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Abstract:

Discrete cosine transform pcT-1, unlike bcT-11, does not concentrate the energy
of a transformed vector sufficiently well, so it is not used practically for the purpos-
es of digital image compression. By performing regular normalization of the basic
cosine transform matrix, we obtain a discrete cosine transform which has the same
cosine basis as DCT-I, coincides as DCT-1 with its own inverse transform, but un-
like pcT-1, it does not reduce the proper ability of cosine transform to the energy
concentration. In this paper we consider briefly the properties of this transform, its
possible integer implementation for the case of 8x8-matrix, its applications to the
image itself and to the preliminary RGB colour space transformations, furthermore
we investigate some models of quantization, perform an experiment for the estima-
tion of the level of digital images compression and the quality achieved by use of
this transform. This experiment shows that the transform can be sufficiently effec-
tive for practical use, but the question of its comparative effectiveness with respect
to DCT-II remains open.
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1. Introduction

There exists a well known kind of linear ma-
trix transforms called discrete cosine transforms
(pcT) which is widely used in the field of digital
signal processing and for lossy compression of
halftone images in particular. The bcTs were in-
troduced for the first time in (Ahmed et al, 1974).
There were introduced the pcTs of four forms
depending on the cosine basis used. Second va-
riety of these pcTs, known as bcT-11, with func-
tional basis of the form cos(k(27 + 1)n/2(N +1)) ,
k,n=0,...,N, is used most often. First variation,
called pcT-1, which operates with common co-
sine basis cos(knnt/N), k,n=0,...,N, is not used
commonly for the purposes noted above. This
takes place in view of weak concentration of en-
ergy in the first component of transformed vec-
tor by the DcT-1 versus the pcT-11 (see discus-
sion for some transforms energy concentration
property in (Salomon, 2001). For instance, the
vector of eight repeating values (23,23,...,23)
results in the vector (65.054,0,0,0,0,0,0,0) by
means of DCT-11 and in the vector (64.453,0,
5.092,0,5.092,0,5.092,0) by means of pCT-1.
In the first case we can see that all components
except the first one became zeroes, whereas in
the second case yet 3 of the components are a
nonzero. However, we can also observe that the
approximations of a function given in points

f(©)=...= f(7)=23both

f@) =2?’=0aj cos(jtrc/N)’ @

and

0= oa; cos(j(2t +Dm/2(N +1)) (2)

lead to one vector of the coefficients: (a,, a; ,...,
a;)=(23,0,0,0,0,0,0,0). This shows that the
proper cosine transforms of both forms do not
differ with respect to concentration of energy in
the first component.

Now we have to consider the pct-1 in par-
ticular in order to know why its properties are

' Since the matrices of both transforms are orthogonal, their
original and resulting vectors satisfy the equality
<x,x>=<y,y> . Therefore we can check the result of calcu-
lation: 8-3 2 =6 .054% = 6 4532 +3.5.0922

so essentially different from those of cosine ap-
proximation of the form (1). The matrix of DCT-
I is defined by the formula (see Britanak et al,
2007), e.g.

2-8,,-0
b/ N 3 NN ©)
14+3,0+0,
k,n=0,...,N,
where 0, ; ={l when i=j and 0 otherwisej},

This definition can be rewritten in the matrix
form as

Cc=+2N 'BsSB

where S= [S, ], S, ,=cos(knn/N), k,n=0,...,N,
- cosine matrix, B = diag(l,\/E,...,\/E,l) - diagonal
(N+1)x(N+1) matrix. If we denote the outcome
of pcT-1 for some vector x as c(x) : ¢(x)=Cx
and, respectively, the outcome of cosine trans-
form of x into the coefficients a, j/=0,...,N by co-
sines in (1) as s(x) : s(x)=S"'x, then, since C=C"!
(the matrix C is orthogonal and symmetrical),
we will have the following:

c(x)=Cx=C""x=+2N(BSB) 'x =
=\2NB'ST'B'x=42NB's(B7'x).

Multiplication of s(.) by ,/2x B! in the right
part of the last equation does not change the
properties of cosine transform s(.) since this
action only scales the ¢(.) outcome components.
These properties are changing, as we can see in
the last expression, owing to the multiplication
of the original vector x by B’ inside parenthe-
ses under s(.), which clearly distorts the propor-
tions of the vector x components before the ap-
plication of the cosine transform s(.) to it.

2. Basic cosine transform

Hereinafter we consider the transform s(.)
in details. Let f be a function given by its tabu-
lated values f), f,...., f, at the equidistant points
0,...,N.
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i-m i~ i~
. =cycos| 0-—— |+¢ cos| 1-— |+...+cycos| N-—
fimeo ( NJ ' ( NJ N [ NJ

. N 7
1.€. fl :Zm:OCm COS[W! : N j

For finding k-th coefficient ¢, we multiply both
parts of this equation by

cos [k . ﬂ)
N N

or, in compact form,:

T i-T
/i cos(k —j =N en cos[m Wj os(k-wj'

Now we sum the values of every part this equal-
ity over i=0,...,(2N-1), i.e. over

im

(ZN—l)'TE:

0-m 1
N NN N
2207 cos( Tj DI AN cos[m Tnjcos(k %]:

N 2N-1 im im
=2=0CmEiz0 cos(m 7] cos(k 7)

Let the sum 0 COS[’” Wn Jcos[k *j be
denoted, for the sake of simplicity, by a, . ltis
well known that a, = o, = 2N, a, = a,,=...=

=a,,v,=N ,and o, = 0when m#k, (forN
e.g., the matrix A= [a Jis

0
0
3
0

AN O o O

6 0
0 3
00
00

Hence

D cos(k 7] 0C O = COL g,
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from whence

_ i
Zf:% 1fi cos (k Tj

Oy k

Ck=

Since cos(km+x) = cos(kz+x), then

cos [k-i(NH‘).n]: 0S (k-i(N_t).ﬂ:}
N N

By supposing f, ., = ., (see draft at the Fig-
ure 1), what is necessarily in view of the cosine
evenness, we get finally

Cr =

fo+2-2N cos(k-%j-kf]\, -cos(k-n)

Ok

for2- 25, cos(k-%jw (=D

g k

Let the coefficient by f; in the expression for
c, be denoted by 7, , . As we can see, these coef-
ﬁc1ents are deﬁned by the expressions:
1 i 1

10,0 =570, =102 = =ToNn-1 = 5Ton =

N : N 2N
7 —L {r —lcos k<—i‘n i=1..,N-1},n —7(71)’( (4)
k0 N’ ki N N R >k N N
1 (G (GO
=, =1, N-1}, =
N0 N v N ! $or N N

and the cosine transform s() matrix is
S=[r_ 1.

It is easy to see that an analogue of Parseval
equality for the cosine transform s(.) is the iden-

tity
ol +25M 2y £ = NQey + 2N e, 2 +2¢, )

Indeed, on the one hand,

RN
_EZN '[Z cos[n %J EN —0Cm cos(m % 1=
EZN ][Z OZm 0CuC cos[w%jcos(m-%}]:
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- T T
=ZnNzoE,’XZOcncmZ,-2:1}; 'cos| n-— |cos| m-— |=
N N

_sN sN _ 2 wN-1 2 2
=202 m=0CnCmOym = NQ2cy" +Z,.¢c,” +2¢cy ),

n“m>n,m

and, on the other hand,

2N-1 2 2 N-l 42 2
Lo S =00 2 T+ Sy

O Q,
O 14 @
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~
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ol
4
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~
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Figure I. The graph illustrating relative location of the
points of function for N=3.

3. Regular normalization of basic
cosine transform s(x)

If we denote the cosine matrix as § = [S,.)>

Sy =c0s(k-ﬂ}
’ N

then the matrix S/ of coefficients r,, will be de-
fined, as we can see directly from (4), by the ma-
trix expression

S =(2N)"'B?SB* =DSD,

where D=+2N B2 Multiplying both left and
right parts of the last equation by S from left we
get [=SDSD. This means SD=(SD) . Now, let
the transform V’=SD applied to x be denoted by
v(x). Then

v(x)=SDx=(SD) 'x=D"'S"'x=D""s(x),

and we see from this that v(x) unlike c(x) does
not distort the proportions of the components

286.058 = V742 - 23

of x before an application of the basic cosine
transform s(.). So, the applying of v(x) on the
data vector mentioned above will result in
(86.058,0,0,0,0,0,0,0)>.

It is easy to see that for v(x) an analogue of
Parseval equation is the equation:

yo2 +222V:}1y,,2 +yN2 = x02 +2E,11V:]1x,12 +xN2)

where x,y are original and transformed vec-
tors. The matrix ¥ of transform v(x), as well as
the matrix C of DCT-1, coincides with its own
inverse matrix V- (the sets of its rows and col-
umns are biorthogonal ones). However, unlike
C itis both not symmetrical and not orthogonal.
The elements of V are defined by the following
formula (compare it with (3)):

2-8,0-9%,n knm
———.cos | —
146,46,y

(s)
kn=0,...N

Since V=V, V=TAT'=(TAT")"'=TA'T",
where A is diagonal matrix of eigenvalues of V.
Hence, A=A -/, what means, since A is diagonal,
that absolute value of any of eigenvalues of V'is
equal to unit: 4 =+/, i=0,...,N. It is well known
that the outcome of anylinear transform ¥ of nor-
mally distributed random vector x is distributed
normally with a mean Vi and covariance matrix
VEVT, where u=E(x) and X=cov(x) are a vector
of the means and covariance matrix of x, respec-
tively. The transform J defined by (5) does not
change covariance of x when its components are
not correlated and cov(x)=X, =diag(2,1,...,1,2).
In this case VZ V=X,

4. Application of regular bcT to
digital images representation

4.1. REGULAR DCT IMPLEMENTATION

For N=7 the matrix ¥ in numbers is:
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[0.267 0.535 0.535 0.535 0.535 0.535 0.535 0.267]
0.267 0.482 0333 0.119 -0.119-0.333 -0.482 -0.267
0.267 0333 -0.119-0.482-0.482-0.119 0.333 0.267
0.267 0.119 -0.482-0.333 0.333 0.482 -0.119-0.267
0.267 -0.119-0.482 0333 0.333 -0.482-0.119 0.267
0.267 -0.333-0.119 0.482 -0.482 0.119 0.333 -0.267
0.267 -0.482 0333 -0.119-0.119 0.333 -0.482 0.267
| 0.267 -0.535 0.535 -0.535 0.535 -0.535 0.535 -0.267|

Following C++ code illustrates a simplest inte-
ger algorithm for v(x) with it:

#define SCALE
//const LONG
cO=roundoff ((sqrt(2.0)/
sqrt (N) ) *SCALE) ;

#define cO0 2189

(1<<12)

//const LONG cl=roundoff ((1.0/
sqgrt (2*N) ) *SCALE) ;
#define cl1 1095

//const LONG
c2=roundoff ((sqrt (2.0) *cos (M _PI/N)/
sqrt (N) ) *SCALE) ;

#define c2 1973

//const LONG c3=roundoff ((sqrt(2.0)
*COS(3.O*M7PI/N)/Sqrt(N))*SCALE);
#define c3 487

//const LONG cd4=roundoff ((sqgrt(2.0)
*COS(Z.O*MﬁPI/N)/Sqrt(N))*SCALE);
#define c4 1365

inline void pct (LONG &x0, LONG &x1,
LONG &x2, LONG &x3, LONG &x4, LONG
&x5, LONG &x6, LONG &x7)

{

register LONG clp07=cl* (x0+x7) ;
register LONG clm07=cl* (x0-x7);

register LONG pl6=x1+x6;
register LONG ml6=x1-x6;

register LONG p25=x2+x5;
register LONG m25=x2-x5;

..., ACTA GRAPHICA 22(2011)1-2, 1-10

register LONG p34=x3+x4;
register LONG m34=x3-x4;

x0=clp07+cO0* (pl6+p25+p34) ;

x1=cIm074+c2*ml6+c4*m25+c3*m34;
x2=clp07+c4*pl6-c3*p25-c2*p34;
x3=cIlm07+c3*ml6-c2*m25-c4*m34;
x4=clp07-c3*pl6-c2*p25+c4*p34;
x5=cIm07-c4*ml6-c3*m25+c2*m34;
x6=clp07-c2*pl6+cd*p25-c3*p34;
x7=c1lm07+c0* (-m16+m25-m34) ;

This algorithm used for bcT transforms some
colours of 8-bytes sequence of pixels. After each
run of DCT its outcome has to be renormalized
by means of dividing by SCALE (in this case it is
equal to 2'2=4096) and then rounded off.

General algorithm used for the representa-
tion of an image in compressed form is the fol-
lowing:

1. Every pixel of image is subjected to RGB col-
our space transform.

2. The entire image is separated on the blocks
of 8x8 pixels and each of these blocks is suc-
cessively subjected to regular pct for each
of 3 components new colour space.

3. All transformed pixel values obtained in the
previous step are quantized and saved into
the outer file in the compressed form (all
(0,0) - block elements are subjected to dif-
ferent transform since their absolute values
are usually significantly greater than oth-
ers).

In order to end the compression on the lat-
ter step any compression algorithm can be used.
However order-o locally adaptive schemes are
more preferable. We used the so-called para-
metrically adaptive coding (pac) described
in detail in (Gadzhiev, 2001). The PAC-coder is
simple order-o coder, which uses move-to-front
transform (MTF), outcome of which is then en-
coded by the pac-algorithm.
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Further on, we will describe in detail our ap-
proaches to RGB colour space transform and
quantization.

7.2. RGB COLOUR SPACE TRANSFORM

For preliminary RGB colour space transform
we propose the use of the same regular pcT
with N=2, normalized by means of dividing by
V24N =2. New colour space consists of three
components, first of which is an intensity com-
ponent and two others are mixed colour compo-
nents (we denote their by Y,C1,C2, respectively).
The matrix V", of the transform of RGB vector
into YC1Cz2 is

0.25 0.5 025
025 0 -0.25
0.25 -0.5 0.25

V3=

and the matrix of inverse transform (YC1C2 into
RGB) is

The latter transform can be realized very effec-
tively and that is its biggest advantage.

2.3. QUANTIZATION MODELLING

The simplest expression of the form Quanti-
zation of the outcome of v(x) can be done by a
simple expression of the form

c(i+d)(j+d) (6)

where i, j are coordinates of pixel inside of
a block, ¢ and d are constants which control
both the achieved compression level and the
image quality. Reasonable quality for illustra-
tive images inside a text can be achieved with
c=1,1<d<3forY and 3<d<9 for Cb and Cr
components of YCbCr colour space. However,
we can get significantly better results with use

of the following approach for the quantization
modelling.

It is obvious that correct quantization does
not break any of the properties of used trans-
form, and the property to concentrate the en-
ergy of data in first component of transformed
vector in particular. Therefore, it is allowable for
the quantization of each i-th component of the
DCT outcome by the coefficient ¢, to use instead
of V the matrix of the form diag(q)V , where ¢
is some number vector. For two-dimensional
transform we use two stage processing. On the
first stage set of the block’s row is transformed,
and on the second stage the columns of coef-
ficients obtained by the first step transform are
also subjected to such a transform. This process
is equivalent to the transform VDV for square
data block D. Suppose that the first stage quan-
tization vector is 7 and on the second stage it is
g. Then full processing is described by the ex-
pression diag(q)V(diag(r)VD ™) T that is equiv-
alent to the expression diag(q)VDV "diag(r).
If we denote elementwise product of some
matrices 4, B by AxB ((4 XB);,,':A,;] B[.J_) then
diag(q) VDV diag(r)=VDV TxQ, where Q=qrT
square quantization matrix. (Indeed, for any matrix
product AB we have AB*xQ=(diag(q)-A) (diag(r)-B)
since if 4B = C then C;; =%, 4;,B, ; and, re-
spectively,  C;;0,; =C, ;q;7; = 4,72 43 By j =
=%,(q;4; . )(r; By ;). That is any correct quanti-
zation table O can be expressed as gr’, where
r and ¢ are the quantization vectors for the
first and second stages of the transform proc-
ess, respectively. In the case of (6) g=r, where
g =r" =Vl +d). Generally, having denoted
for the sake of simplicity the vector of reciprocals
by the prime symbol, u'=(u[1), we can model
any monotone quantization’s dependence by the
expression of the form «', = d(i +1)” + k. Respec-
tively, ', =d, (i +)?* +kyand ¢'; =d, (i + )P + K,
In the terms of ' =min;@')=u',
U e =max; (u';)=u'y we have u'y=d+k and
u'y=dN+1)? +k=d(N+1)? +u'y—d =

=d(N+D)? =D +u'y
dv=d'o 4 —_ "N

Henced, = ydp =————
(N+D)P -1 (N+1)? -1

and k, =q'y—d,, k, =r'y—d,.
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For example, if we take p =1 4 i:«/TQ
dy =5, p, =3, ¢ =415, ¢ =70 then,

d=0.143, k,=3.857,
g7 =[4 4143 4286 4.429 4571 4714 4857 5]

d,=0.129, k =3.744,
T =[3.873 4.779 7.238 12.026 19919 31.696 48.1370 ]

and rounded off quantization matrix is

[15 19 29 48 80 127 193 280
16 20 30 50 83 131 199 290
17 20 31 52 85 136 206 300

7 |17 21 32 53 88 140 213 310 &)
18 22 33 55 91 145 220 320
18 23 34 57 94 149 227 330
19 23 35 58 97 154 234 340

| 19 24 36 60 100 158 241 350 |

Diagonal elements alteration trend of this
quantization matrix illustrated on figure 2.

d,=-100.55, k,=105.55,
r'T:[S 3445 47497 55275 60.582 645 67.54 70

[25 172 237 276 303 323 338 350]
29 197 271 316 346 369 386 400
32 221 305 355 389 415 434 450
| 36 246 339 395 433 461 482 500
" 7139 271 373 434 476 507 531 550 (8)
43 295 407 474 519 553 579 600
46 320 441 513 563 599 627 650
| 50 345 475 553 606 645 675 700

1000 I

(q' ~r'T>i’i 500 [— ]

0 5 10
i

400 I

. ,T) L _
(q /4 200

0 5 10
i

Figure 2. The elements alteration trend of quantization
matrix (7)

We use this matrix for quantization of Y-
component of YC1C2 color space. For C1and C2
components we use just the same approach with
the parametersp, :=1,q'):=4/25,¢ :=10p, :=-0.5
r =25 1y =70, for C1 and P =1 g =449,
qy = 15:p, i=-0.5 1 =449, 1) =25 for Ca.

For C1 quantization we get results as follows:

d,=0.714, k=4.286,

q'T=[5 5.714 6.429 7.143 7.857 8.571 9.286 10]

Figure 3. elements alteration trend of quantization
matrix (8) for Cl

For C2 quantization we get results as follows:
d,=1.143, k =5.857,

ql =[7 8.143 9286 10429 11571 12714 13857 15]

d,=-27.845, k,=34.845,

PT=[7 15155 18768 20922 22392 23477 2432 25]

49 106 131 146 157 164 170 175

57 123 153 170 182 191 198 204

65 141 174 194 208 218 226 232
73 158 196 218 234 245 254 261

q'-r'T: (9)
81 175 217 242 259 272 281 289

89 193 239 266 285 298 309 318

97 210 260 290 310 325 337 346

| 105 227 282 314 336 352 365 375 ]
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400

(q7) (200 —

0 5 10
i

Figure 4. elements alteration trend of quantization
matrix (8) for C2

Figure 5. Regular DCT quantized
with QFactor=0.5 image (PSNR=
34.52 dB, H0=0.504503 b/s,
PACLength= 37 192 byte,
Ratio=0.0473)

Figure 7. Regular DCT quantized
with QFactor=2.0 image (PSNR=
30.85 dB, HO=0.193717 b/s,
PACLength = |3 096 byte, Ra-
tio=0.0167)

| ]

Figure 9. Original image file 4.2.04.
bmp (H0=7.75066 b/s,
Length = 786 486 byte)

7.4. EXPERIMENTAL RESULTS

For the experiments we used Miscellaneous
Test Images database obtained from the web-
site of s1p1 (Signal and Image Processing Insti-
tute, University of Southern California) by the
reference http://sipi.usc.edu/database/misc.zip.
This zip-file (size 12.4 MB) consists of 44 images,
16 colour and 28 monochrome.

We show the results of the RGB colour space
transform described above and the quantization
approach to one of the test images for which the

quantization distortions are usually clearly vis-
ible.

Figure 6. Regular DCT quantized
with QFactor=1.0 image (PSNR=
32.69 dB, HO=0.315169 b/s,
PACLength = 22 362 byte,
Ratio=0.0284)

Figure 8. Regular DCT quantized
with QFactor=3.0 image (PSNR=
29.80 dB, HO=0.148427 b/s,
PACLength = 9 910 byte, Ra-
tio=0.0126)
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The QFactor is here the quantization factor,
i.e. the factor of matrices (7),(8),(9), which al-
lows to control the compression level (and the
image quality respectively); PSNR is the Peak
Signal-to-Noise Ratio for the Y-component of
YCbCr colour space calculated by the formula,
where is the number of pixels in the compared
files, and - the values of Y-component for the
couple of pixels with coordinates from these
two files; is order-o binary entropy of the file
before compressing (if the file is compressed)
expressed in the bits per symbol units (b/s)
which is calculated by the formula , where is the
number of bytes in the file that are equal to and
is the length of the file in bytes; “pacLength” is
the length of compressed pac-file and “Ratio”
is the compression ratio calculated as the ratio
between compressed and original file lengths in

bytes.

Within the framework of this experiment we
have also done a comparison between regular
pcT described here on one hand and the JPEG
image compression on the other. For this pur-
pose we saved each image from test archive as
24-bits colour BMP file with help of standard
Windows utility MSPAINT.EXE (version 5.1,
build 2600.xpsp1). Then we had been open-
ing successively each of these BMP files in the
MSPAINT and then saving it as JPEG. Besides
this we transformed these BMP files by means
of described in this paper algorithm with quan-
tization factor QFactor=1.0 into compressed
PAC files. In the table 1 below we show the re-
sults of this experiment.

All pac images from together with pac-coder
and the programs for execution used are avail-
able on-line at http://spritesoft.narod.ru/dctrt-
est/misc.zip. (1.23 Mb).

As a conclusion to this part of the presenta-
tion we will show one more image from another
test image database (resided at the WEB-site
http://testimages.tecnick.com), for the purpose
to demonstrate what kind of visual image quali-
ty is obtained by means of approaches described
above when a good-quality original photo is
used (see Fig. 10 below).

Figure 7. Test image Res_OR_1200x1200_062.bmp
(BMPLength= 4 320 054 byte, HO=7.90837),
regular bcT representation with QFactor=1
(PSNRY= 29.22 dB, HO= 0.595859, pac-
Length=227 496 bytes, Compression Ratio=0.0527).

Table |. Comparison of the average values for image database compresed with Reqular DCT and JPEG .

Regular DCT JPEG
BMP PAC compressed compressed
24-bit original
file size PSNRfor the  |pEG file PSNR for the
(bytes) PAC file size Compression Y-component i o (bytes) Compression Y-component
(bytes) ratio of YcbCr color ratio of YcbCr color
space (dB) space (dB)
155126 35966 0,0343 31,86 60365 0,05635 36,20
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4. Conclusion

In this paper we introduced a discrete form
of cosine transform which uses the simplest
cosine basis, however, unlike DCT-1, it remains
applicable for compression. The matrix of this
transform has less complicated numerical struc-
ture than the DcT-11, and at the same time, rea-
sonable compression level and representation
quality are obtained when simple regularized
expressions for the quantization are used. For
lossy compression of digital images this trans-
form is certainly more preferable than pcT-1,
but the question of its effectiveness in compari-
son with DcT-11 is open.
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