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Aim To perform a genetic characterization of 7 skeletons 
from medieval age found in a burial site in the Aragonese 
Pyrenees.

Methods Allele frequencies of autosomal short tandem 
repeats (STR) loci were determined by 3 different STR sys-
tems. Mitochondrial DNA (mtDNA) and Y-chromosome 
haplogroups were determined by sequencing of the hy-
pervariable segment 1 of mtDNA and typing of phyloge-
netic Y chromosome single nucleotide polymorphisms (Y-
SNP) markers, respectively. Possible familial relationships 
were also investigated.

Results Complete or partial STR profiles were obtained in 
3 of the 7 samples. Mitochondrial DNA haplogroup was 
determined in 6 samples, with 5 of them correspond-
ing to the haplogroup H and 1 to the haplogroup U5a. Y-
chromosome haplogroup was determined in 2 samples, 
corresponding to the haplogroup R. In one of them, the 
sub-branch R1b1b2 was determined. mtDNA sequences 
indicated that some of the individuals could be maternally 
related, while STR profiles indicated no direct family rela-
tionships.

Conclusions Despite the antiquity of the samples and 
great difficulty that genetic analyses entail, the combined 
use of autosomal STR markers, Y-chromosome informative 
SNPs, and mtDNA sequences allowed us to genotype a 
group of skeletons from the medieval age.
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The spectrum of disciplines that have the ability to detect 
and analyze ancient molecules has increased substantially 
and contributed to the capabilities of palaeobiology and 
genetic anthropology. The parts of human remains that are 
best preserved after a long period of time are bones and 
teeth, which are most frequently used for molecular analy-
ses. Immediately after death and in the transition from a 
living organism to a fossil, some changes occur to the ca-
daver and its circumstances (taphonomic processes) and 
others take place inside the bone (diagenetic processes). 
The type and extent of diagenetic processes are influenced 
by several factors (1,2) and it has been stated that at burial 
all bones have similar diagenetic parameters, but when the 
bones are recovered these values may widely differ (1). A 
single parameter or combination of parameters that better 
predicts the degree of preservation of DNA molecules has 
long been sought for. Much attention has been paid to the 
preservation of protein in bone, mainly collagen, which is 
the most abundant protein in bony tissues; but there is no 
consensus on the possible relation of collagen with the 
DNA yield (3-7).

Autosomal short tandem repeats (STR) are forensically rel-
evant genetic markers that offer the highest discrimina-
tion power and thus are the first choice for genetic identi-
fication in forensic case work. However, when it comes to 
ancient samples problems such as degradation, low copy 
number, and inhibition (8) very often preclude the analysis 
of relatively large fragments of nuclear DNA. Therefore, for 
analyzing degraded DNA, a more successful method has 
been mtDNA typing, due to its high copy number (1000-
10 000 copies) per cell. Although autosomal STR typing is 
still not comparable to mtDNA typing, with the advent 
of highly robust commercial kits using a mini-STR format 
(9,10) it has become more effective than ever and is a valu-
able tool for molecular anthropology, archeology, and fo-
rensic genetics.

The aim of this study was to genetically characterize 7 
skeletons found in a medieval burial site in the Aragonese 
Pyrenees, as well as to assess the performance of the cur-
rently available autosomal STR systems to genotype diffi-
cult samples.

MaTeRialS aNd MeThodS

Samples

In a medieval burial site located in the Aragonese Pyre-
nees (northern Spain, latitude: 0°40’W; longitude: 42°30’N), 

7 morphologically well preserved skeletons were discov-
ered in 1985. They were buried in stone and the adjacent 
graves were arranged in the same layer and under similar 
burial conditions. There were no historical or archeological 
records to infer the origin of this group. The anthropologi-
cal analysis revealed that all 7 were male. Two of them were 
around 17 years old and the rest were adults between 30 
and 70 years old.

Sampling for genetic analyses was performed preferential-
ly from the femora, although ribs were chosen from indi-
viduals that had the poorest state of general preservation 
as assessed macroscopically. Adjacent samples were taken 
for 14C dating.

Radiocarbon dating (14C dating)

Radiocarbon dating was carried out at the Oxford Radio-
carbon Accelerator Unit (ORAU, RLAHA, University of Ox-
ford, Oxford, UK). Chemical pre-treatment, target prepa-
ration, and accelerator mass spectrometry measurement 
were performed according to Ramsey et al (11-13). Calibra-
tion was performed using the IntCal04 data set (14).

dNa analyses

Prevention of contamination. In order to minimize con-
tamination by exogenous DNA, some of the generally ac-
cepted guidelines for aDNA studies were followed (15). 
Anthropologists and laboratory staff were genotyped and 
their profiles were compared with those of the samples. 
All laboratory staff were women. Appropriate laboratory 
clothing was used by all the analysts. All procedures were 
carried out under maximum sterile conditions in a dedi-
cated laboratory with separated areas for specimen han-
dling, pre-polymerase chain reaction (PCR), and post-PCR 
analyses. DNA-free certified reagents were used, and mate-
rials and solutions were properly decontaminated (UV ex-
posure/autoclaving). All working surfaces were frequently 
treated with commercial bleach. Multiple reagent blanks 
and negative control reactions were performed with all 
amplifications. Bone extraction was performed in two in-
dependent laboratories using different methods. More-
over, a minimum of 3 amplifications were carried out from 
different extracts of the same sample to increase the con-
fidence in the results.

DNA extraction and quantification. Before sampling and 
in order to eliminate surface contamination, a 1-2-mm 
layer of the outer surface of the bones was removed 
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by sanding, and transversal hemi-sections were cut with a 
diamond disc attached to a hand drill. Afterwards the sam-
ples were thoroughly cleaned (with successive washes of 
10% sodium hypochlorite, ethanol, and sterile water), and 
pulverized under liquid nitrogen in a freezer mill. Samples 
were prepared and extracted individually.

Bone powder (up to 500 mg) was demineralized overnight 
using 0.5 M EDTA. After centrifugation, DNA from the su-
pernatant was extracted by two silica-based methods: ei-
ther the one described by Rohland and Hofreiter (16) with 
minor modifications (17) or by large volume columns de-
scribed by Turnbough et al (18). At least 3 independent 
DNA extracts were performed. Mock extractions were 
carried out along with bone samples for each method to 
monitor contamination.

The quantity of the extracted DNA was determined by real 
time PCR kit Quantifiler® Human DNA Quantification Kit 
(Applied Biosystems, Foster City, CA, USA). The kit includes 
an internal PCR control to monitor inhibition of the PCR.

Autosomal STR analysis. Autosomal STR loci were studied 
using AmpFiSTR Identifiler® Plus PCR Amplification Kit (Ap-
plied Biosystems). In addition, 2 samples that yielded com-
plete profiles were also analyzed with AmpFiSTR® NGM PCR 
Amplification Kit (Applied Biosystems). Mini-STR loci were 
typed using the AmpFiSTR® MiniFiler PCR Amplification Kit 
(Applied Biosystems). The amount of DNA used for geno-
typing ranged from about 0.1 ng to 1 ng. Thermal cycling 
conditions were performed according to the manufactur-
er’s recommendations for all kits. However, in certain cases, 
the number of cycles was increased to 32 (instead of 29 for 
Identifiler® Plus and 30 for MiniFilerTM).

A minimum of 3 amplifications were carried out from dif-
ferent extracts from the same sample, and the PCR prod-
ucts were analyzed at least twice. From all the results of 
each sample, consensus alleles were determined when al-
leles were observed in at least two replicates.

Mitochondrial DNA analysis. Mitochondrial DNA hypervari-
able segment one (HVS1) was analyzed. PCRs contained 
2.5 µL 10 × PCR Buffer II, 2 µL MgCl2 (25 mM), 1 µL dNTP 
mix (10 mM), 2.5 µL BSA, 0.5 µL of each primer (10 mM), 0.5 
µL AmpliTaq Gold (5 U/µL), 10 µL of DNA sample, and ster-
ile water up to a total volume of 25 µL. Two sets of prim-
ers were used to cover the amplification of the whole 

HVS1: a) primers A1 (5’-CACCATTAGCACCCAAAGCT-3’) 
and B1 (5’-GAGGATGGTGGTCAAGGGAC-3’) pro-

ducing an amplicon of 432 bp; b) primers A1 and B2 (5’-
GGCTTTGGAGTTGCAGTTGAT-3’), A2 (5’-TACTTGACCACCT-
GTAGTAC-3’) and B1 were used to generate 2 overlapping 
fragments of 279 and 270 bp, respectively (19). Cycling pa-
rameters were 95°C for 11 minutes, followed by 36 cycles 
of 95°C for 10 seconds, 61°C for 30 seconds, and 72°C for 
30 seconds, and a final extension of 70°C for 10 minutes. 
Amplification products were subjected to electrophore-
sis on 2% agarose mini-gels and visualized with ethidium 
bromide and UV light. DNA products were purified using 
5 µL of ExoSAP-IT® (USB Corporation, Cleveland, OH, USA) 
to 25 µL of PCR product and subsequently sequenced in 
both directions using the PCR primers. Extension reac-
tions were performed by BigDye® TerminatorTM v1.1 Cycle 
Sequencing Kit (Applied Biosystems). A reaction included 
1 µL BigDye® TerminatorTM mix, 5 µL BetterBuffer (The Gel 
Company, San Francisco, CA, USA), 1.5 µL of each primer 
(3.3 µM), and 7.5 µL of the PCR product in a final volume of 
15 µL. Manufacturer’s cycle sequencing parameters were 
followed. Sequencing products were purified with BigDye® 
XTerminatorTM Purification Kit (Applied Biosystems) follow-
ing the manufacturer’s recommendations. Capillary elec-
trophoresis was carried out on the 3130xl Genetic Analyzer 
(Applied Biosystems), and sequencing reaction products 
were analyzed with the Sequence ScannerTM v1.0 (Applied 
Biosystems). Sequences were aligned to the revised Cam-
bridge Reference Sequence (rCRS) (20) using ClustalW (21) 
and edited from np 16050 to 16390.

Haplogroups were assigned following established rules and 
definitions (22,23) and the most updated version of the mtD-
NA phylogeny (24). Haplotype frequencies were obtained 
from the European sample populations within the EDNAP 
mtDNA Population Database (EMPOP) database (25).

In order to minimize the effects of potential laboratory and 
transcription errors, the data were analyzed separately by 3 
independent analysts and evaluated based on known phy-
logeny. Extraction and genotyping were repeated at least 
3 times, and consensus sequences were obtained from the 
replicates.

Y-SNPs typing. Samples from femur 1 and 3, which were 
successfully analyzed in the previous analyses, were select-
ed for Y-SNP genotyping. First, samples were tested with 
the Multiplex Major described by Geppert et al (26), which 
includes the 12 Y-SNPs (M42, M207, M242, M168, M3, M145, 
M174, M213, RPS4Y711, M45, P170, and M9) defining the 
most frequent major haplogroups. The multiplex analysis 
was performed using 400-500 pg of DNA.
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The multiplex single base extension (SBE) reaction was 
performed as described by Geppert et al (26), with slight 
modifications, in a total volume of 6 µL containing 1.5 µL 
ABI PRISM® SNaPshotTM Multiplex Ready Reaction Mix (Ap-
plied Biosystems), 0.42 µM SBE primer, 2 µL cleaned-up PCR 
product, and ultrapure water. The SBE reaction was cycled 
under the following conditions: 96°C for 10 seconds, 50°C 
for 5 seconds, and 60°C for 30 seconds, for 25 cycles. The 
SBE reaction was cleaned up with 1 U of shrimp alkaline 
phosphatase and by incubating the reaction at 37°C for 60 
minutes followed by 85°C for 15 minutes.

Single amplifications were also carried out for the follow-
ing SNPs with shorter amplicons: CT-M168, I-M170, R-M207, 
R1b1b2-M269, and R1a1a-M198. Singleplex PCR was per-
formed in a total volume of 12 µL with 0.8 µM of each prim-
er, 0.25 µM dNTPs, 1 U Gold Taq, 1 × PCR-Puffer, 1µM MgCl2, 
300-400pg DNA, and ultrapure water. PCR was conducted 
with the following protocol: 95°C for 10 minutes followed 
by 8 cycles of 95°C for 30 seconds, 60°C for 30 seconds, 
72°C for 30 seconds, 40 cycles of 95°C for 30 seconds, 58°C 
for 30 seconds, 72°C for 30 seconds, and a final extension 
of 72°C for 5 minutes. The PCR was cleaned up with 2 µL of 
ExoSAP-IT (USB) per 5 µL reaction volume and incubated 
for 60 minutes at 37°C followed by 15 minutes at 75°C. SBE 
reaction was performed according to the protocol given 
for the multiplex assay, but with single primers. Purification 
of the SBE reaction was performed with 1 µL SAP (USB) per 
reaction.

Capillary electrophoresis of the SBE fragments was run on 
an ABI Prism Genetic Analyzer (3130xl; Applied Biosystems) 
and the data were analyzed using GeneMapper® ID Analy-
sis software v3.2.

ReSulTS

Radiocarbon dating indicated that the skeletons dated 
from the years 776 to 991 AD (Table 1). DNA yields varied 
among samples (Table 1). In general, there was no notice-
able PCR inhibition, except for minor inhibition with rib 2.

autosomal STR analyses

Only 3 of the 7 samples yielded complete or partial genetic 
profiles with Identifiler® Plus and MiniFilerTM (Table 2). Fe-
mur 1 and 3 yielded complete profiles with Identifiler® Plus 
and partial profiles with MiniFilerTM. Femur 5 yielded par-
tial profiles with both multiplex kits. Additionally, femur 1 
and 3 were analyzed using NGMTM PCR Amplification Kit 

and both obtained partial profiles. The amelogenin marker 
was typed successfully in 4 of the 7 samples (femur 1, 2, 
3, and 5), indicating that they belonged to male individu-
als, which was consistent with the anthropological exam 
results.

For the 3 samples that yielded autosomal STRs results (fe-
mur 1, 3, and 5), likelihood ratios (LR) were calculated for 
different hypotheses in order to investigate possible famil-
ial relationships. STR markers showing homozygosity were 
considered as potential allelic drop-outs and were not in-
cluded in the analyses. No direct relationships (fatherhood 
or other paternal relationships) were detected, although 
other familial relationships could not be excluded.

mtdNa analysis

Sequence variation in the HVS1 was investigated in all 
samples. Reproducible HVS1 sequences were obtained 
for all the samples except for rib 2, which did not produce 
conclusive results (Table 3). Two different mtDNA haplo-
types were observed twice in our samples. Femur 1 and 5 
shared haplotype 16069T 16126C 16300G, while femur 4 
and rib 1 showed no differences from the rCRS for the ana-
lyzed range (16050-16390). Most of the mtDNA types were 
assigned to the haplogroup H and 1 sequence (from femur 
3) to the haplogroup U5a. The frequency for the haplotype 
equal to the rCRS shared by femur 4 and rib 1 in European 
sample populations included in the EMPOP database was 
significantly high (P = 0.1167). On the other hand, the fre-
quency of the haplotype 16069T 16126C 16300G shared 
by femur 1 and 5 was low (P = 0.00045). This frequency cor-
responds to a LR of 2222, meaning that it is 2222 times 
more probable that these individuals are maternally relat-
ed than that they are not related. The LR for mtDNA and 

TaBle 1. Radiocarbon dates and dNa yield of the samples 
from 7 medieval skeletons from the aragonese Pyrenees
 
Sample

uncalibrated 
radiocarbon years BP*

Calendar 
age ranges†

dNa 
yield‡

Rib 1 1119 ± 24 885-987  1.2
Femur 1 1171 ± 26 776-900 10.0
Femur 2 1121 ± 23 885-985  0.6
Femur 3 1147 ± 26 807-974  6.0
Femur 4 1105 ± 25 889-991  0.1
Rib 2 1123 ± 26 870-990  1.3
Femur 5 1111 ± 26 885-991  0.1
*Before present – 1950.
†Radiocarbon dates are uncalibrated years BP.
‡DNA yield is expressed in nanograms per gram of bone pow-
der (ng/g).
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STRs was combined and the highest value (LR = 1769) was 
obtained, favoring the hypothesis that they were mater-
nally related cousins.

Y-SNPs analysis

Results of the Y-SNPs analysis are shown in Table 4. Multi-
plex Major, including 12 Y chromosome SNPs defining the 
major Y chromosome haplogroups, was studied in the fe-
mur 1 and 3. This analysis failed for femur 3, while for fe-
mur 1 one Y-SNP marker was amplified successfully – M42 
that defines the large cluster of haplogroup B-T. Concern-
ing this result, the approach of using a multiplex assay to 
type the samples was rejected and single amplifications, 
using SNP markers with the short amplicons (CT-M168, 
I-M170, R-M207, R1b1b2-M269, and R1a1a-M198) were 
set up in single PCRs. Results showed that femur 1 could 
be assigned to the haplogroup R1b1b2, which is defined 

by the marker M269. On the other hand, femur 3 could 
be assigned to the haplogroup R, which is defined by the 
markers M207, M306, P224, P227, P229, P232, P280, and 
P285 (M207 was tested). It was not possible to obtain fur-
ther subtyping within branch R, beyond the exclusion of 
all sub-branches of R1a1a, which is defined by the Y-SNP 
M198 (that was tested to be ancestral).

TaBle 2. Consensus genetic profiles of identifiler® Plus, MiniFilerTM, and NGMTM from samples analyzed in this study. an empty cell 
indicates that the locus was not present in the autosomal short tandem repeat kit in the studied genetic system. a dash (-) indicates 
no results for that locus

Femur 1 Femur 3 Femur 5

loCuS identifiler® Plus MiniFilerTM NGMTM identifiler® Plus MiniFilerTM NGMTM identifiler® Plus MiniFilerTM

D3S1358 14, 15 14,15 15, 17 15,17 13, 14
D19S433 14/- 14/- 13, 15 – 16/-
D8S1179 12, 13 12,13 10, 15 10,15 13, 14
D5S818 11, 12 12, 13 12/-
TH01 8, 9.3 8,9.3 8, 9 – -
vWA 18/- 18/- 16, 17 – 14/-
D21S11 31.2, 32.2 – 31.2/- 30, 32.2 30, 32.2 – - 32.2/-
D13S317 8, 11 8, 11 13, 14 13, 14 8, 13 8, 13
TPOX 8/- 8, 10 -
D7S820 11/- 10, 11 10, 13 10, 13 - -
D16S539 11, 14 11, 14 11,14 11/- – – 12, 14 -
D18S51 13, 17 13, 17 13/- 12, 13 12, 13 – - 16/-
CSF1PO 10, 11 10, 11 9, 11 9, 11 - 12, 13
D2S1338 17, 24 17, 24 17/- 20, 27 20, 27 – - 16, 17
FGA 21/- – 21,25 21, 24 21, 24 – 22/- 22, 25
D10S1248 14,15 13,14
D22S1045 11,15 11,16
D2S441 10,11.3 11.3,14
D1S1656 12,16 –
D12S391 18,19.3 –
Amel XY XY XY XY XY XY XY XY

TaBle 3. mtdNa hypervariable segment 1 sequences (range 
16050-16390) of 6 specimens under study. dots indicate no 
difference from the revised Cambridge reference sequence

Sample
haplo-
group 16069161261619216256162701629116300

Femur 1 H T C . . . . G
Femur 2 H . . . . . T .
Femur 3 U5a . . T T T . .
Femur 4 H . . . . . . .
Femur 5 H T C . . . . G
Rib 1 H . . . . . . .

TaBle 4. Y-chromosome single nucleotide polymorphisms (Y-SNP) typing results for femur 1 and 3. a plus sign indicates the derived 
status of the SNP and a minus sign indicates ancestral status

Sample Multiplex Major M168 (CT) M207 (R) M170 (i) M198 (R1a) M269 (R1b1b2) haplogroup

Femur 1 M42 (+) + analysis failed – – + R1b1b2
Femur 3 analysis failed + + – – analysis failed R
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None of the STR profiles, mtDNA haplogroups, or Y-SNPs 
matched those of the people who handled the samples 
(ie, laboratory staff, anthropologists).

diSCuSSioN

This study presents DNA typing of bone remains belong-
ing to 7 male skeletons anthropologically individualized 
and carbon dated to the period 776-991 year AD. When 
DNA typing was successful, morphological and genet-
ic sex assessments were concordant. All individuals were 
male, 5 were adults aged between 30 and 70 years and 2 
were around 17 years old.

In spite of the fact that the skeletons were buried under 
similar conditions, different degrees of preservation were 
observed during the anthropological examination, gen-
erally consistent with different DNA yields. Accordingly, 
different samples showed varying degrees of genetic in-
formation. No fatherhood or other paternal relationships 
were demonstrated among them.

Confidence in authenticity is always a concern in human 
ancient DNA studies, and strict measures have been sug-
gested to increase the reliability of the study (15,27), as 
well as to perform a self-critical and rational analysis of the 
data (28,29). The following criteria speak in favor of the au-
thenticity of the results presented here: a) careful proce-
dures were observed for specimen handling and prepara-
tion, b) clean negative controls and reagent blanks were 
used, c) reproducible and unambiguous genetic profiles 
were obtained in different laboratories (no mixtures were 
found), d) the same profiles were obtained from different 
samples of the same skeleton, e) a different genetic pro-
file was observed in every skeleton typed, e) there was a 
concordance of morphological and genetic sexing, and f ) 
the greatest amplification efficiency of shorter STRs was 
observed.

It is not surprising that the samples that gave the great-
est DNA quantity (femur 1 and 3) also presented com-
plete profiles with Identifiler® Plus. However, when ampli-
fied with the NGMTM kit, only femur 1 yielded a complete 
profile, whereas femur 3 yielded results only for the short-
est STR markers. Seven of the 10 non-amplified markers 
were shared with the Identifiler® Plus results. Given that 
they have similar sizes in both multiplexes, a possible ex-
planation could be that different extracts had DNA with 
different degrees of degradation. Additionally, it can be 
suggested that Identifiler® Plus may provide better ampli-

fication efficiency than NGMTM when dealing with difficult 
samples. It is striking that femur 5, in spite of having had a 
low DNA yield, produced a partial profile with MiniFilerTM 
and Identifiler® Plus.

Two mtDNA haplogroups were observed based on HVS1 
sequences in our samples, H and U5a. The haplogroup 
composition of the studied individuals fit well in the Euro-
pean pattern. The haplogroup H, which is the most com-
mon in our sample (5 out of 6 typeable individuals), is 
widely present in European populations with frequencies 
above 30% (30-34), including the contemporary popula-
tion of Spain (35,36). When evaluating haplogroup H sub-
haplogroups, it was observed that frequency distributions 
of sub-haplogroups H1 and H3 demonstrated frequency 
peaks both centered in Iberia and the surrounding areas 
(33). Thus, further mtDNA analysis by HVS2 sequencing 
and the study of coding region SNPs would be valuable 
in order to resolve deeper lineages within the haplo-
group H.

Femur 3 was assigned to mtDNA haplogroup U5a. The most 
ancient mitochondrial haplogroup U5 is found in northern 
and southern Europe, whereas U5a is mainly restricted to 
southern Europe, with some diverged individuals present 
in the northwest (22). It has been argued that expansions 
of U5-subclusters, particularly U5a and U5b, occurred after 
the last glacial maximum period, during re-occupation of 
large areas of northern Europe by refugees from the Pyr-
enees region (37). The frequency of haplogroup U5a in 
Spanish populations is approximately 8% (35).

It should be noted that there was a match between femur 
1 and 5, and femur 4 and rib 1, indicating that these two 
pairs of individuals may be maternally related.

HVS1 data do have a limited power of discrimination in a 
forensic (or anthropological) context and thus many mtD-
NA haplogroups are poorly defined by the control region. 
Since only the HVS1 region was analyzed, sharing the same 
HVS1 profile does not necessarily imply that two mtDNAs 
absolutely belong to the same haplogroup (38).

The Y chromosome haplogroup R determined for femur 
1 and 3 is in agreement with the geographical origin of 
the studied human remains. The majority of European Y 
chromosomes belong to this clade (39-41). Particularly, 
the sub-haplogroup R1b1b2, determined in femur 1, oc-
curs at a high frequency throughout western Europe 
(according to www.YHRD.org).

www.YHRD.org


FORENSIC ANTROPOLOGY342 Croat Med J. 2011; 52: 336-43

www.cmj.hr

This genetic study is part of an interdisciplinary research 
project that integrates the investigations of historians, ar-
cheologists, and anthropologists. There is of yet no his-
torical or archeological evidence to infer the origin of this 
human group, so integration of different approaches may 
allow a better understanding of the origin of these peo-
ple and possibly of the circumstances of their death and 
burial.

In summary, the case presented here shows that despite 
the antiquity of the samples, the combined use of current 
common forensic genetic systems allows the retrieval of 
valuable and interesting genetic information. With greater 
sensitivity of detection methods and more human identity 
genetic markers that are amenable to analysis of degraded 
samples, more challenging anthropological samples may 
disclose the secrets of their genetic make-up.
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