l)∈Ir,s

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

= 0,



 ,

and

ω
′′
∞(θ, M, p)(F )

=



X ∈ s

′′
: sup

r,s

1
h̄r,s

∑

(k,l)∈Ir,s

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

< ∞, for some ρ > 0



 .

As a final illustration let

ai,j,k,l =
{ 1

λ̄i,j
, if k ∈ Ii = [i− λi + 1, i] and l ∈ Lj = [j − λj + 1, j]

0, otherwise

where we shall denote λ̄i,j by λiµj . Let λ = (λi) and µ = (µj) be two non-decreasing
sequences of positive real numbers such that each tends to∞ and λi+1 ≤ λi+1, λ1 =
0 and µj+1 ≤ µj + 1, µ1 = 0. Then our definition reduces to the following

ω
′′
0 (λ̄,M, p)(F )

=



X ∈ s

′′
: P − lim

i,j

1
λ̄i,j

∑

k∈Ii,l∈Ij

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

= 0, for some ρ > 0



 ,

ω
′′
(λ̄,M, p)(F )

=



X ∈ s

′′
: P − lim

i,j

1
λ̄i,j

∑

k∈Ii,l∈Ij

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

= 0, for some ρ > 0



 ,
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and

ω
′′
∞(λ̄,M, p)(F )

=



X ∈ s

′′
: sup

i,j

1
λ̄i,j

∑

k∈Ii,l∈Ij

[
M

(
d(Xk,l, 0̄)

ρ

)]pk,l

< ∞, for some ρ > 0



 ,

which were defined in [14]. Let p = (pk,l) be a sequence of positive real numbers with
0 < pk,l ≤ supk,l pk,l = H and let C = max{1; 2H−1}. Now we give the following
theorem.

Theorem 2. If M is an Orlicz function, then ω
′′
0 (A,M, p)(F ) ⊂ ω

′′
(A,M, p)(F ).

Proof. The proof is easy and therefore omitted.

Theorem 3.

1. If 0 < inf pk,l ≤ pk,l < 1, then

ω
′′
(A,M, p)(F ) ⊂ ω

′′
(A,M)(F )

2. If 1 ≤ pk,l ≤ sup pk,l < ∞, then

ω
′′
(A,M)(F ) ⊂ ω

′′
(A, M, p)(F )

Proof. (1) Let X ∈ ω
′′
(A,M, p)(F ); since 0 < inf pk,l ≤ 1, we have

∞,∞∑

k,l=0,0

am,n,k,lM

(
d(Xk,l, X0)

ρ

)
≤

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

and hence X ∈ ω
′′
(A,M, p)(F ).

(2) Let pk,l ≥ 1 for each (k, l) and supk,l pk,l < ∞. Let X ∈ ω
′′
(A,M)(F ). Then

for each 0 < ε < 1 there exists a positive integer n0 such that
∞,∞∑

k,l=0,0

am,n,k,lM

(
d(Xk,l, X0)

ρ

)
≤ ε < 1

for all m,n ≥ n0. This implies that
∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

≤
∞,∞∑

k,l=0,0

am,n,k,lM

(
d(Xk,l, X0)

ρ

)
.

Thus X ∈ ω
′′
(A,M, p)(F ).

The following corollary follows immediately from the above theorem.

Corollary 1. Let A = (C, 1, 1) be a double Cesàro matrix and let M be an Orlicz
function.

1. If 0 < inf pk,l ≤ pk,l < 1, then ω
′′
(M,p)(F ) ⊂ ω

′′
(M)(F ).

2. If 1 ≤ pk,l ≤ sup pk,l < ∞, then ω
′′
(M)(F ) ⊂ ω

′′
(M, p)(F ).
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3. A-statistical convergence

Natural density was generalized by Freedman and Sember in [3] by replacing C1

with a nonnegative regular summability matrix A = (an,k). Thus, if K is a subset of
N , then the A-density of K is given by δA(K) = limn

∑
k∈K an,k if the limit exists.

A sequence of real number x = (xk) is said to be statistically convergent to the
number L if for every ε > 0

lim
n

1
n
|{k < n : |xk − L| ≥ ε}| = 0,

where by k < n we mean that k = 0, 1, 2, ..., n and the vertical bars indicate the
number of elements in the enclosed set. In this case, we write st1 − limx = L or
xk → L(st1). Statistical convergence is a generalization of the usual notion of con-
vergence for real valued sequences that parallels the usual theory of convergence.
The idea of statistical convergence was first introduced by Fast [2]. Today, statis-
tical convergence has become one of the most active area of research in the field of
summability theory.

Before we present a new definition and the main theorems, we shall state a few
known results. The following definition was presented by Nuray and Savaş [8] for a
single sequence of fuzzy numbers. A sequence X is said to be statistically convergent
to X0 or st1-convergent to X0, if for every ε > 0

lim
n

1
n

∣∣∣{k < n : d(Xk, X0) ≥ ε}
∣∣∣ = 0,

where the vertical bars indicate the numbers of elements in the enclosed set. In this
case, we write s− limX = X0 or Xk → X0(st1).

Let K ⊂ N × N be a two-dimensional set of positive integers and let K(m,n)
denote the numbers of (k, l) in K such that k ≤ m and l ≤ n. The two-dimensional
analogues of natural density can be defined as follows: The lower asymptotic density
of a set K ⊂ N× N is defined as

δ2
∗(K) = lim inf

m,n

K(m,n)
mn

.

In case the double sequence K(m,n)
mn has a limit in the Pringsheim sense, we say

that K has a double natural density defined as

P − lim
m,n

K(m, n)
mn

= δ2(K).

Let K ⊂ N×N be a two-dimensional set of positive integers. Then the A-density
of K is given by

δ2
A(K) = P − lim

m,n

∑

(k,l)∈K

am,n,k,l

provided the limit exists.
Savas and Mursaleen [17] have recently introduced statistical convergence for a

fuzzy real-valued double sequence as follows:
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Definition 6. A fuzzy real-valued double sequence X = (Xkl) is said to be statisti-
cally convergent to X0 provided for each ε > 0

P − lim
m,n

1
nm

|{(k, l); k ≤ m and l ≤ n : d(Xkl, X0) ≥ ε}| = 0.

In this case, we write st2 − limk,l Xk,l = X0 and denote the set of all double
statistically convergent fuzzy real-valued double sequences by st2(F ).
We now have

Definition 7. A fuzzy real-valued double sequence X is said to be A-statistically
convergent to L if for every positive ε

δ2
A ({(k, l) : d(Xk,l, X0) ≥ ε}) = 0.

In this case, we write Xk,l → X0(st2(A)(F )) or st2(A)(F )− lim X = X0 and

st2(A)(F ) = {X : ∃X0 ∈ R(I), st2(A)(F )− limX = X0}.

If A = (C, 1, 1) then (st2(A)(F ) reduces to (st2)(F ), which is defined above.
If we take

ar,s,k,l =
{ 1

h̄r,s
, if k ∈ Ir = (kr−1, kr] and l ∈ Ls = (ls−1, ls]

0, otherwise ,

where the double sequence θr,s = {(kr, ls)} and h̄r,s are defined above. Then our
definition reduces to the following: A fuzzy real-valued double sequence X is said to
be lacunary θ-statistically convergent to X0, if for every positive ε > 0

P − lim
r,s

1
h̄r,s

|{(k, l) ∈ Ir,s : d(Xk,l, X0) ≥ ε}| = 0,

which was defined in [13].
Finally, if we write

ai,j,k,l =
{ 1

λ̄i,j
, if k ∈ Ii = [i− λi + 1, i] and l ∈ Lj = [j − λj + 1, j];

0, otherwise .

Let λ = (λi) and µ = (µj) be defined as above. A fuzzy real-valued double sequence
X is said to be λ̄-statistically convergent to X0, if for every positive ε > 0

P − lim
i,j

1
λ̄i,j

|{k ∈ Ii and l ∈ Lj : d(Xk,l, X0) ≥ ε}| = 0,

which was defined in [14].

Theorem 4. If M is an Orlicz function and supk,l pk,l = H, then ω
′′
(A, M, p)(F ) ⊂

st2(A)(F ).
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Proof. If X ∈ ω
′′
(A,M, p)(F ), then there exists ρ > 0 such that

P − lim
m,n

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

= 0.

Then, we obtain for a given ε > 0 and ε1 = ε
ρ that

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

=
∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

+
∞,∞∑

k,l=0,0;d(Xk,l,X0)<ε

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

≥
∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

≥
∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l min{[M(ε1)]
h

, [M(ε1)]H}

≥
(
min

{
[M(ε1)]

h
, [M(ε1)]

H
}) ∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l

≥ min{[M(ε1)]
h

, [M(ε1)]H}δ2
A ({(k, l) : d(Xk,l, X0) ≥ ε}) .

Hence X ∈ st2(A)(F ).

Theorem 5. Let M be an Orlicz function and X = (Xkl) a fuzzy real-valued bounded
sequence and 0 < h = infk,l pk,l ≤ pk,l ≤ supk,l pk,l = H < ∞, then st2(A)(F ) ⊂
ω
′′
(A,M, p)(F ).

Proof. Suppose that X ∈ l
′′
∞(F ) and Xk,l → X0(st2(A))(F ). Since X ∈ l

′′
∞(F ),

there is a constant K > 0 such that d(Xk,l, 0̄) < K for all k, l . Given ε > 0 we have

∞,∞∑

k,l=0,0

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

=
∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l

+
∞,∞∑

k,l=0,0;d(Xk,l,X0)<ε

am,n,k,l

[
M

(
d(Xk,l, X0)

ρ

)]pk,l
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≤
∞,∞∑

k,l=0,0;d(Xk,l,X0)≥ε

am,n,k,l max

{[
M

(
K

ρ

)]h

,

[
M

(
K

ρ

)]H
}

+
∞,∞∑

k,l=0,0;d(Xk,l,X0)<ε

am,n,k,l

[
M

(
ε

ρ

)]pk,l

≤ δ2
A ({(k, l) : d(Xk,l, X0) ≥ ε})max

{
[M(T )]h , [M(T )]H

}

+max

{[
M

(
ε

ρ

)]h

,

[
M

(
ε

ρ

)]H
}

,
K

ρ
= T.

Thus X ∈ ω
′′
(A,M, p)(F ).
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[14] E. Savaş, λ̄-double sequence spaces of fuzzy real numbers defined by Orlicz function,

Math. Commun. 14(2009), 287–297.
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