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In order to attain a certain degree of confidence in the quality of the data in the data warehouse it is necessary
to perform a series of tests. There are many components (and aspects) of the data warehouse that can be tested,
and in this paper we focus on the ETL procedures. Due to the complexity of ETL process, ETL procedure tests are
usually custom written, having a very low level of reusability. In this paper we address this issue and work towards
establishing a generic procedure for integration testing of certain aspects of ETL procedures. In this approach,
ETL procedures are treated as a black box and are tested by comparing their inputs and outputs – datasets. Datasets
from three locations are compared: datasets from the relational source(s), datasets from the staging area and datasets
from the data warehouse. Proposed procedure is generic and can be implemented on any data warehouse employing
dimensional model and having relational database(s) as a source.

Our work pertains only to certain aspects of data quality problems that can be found in DW systems. It provides
a basic testing foundation or augments existing data warehouse system’s testing capabilities. We comment on
proposed mechanisms both in terms of full reload and incremental loading.
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Općeniti postupak za integracijsko testiranje ETL procedura. Kako bi se ostvarila odre�ena razina pov-
jerenja u kvalitetu podataka potrebno je obaviti niz provjera. Postoje brojne komponente (i aspekti) skladišta
podataka koji se mogu testirati. U ovom radu smo se usredotočili na testiranje ETL procedura. S obzirom na
složenost sustava skladišta podataka, testovi ETL procedura se pišu posebno za svako skladište podataka i rijetko
se mogu ponovo upotrebljavati. Ovdje se obra�uje taj problem i predlaže općenita procedura za integracijsko testi-
ranje odre�enih aspekata ETL procedura. Predloženi pristup tretira ETL procedure kao crnu kutiju, te se procedure
testiraju tako što se uspore�uju ulazni i izlazni skupovi podataka. Uspore�uju se skupovi podataka s tri lokacije:
podaci iz izvorišta podataka, podaci iz konsolidiranog pripremnog područja te podaci iz skladišta podataka. Pred-
ložena procedura je općenita i može se primijeniti na bilo koje skladište podatka koje koristi dimenzijski model
pri čemu podatke dobavlja iz relacijskih baza podataka. Predložene provjere se odnose samo na odre�ene aspekte
problema kvalitete podataka koji se mogu pojaviti u sustavu skladišta podataka, te služe za uspostavljanje osnovnog
skupa provjera ili uvećanje mogućnosti provjere postojećih sustava. Predloženi postupak se komentira u kontekstu
potpunog i inkrementalnog učitavanja podataka u skladište podataka.

Ključne riječi: kvaliteta podataka, skladište podataka, dimenzijski model, testiranje ETL-a

1 INTRODUCTION

Testing is one of the key factors to any software prod-
ucts’ success and data warehouse systems are no excep-
tion. Data warehouse can be tested in different ways (e.g.
front-end testing, database testing) but testing the data
warehouse’s ETL procedures (sometimes called back-end
testing [1]) is probably the most complex and critical data
warehouse testing job, because it directly affects the qual-
ity of data. Throughout the ETL process, source data is be-
ing put through various transformations, from simple alge-
braic operations to complex procedural modifications. The
question is how accurate and reliable is data in the data
warehouse after passing through all these transformations

and, in the first place, have the data that should have been
extracted actually been extracted and subsequently trans-
formed and loaded?

In order to attain a certain degree of confidence in the
data quality, series of test should be performed on a daily
basis. Like any software system, data warehouse’s ETL
system can be tested in various fashions, for instance, one
can test small isolated ETL components using unit tests
or one can test the overall process using integration tests
(not to mention other kinds of testing like regression tests,
system tests etc. [2]).

In this paper we propose a generic procedure for (back-
end) integration testing of certain aspects of ETL pro-

ISSN 0005-1144
ATKAFF 52(2), 169–178(2011)

AUTOMATIKA 52(2011) 2, 169–178 169

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14439743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Generic Procedure for Integration Testing of ETL Procedures I. Mekterović, Lj. Brkić, M. Baranović

cedures. More precisely, we’re interested in asserting
whether all data is accurately transferred throughout the
ETL process, that is whether “all counts match”. ETL pro-
cedures are tested as a whole since we only compare in-
puts and outputs of ETL procedures: datasets. Namely,
we compare the data from relational data sources with the
data integrated at the staging area and finally with the data
stored in a dimensional model (we assume that data ware-
house employs dimensional model). In order to do so, it
must be possible to trace each record back to its source, or
establish data lineage. In a warehousing environment, as-
serting data lineage is defined as (back)tracing warehouse
data items back to the original source items from which
they were derived [3].

We propose an easy to implement data lineage mech-
anism and upon it we build procedures for comparing
datasets. Requiring only small interventions to the ETL
process, proposed procedure can be elegantly implemented
on the existing DW systems. The intention is to treat this
testing procedure as an addition to the ETL process that
will provide more insight into the quality of the data. Our
work pertains only to certain aspects of data quality.

Data quality is considered through various dimensions
and the data quality literature provides a thorough classi-
fication of data quality dimensions. However, there are a
number of discrepancies in the definition of most dimen-
sions due to the contextual nature of quality [4]. There is
no general agreement either on which set of dimensions
defines the quality of data, or on the exact meaning of each
dimension [4]. However, in terms of most agreed upon and
cited data quality dimensions [5], our work pertains to ac-
curacy (sometimes called precision) and reliability (free-
of-error). In this context, we do not consider data qual-
ity issues between real world and relational database, but
between relational database and data warehouse. In that
sense, inaccuracy would imply that data warehouse system
represents a source system (relational databases) state dif-
ferent from the one that should be represented [5]. We con-
sider reliability as “the extent to which data is correct and
reliable” [4] and “whether can be counted upon to convey
the right information” [5].

Described procedure is being implemented in Higher
Education Information System Data Warehouse in Croa-
tia [6]. The rest of this paper is structured as follows. In
section 2, related work is presented. Section 3 describes
the architecture of the proposed testing system. In Section
4 we examine how to establish data lineage in systems that
employ dimensional model and formally describe the pro-
posed solution. Section 5 introduces the segmenting pro-
cedure used to find discrepancies between two data sets.
Sections 6 and 7 describe counting and diff subsystem used
to compare record counts from data sources, staging area
and dimensional model structures and pinpoint excess or

missing records. Section 8 describes preliminary results.
Finally, Section 9 presents our conclusions.

2 RELATED WORK

Data quality is of major concern in all areas of informa-
tion resources management. A general perspective on the
data quality is given in [7] [8]. Data quality issues in a data
warehousing environment are studied in [9] [10]. Prop-
erties of data quality are analyzed through a set of data
quality dimensions. A vast set of data quality dimensions
is given in [5] [4] [9]. Practical aspects of data quality,
including data quality dimensions, methodology for their
measurement and improvement, can be found in [11] [12].

An overall theoretical review and classification of data
warehouse testing activities is given in [1]. The differ-
ence between data warehouse testing and normal testing
is emphasized, and phases of data warehouse testing are
discussed. In [13] regression testing ETL software is con-
sidered and a semi-automatic regression testing framework
is proposed. Proposed framework is used to compare data
between ETL runs to catch new errors when software is
updated or tuned. On the contrary we test and compare
data at different points within a single ETL run.

Besides regression and integration testing, there are var-
ious tools and frameworks for unit testing ETL procedures
[14][15]. A number of papers [16] [17] [18] proposes
strategies and models for generation of data quality rules
and their integration into ETL process.

Establishing data lineage (or data provenance) is tightly
related to the testing of the outcomes of the ETL proce-
dures. Data lineage can be described in different ways de-
pending on where it is being applied (in context of database
systems, in geospatial information systems, in experiment
workflows,. . . ) [19]. The problem of establishing data lin-
eage in data warehousing environments having relational
database as a data source has been formally studied by Cui
et al. in [3] [20]. In [21] is stated that embedding data
lineage aspects into the data flow and workflow can lead
to significant improvements in dealing with DQ issues and
that data lineage mechanism can be used to enable users to
browse into exceptions and analyze their provenance.

Although there are various commercial and scientific ef-
forts in the ETL testing area, our work is, to the best of our
knowledge, the first to provide a generic procedure for in-
tegration testing of the ETL procedures.

3 THE ARCHITECTURE OF TESTING SYSTEM

Due to the complexity and domain differences, it is hard
if not impossible to develop an automated testing tool that
will test warehouse data and ETL procedures. It is true that
ETL have been somewhat standardized in the last years,
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but certainly not to the extent that would allow for such
testing tools. After all, ETL procedures differ in architec-
tural and technological sense. Therefore, to fully test the
data and ETL procedures, custom tests and queries have to
be written.

We propose (Figure 1) a procedure that will test ware-
house data (DW) versus data consolidated in staging area
(SA) and versus data from (relational) sources (SRC). The
proposed procedure can be applied to existing data ware-
house systems having minimal impact on the existing ETL
procedures.

Fig. 1. The architecture of the testing system

The procedure relies on a metadata describing sources,
staging area and data warehouse and performs two tasks:

• checks for differences in record counts (we refer to
this part as the “counting subsystem” or “CS”)

• finds and maintains identifiers to unsynchronized
records (we refer to this part as the “diff subsystem”
or “DS”).

In order to introduce this generic procedure certain as-
sumptions have to be made. Firstly, it is expected for the
data warehouse to employ dimensional data model [22]
having data organized in fact and dimensional tables (even
though, when revised, this procedure could work with
other data models). Secondly, every record in the fact table
must be traceable to the single source record (lineage) and
vice versa (dependency). Obviously, this leaves out ag-
gregated tables, snapshots, etc. Implementation-wise, this
means that it must be possible to trace and store matching
unique identifiers. In order to achieve this, minor modifica-
tions to the existing ETL procedures will have to be made.
Finally, we assume that each dimension table record holds
a business (relational) key, thus maintaining a back refer-
ence to the source data.

As mentioned, proposed procedure relies on metadata
that describes existing structures. Metadata describes re-
lational sources and tables, staging area tables, dimension
model tables and their mappings. Due to the space limita-
tions, we shall not describe metadata tables in detail, but
shall, at places, bring to attention certain information that
needs to be stored in metadata repository.

4 ESTABLISHING THE DATE LINEAGE

In this section we examine how to establish data lineage
in systems that employ dimensional model and formally
describe the proposed solution.

Although our goal is to introduce data lineage capabil-
ities to existing systems with as little intrusion as possi-
ble, certain changes will have to be made to establish lin-
eage and dependency between source and data warehouse
data. Setting up the lineage of dimensional data is pretty
straightforward since dimension table schemas usually in-
clude business (relational) key, thus maintaining a back
reference to the source data. If not, this key should be
added in lines with the best design practices. We propose
the following procedure for tracking data lineage of dimen-
sion tables.

Let ST be the schema of the consolidated source table
st:

ST = {BK1, . . . , BKm, AST1, . . . ASTn} ,

where BKi is the business key attribute and ASTi is the
dependent attribute. Shorter, we denote a consolidated
source table schema:

ST = {BK, AST } .

. Consolidated source table contains data from different
sources after being cleaned, integrated and deduplicated.
Such source table, enriched with other consolidated source
tables (e.g. joined with related tables), can serve as a foun-
dation for either dimensional or fact table.

Let DT be the schema of the dimension table dt:

DT = {SKDT , BKDT , ADT },

where SKDT is a surrogate identity key (auto increment-
ing integer), BKDT is an attribute set taken from ST ,
ADT is a set of dependent dimensional attributes.

Differences between source and dimension table consist
of two record sets given with the following expressions:

1. Tuples that exist in the source and don’t exist in the
destination table

(πBK (st) \ πBKDT
(dt)) �� st

2. Tuples that exist in the destination and don’t exist in
the source table:

(πBKDT (dt) \ πBK (st)) �� dt.

For fact tables, on the other hand, the solution is more
complex. We only consider the most common fact table
type - transactional fact table, leaving out cumulative fact

AUTOMATIKA 52(2011) 2, 169–178 171



A Generic Procedure for Integration Testing of ETL Procedures I. Mekterović, Lj. Brkić, M. Baranović

tables and periodic snapshots [22]. Fact tables are recoded
in a way that relational foreign keys are replaced with di-
mension table surrogate keys.

Let FT be the schema of the fact table ft:

FT = {SKDT1, . . . SKDTm, M1, . . . , Mn},

where SKDTi is the dimension foreign key and Mi is the
measure. Shorter, we denote fact table schema:

FT = {SKDT , M}.

Source table records are sometimes filtered on extrac-
tion, e.g. a row could be describing an incomplete ac-
tivity. For instance, an order that has been placed but
not yet delivered is excluded from loading into the data
warehouse pending delivery. That is why we introduce
st′ = σfilter(st) abstraction.

Let st′ be the filtered source table based on ST with the
same schema as ST :

st′ = σfilter(st).

To achieve fact table data lineage, we propose the follow-
ing procedure that we consider to be generic and easy to
implement (Figure 2).

For each fact table ft:

• Add SKFT attribute as a surrogate identity key thus
changing fact table schema to:

FT = {SKFT , SKDT , M}

• Create lineage table linF t with schema:

LinFT = {SKFT , BK1, . . . , BKm},

where BKi is the business key attribute of the fact
table’s source table. Shorter:

LinFT = {SKFT , BK}

• Prior to loading fact table, in order to generate surro-
gate ids, redirect data stream to table linF tTemp with
schema:

LinFTTemp = {SKFT , BK, SKDT , M }

• Split linF tTempinto two projections linF t and ft as
follows:

linF t = πSKF T , BK(linF tTemp)

ft = πSKF T , SKDT , M (linF tTemp).

Fig. 2. Establishing lineage by inserting temp table and
lineage table prior to fact table loading

Once lineage tables have been created and populated,
queries returning excess and missing records can be gen-
erated in a generic manner for each fact table. Differences
between source and fact table consist of the two sets:

1. Tuples missing from the fact table i.e. exist in the
source and don’t exist in the destination table:

(πBK (st′) \πBK (ft ��linF t)) ��st′

2. Excess tuples i.e. exist in the fact table and don’t exist
in the source table:

(((πBK (ft ��linF t) \πBK (st′)) ��linF t) ��ft)

U (πSKF T
(ft) \πSKF T

(linF t)) ��ft

The former expressions, de facto, calculate differences
between two data sets that are typically large, especially
if full reload is used. Even on incremental loads, these
data sets can be large, which makes these queries poten-
tially unusable. To that end, we propose to segment data
and isolate smaller uneven data segments and then find the
differences on a much smaller scale. Segmenting proce-
dure is described in the following section. The outcome
of the segmenting procedure is a selection filter that de-
scribes (uneven) segment(s). If we denote selection filter
with SF (e.g. year=2007 AND studId=107) the aforemen-
tioned queries can be optimized as:

1. Tuples missing from the fact table:

(πBK (σSF (st′)) \πBK (σSF (ft) ��linF t))��st′

2. Excess tuples (exist in the fact table and don’t exist in
the source table):

(((πBK (σSF (ft) ��linF t) \
πBK (σSF (st′))) ��linF t) ��ft)

U (πSKF T (σSF (ft)) \πSKF T (linF t)) ��ft
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This way, different counts (and records) will be sought
after only in carefully chosen segments that are known to
hold discrepancies. Performance gains will be better if data
is properly indexed, e.g. index on selection filter attributes,
which will allow query optimizer to use the index and effi-
ciently execute those queries. That part might require some
performance tuning based on the DBMS platform used.

5 SEGMENTING PROCEDURE
Segmenting procedure compares row counts between

two data sets and tries to isolate small segments of data that
hold discrepancies. This is performed by grouping data
and comparing matching group row counts at source and
destination. Segmenting attributes (or attribute functions,
e.g. YEAR(orderDate)) for each table are defined in meta-
data repository. These attribute in fact define a hierarchy
that is used to “drill down” when searching for discrep-
ancies. For tables that are used as sources for fact tables,
segmenting attributes are typically time related (e.g. year
→ month → day), since every fact table has a timestamp
attribute marking the time when the events of the process
being tracked occurred (e.g. Orders table has attribute Or-
derDate). Also, fact table data is usually evenly distributed
over timestamp attribute. This is true for most processes as
it means that similar amount of data are generated in given
time intervals (e.g. daily).

Consider the following example (Table 1). Starting
from the “all time” count, data is consecutively broken
down into smaller time frames, much like the OLAP style
drill down operation, until small enough erroneous counts
(segments) are isolated. Data is segmented in a greedy
fashion: when uneven (in terms of row counts) segments
are found they are drilled down with greater priority and
full depth. Even segments are drilled down only to a
certain, smaller depth. Segmenting procedure stores and
maintains these counts per segments in metadata reposi-
tory. Past counts can be used to facilitate future segment-
ing jobs since erroneous data often stays in the same seg-
ments between two checks. Also, past counts are partic-
ularly useful if incremental loading strategy is employed.
Newly generated records at source dataset will have an im-
pact only on a small number of segments (if time attributes
are used for segmenting changed segments will typically
be the most recent ones). With that in mind, only incre-
mented data segments are inspected.

It must be noted that such batch count comparison does
not necessarily find (all) discrepancies. It is inherently er-
ror prone – excess and missing records annul each other
and if their counts match – the overall count appears cor-
rect. To reduce the possibility of error, other aggregate
function values within the same queries can be checked,
if developer so defines. In other words, COUNT is the de-
fault (and obligatory) function, but others can be defined on

a per table basis. The obvious choice is the SUM function.
However, SUM function (and all other aggregate functions
besides COUNT) must be defined over a certain attribute.
In a typical setup, we check for sum values of all fact table
measures that are transferred unchanged from the source
system. Still, these additional checks only reduce the pos-
sibility of error; Table 2 shows an example of erroneous
data that, never the less, passes all these checks (ETL pro-
cess erroneously discarded S1 and S3 and multiplied S2
three times). Should the segment be drilled down to month,
errors would become apparent.

Note that segment could, in theory, be drilled down to
primary key values which would compare single records.
This is a useful property since it enables the segmenting
procedure to be tunable – to search for errors on differ-
ent levels of granularity depending on how much resource
(time, hardware) is available and how much a certain fact
or dimension table is important. Other aggregate func-
tions are less useful in this context: AVG can be regarded
as SUM/COUNT. MIN and MAX help only if erroneous
record is of minimal or maximal value.

6 COUNTING SUBSYSTEM

Counting subsystem’s task is to compare record counts
from data sources, staging area and dimensional model
structures. Different counts indicate the segment in which
errors occurred (Figure 3) – either Change Data Cap-
ture/Data extraction segment or data transformation and
loading segment. Figure 3 shows both overall count and
incremental counts (e.g. on last CDC load). Numbers
shown in bold denote differences in counts – cumula-
tive (3050<>3040<>3030) and on last incremental load
(17=17<>16). Not all structures are populated incremen-
tally – for those structures that are not populated incremen-
tally, only the overall count is being observed.

Fig. 3. Count comparison at three referent ETL points
(storages)

In the following two sections we consider the CS with
regards to two aforementioned ETL phases.
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Table 1. Drilling down through the time to find differences more precisely

All time 

  

Broken into time frames 

  

Broken into time frames further 

more 

75<>65 

2007 25 != 20      ERR 2007  

2008 15 = 15      Q1 5 != 0               ERR 

2009 20 = 20      Q2-Q4 20=20 

2010 15 != 10      ERR 2008 15 =15 

2009 20 =20 

2010  

   Jan 10 = 10 

   Feb 5 != 0              ERR 

Table 2. Erroneous data that passes the check on a year level

 Source data  Destination data  

student points grade examDate … 

S1 60 3 2010-01-01  

S2 70 4 2010-02-01  

S3 80 5 2010-03-01  
 

student Points grade examDate … 

S2 70 4 2010-02-01  

S2 70 4 2010-02-01  

S2 70 4 2010-02-01  
 

 

 
year agr. function Src Dest Result 

2010 

COUNT 3 3   

SUM(points) 210 210   

SUM(grade) 12 12   

AVG(points) 70.0 70.0   

AVG(grade) 4.0 4.0   

6.1 CDC/Extract phase counting subsystem

The first part of every ETL process is data extraction
from, often more than one, source. In this paper, we con-
sider only relational databases as potential sources, that is
we do not consider flat files, spreadsheets, xml files, etc.(as
a workaround, these other kinds of sources could be sys-
tematically parsed and loaded into relational database and
thus indirectly traced). In the process of data extraction
and copying (to the staging area) various errors can occur.
For instance, network error can occur and prevent trans-
fer of some subset of data. Permission errors can occur,
preventing the account that performs the extraction to read
all or some of the data. Further more, domain errors can
occur on data insertion in the staging area, e.g. negative
numbers cannot be inserted into unsigned integer fields;
date types can overflow ranges – for instance Informix’s
DATE type (ranging from year 1-9999) will not fit into any
Microsoft SQL Server’s DATETIME type prior to version
2008 (at best, ranging from year 1753 to 9999), etc. To
calrify, althought years prior to 1753 are most likely errors
that should have been caught in the users’ applications that
is not the reason to omit those rows in the data warehouse
– they should appear, properly flagged.

In this phase, CS checks data counts in the staging area

versus source data counts. The first step of the ETL process
implies mirroring relevant source tables to the staging area
(where they are subsequently integrated). Each mirrored
table (count) is compared to its original table (count). We
consider two setups: full reload and incremental load.

Figure 4 shows a full reload setup in which data is ex-
tracted at t1 from N sources (N=2; src0 and src1) and
copied to corresponding mirrored table in the staging area.
Note that, even on full reload, if source systems aren’t
taken offline for the duration of extraction, there should
be some kind of timestamp mechanism that will enable to
create a data snapshot at certain moment in time. Other-
wise, it is possible to have uneven data in terms of creation
date. On Figure 4 data that is created after the extraction
time t1 (and is not being extracted at this ETL batch) is
denoted with an empty rectangle. Immediately after the
extraction, CS uses segmenting procedure and compares
counts between mirrored data and source data. Obviously,
segmenting attributes (hierarchies) for every table have to
be defined.

CS maintains these counts between different ETL
batches. Besides comparing actual counts, CS also com-
pares new count with previous version’s count. Typically,
in every table of a database record count grows or stays
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Fig. 4. Loading data from RDBMS sources to SA in full
reload scenario

the same. Therefore, ever new version should, in princi-
pal, have more and more records. Of course, it is entirely
possible for some table to reduce number of records from
one ETL batch to another. That is why, for each table, we
define a threshold and check whether actual record count
is bigger than threshold times previous record count (Ta-
ble 3). The larger the table, the closer to 1 is threshold
set (e.g. 1 deleted row in table of 3 records can be a 33%
drop; however in large tables such big drops are more un-
likely). This mechanism provides yet another indicator of
potentially bad data.

Table 3. Threshold check for table T1 and threshold t = 0.9
 

Load T1 count T1 prev. ver. 

count 

Check Result 

#1 100 90 100 > t * 90   

#2 110 100 110 > t * 100   

#3 105 110 105 > t * 110   

#4 50 105 50 > t * 105 ERR 

On incremental loads, the same procedure is applied
but in an incremental fashion. Incremental data is seg-
mented (if possible) and counts are added to the existing
count tables. Note that counts can be negative if, in a cer-
tain segment, delete operation outnumbers the insert op-
eration. After being counted, incremental data are merged
into staging area replica of the source. Optionally, to check
for possible CDC errors at the source, newly computed (af-
ter merge) counts can be checked versus the source counts
in all segments (which can be resource consuming with
large tables) or only in segments corresponding to the last
processed CDC batch.

6.2 Transform/load counting subsystem
This part of CS compares counts between consoli-

dated data in the staging area and according dimensional

model. Unfortunately, unlike previous phase, these counts
(records) aren’t always related one to one. For instance,
type 2 dimensions [22] have more records than underlying
source data tables. With type 2 dimensions, a new record
is added to the table whenever one of their type 2 attributes
changes its value thus preserving history.

Table 4 presents such scenario where a type 2 dimen-
sion is incrementally populated and data counts rightfully
differ. Source table rows and rows detected by CDC sys-
tem are shown in separate columns, along with the flag
of data operation that occurred (insert, delete, update).
In load #3 counts begin to rightfully differ: a student
with studID=102 changes his or hers marital state – a
new row is inserted with the latest marital state; previous
fact records are still connected to the original dimension
row with studSurrId=10002, and new fact records are con-
nected to the new row with studSurrId=10003. These type
2 updates should be detected at integrated source system
which resides in the staging area; because it is not possible
to detect missing type 2 inserts in the dimensional tables
that should have occurred (rightly created type 2 records
can be detected using business key). Deletions can also
cause situations when counts rightly differ. Depending on
the data population strategy, deleted rows could also be
deleted from the data warehouse, or they could be pre-
served (sometimes only marked as deleted). This infor-
mation is stored in the metadata repository that the pro-
posed procedure relies on. Load #3 depicts such scenario
where delete operation in the source system does not cause
the deletion of corresponding dimension record (studID
=101). To the best of our knowledge, insert operations in
the source system always cause corresponding new records
in the dimensional tables (by “source system” we mean in-
tegrated source system, after data from different sources
has been integrated and deduplicated, etc.).

Fact tables can also have more records than their source
tables if records deletions are not carried out in the data
warehouse.

Table 5 sums up the effects of CDC operations on di-
mensional structures. Operations shown in bold result
in different counts between source and dimension tables.
With type 1 dimensions, situation is simpler because up-
date operations cause dimension records updates.

In order to keep track of valid counts, identifiers of (reg-
ular) surplus rows (rDiff log table in Table 4, r stands for
“regular”) have to be logged and maintained. rDiff log ta-
bles store business and surrogate keys, description as to
why the record is created and affected differential record
count dc (usually 1, e.g. one deleted record affects over-
all count with quantity 1). Of course, in existing systems
such rDiff tables do not exist beforehand. rDiff log tables
have to be created (and initially populated) for each rele-
vant table as accurately possible, and rows that cannot be
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Table 4. Regular count mismatch on incrementally populated Type-2 dimensions

 

Update/None 

None None

Load Source table 

Src 

cnt 

Incremental 

segment/operation Dim. table (type 2) rDiff log table 

Dim 

cnt 

#1 studID … marSt … 

100 … S … 

101 … S … 
 

2 studID … marSt … op 

100 … S … i 

101 … S … i 
 

studSurrId studID … marSt … 

10000 100 … S … 

10001 101 … S … 
 

dc 
buss 

key 

surr 

key 
cause … 

1 101 10001 Delete 
… 

1 102 10002 
SCD 

Update 

… 

 

2 

#2 
studID … marSt … 

100 … S … 

101 … S … 

102 … S … 
 

3 studID … marSt … op 

102 … S … i 
 

studSurrId studID … marSt … 

10000 100 … S … 

10001 101 … S … 

10002 102 … S … 
 

3 

#3 studID … marSt … 

100 … S … 

102 … M … 
 

2 studID … marSt … op 

101 … S … d 

102 … M  u 
 

studSurrId studID … marSt … 

10000 100 … S … 

10001 101 … S … 

10002 102 … S … 

10003 102 … M … 
 

4 

Table 5. CDC operations repercussions on dimensional
structures

 
CDC 

operation 

Type 1 Dim. Type 2 Dim. Fact table 

Insert Insert Insert Insert 

Update Update Insert Update/None 

Delete Delete/None Delete/None Delete/None 

 

missing records and maintain 

records. This task naturally follows count subsystem’s 

findings (

segments and finds exact records for relevant tables. In 

order to find those records, Diff uses lineage mechanisms 

accounted for should be represented as single row in rDiff
log table having dc > 1 and e.g. “initialization” listed as
cause. Business and surrogate keys for those rows are un-
known (NULL). This will enable to isolate future errors
from the batch of “inherited” errors.

According to Kimball [22], there are three types of fact
tables: periodic snapshots, accumulating snapshots and
transactional fact tables. For the time being, we focus on
the latter, the most common fact table type. Analogous is-
sues arise as with dimensional tables so we omit further
comments.

7 DIFF SUBSYSTEM

Diff subsystem’s responsibility is to pinpoint excess or
missing records and maintain identifiers for those records.
This task naturally follows count subsystem’s findings
(Figure 5). Diff uses information about data segments and
finds exact records for relevant tables. In order to find those
records, Diff uses lineage mechanisms (and generates SQL
queries) described in section 4.

Diff subsystem maintains a single iDiff (i stands for “ir-
regular”) identifier table for each relevant table. These ta-
bles are similar to those described in the previous section,
except that rDiff tables pertain to regular differences, and
iDiff pertains to missing or excess rows (e.g. a row with in-
valid date that hasn’t been loaded into the fact table). iDiff
table stores business keys, surrogate key and some addi-
tional helper attributes (date created, date updated, status,
etc.). These tables provide a foundation for debugging the

 

 

SQL 

SQL 

SA 

DW 

           CS

 
segm.proc.  

Diff  
 

 
metadata 

segments, 
lineage info 

SRCs 
diff pointers SRC-SA 
diff pointers SA-DW 

Fig. 5. Diff subsystem

ETL process and facilitate the error correction process for
the data warehouse staff.

8 PRELIMINARY RESULTS

So far, we’ve implemented the CS for the extract/CDC
phase. Figure 6 shows the results of one run (for the HEIS
DW system [6]). Our procedure found differences in 9 out
of 89 tables. Only for “table 5”, figure shows the drill down
path that the segmenting procedure takes in discovering
smaller and smaller segments containing disparate data. At
depth 1, the procedure found three smaller segments (with
keys 236, 117 and 67) that were responsible for those five
uneven rows at depth 0. Analogously, those three segments
were “drilled” to find even smaller segments at depth 4.
Note that, for clarity, figure shows only one path (and skips
the depth=2 step). Figure 7 shows a complete drill down
tree that the segmenting procedure traverses. Nodes tra-
versed in Figure 7 are shown in grey. Figure 7 also shows
part of the table that stores the results.

Values of attributes used to segment the data are en-
closed in square brackets, concatenated and stored in a text
field named “keys” (since it is required to store various
number of arbitrarily typed keys). Other column names
are self explanatory. Using metadata, these rows can eas-
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Fig. 6. One of the segmenting procedure’s drill down paths
for Table 5

Diff subsystem maintains a single iDiff (i stands for 

table for each relevant table. These 

tables are similar to those described in the previous 

iff tables pertain to regular 

differences, and iDiff pertains to missing or excess rows 

(e.g. a row with invalid date that hasn’t been loaded into 

iDiff table stores business keys, surrogate 

created, 

 

 

 

Fig. 7. The full drill down tree for Table 5 and the corre-
sponding result table

ily be translated to SQL statements, e.g. the last row in the
table in the Figure 7 evaluates to:

WHERE universityId = 236
AND departmentId = 10765
AND personId = ’SB019’.

All the errors found in this run were accredited to date
range mismatch between our source system (Informix) and
data warehouse system (MS SQL Server 2000) because
MS SQL Server (prior to version 2008) cannot store dates
prior to year 1753. However, in the past, we’ve also ex-
perienced errors due to schema change (e.g. an attribute
in the source system was changed to nullable attribute or,
for instance, primary key was expanded in the source sys-
tem) and other technical reasons (e.g. loader account per-
missions were erroneously changed). The intention is to
run this program on every ETL run, immediately after the
transfer of the data to the staging area and, if differences
are found, alert the staff.

9 CONCLUSION

This paper introduces a generic procedure for integra-
tion testing of ETL procedures. ETL procedures are im-
plicitly tested by comparing datasets at three locations. We
have identified three major challenges in this area: (a) to
successfully compare datasets in the data warehousing en-
vironment it is necessary to link source and destination
records, that is, it is necessary to establish data lineage

(b) calculating differences on large data sets can be very
demanding, even not feasible in a reasonable time and re-
source frames and (c) tests should be reusable and applica-
ble to existing data warehouse systems.

With respect to that we make following contributions:

a) An easy to implement data lineage mechanism that re-
quires negligible interventions in the existing ETL pro-
cedures

b) Segmenting procedure that explores differences in data
sets in an OLAP style drill down manner. Procedure is
tunable with respect to the depth of the data exploration.
Greater depth implies smaller segments, or better pre-
cision.

With these two mechanisms we design a generic test-
ing architecture that can be attached to existing systems.
We comment on these issues both in terms of incremen-
tal load and full reload. Proposed system “grows” with
given source(s) and data warehouse systems, collecting
valuable information. On incremental loading, this infor-
mation is leveraged to efficiently find differences only in
new (changed) data, whilst maintaining accurate the over-
all differences state.

In order to achieve this, two assumptions are made
(which constitute the limitations of our approach): (i) data
warehouse employs dimensional model and (ii) only rela-
tional databases are considered as data sources.

Future work includes overcoming these limitations and
full implementation of proposed procedure in the real
world project (as it is now only partially implemented).
Furthermore, we plan to formally describe the segmenting
procedure algorithm.

In conclusion, proposed procedure pertains only to a
few aspects of data quality and by no means provides a
comprehensive verification of data warehouse data. It cov-
ers counts and basic measure amounts for a subset of data
warehouse structures and presents a step towards improv-
ing the quality of the data in the data warehouses. It is
a fundamental testing strategy that should be augmented
with other kinds of test. In such complex systems, one can
never be completely certain that data in the data warehouse
is an accurate representation of data source(s). It is possi-
ble only to be more or less certain.
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[16] J. Rodić, M. Baranović: Generating data quality rules and
integration into ETL process., Proceedings 12th Interna-
tional Workshop on Data Warehousing and OLAP (DOLAP
2009), Hong Kong, China, 65-72, (2009).

[17] M. Helfert, C. Herrmann: Proactive data quality manage-
ment for data warehouse systems. 4th International Work-
shop on ’Design and Management of Data Warehouses’
(DMDW’), in conjunction with CAiSE, (2002).

[18] M. Helfert, E. von Maur: A Strategy for Managing
Data Quality in Data Warehouse Systems, Sixth Inter-
national Conference on Information Quality, MIT, Cam-
bridge, USA, (2001).

[19] Y. L. Simmhan, B. Plale, D. Gannon: A Survey of data
Provenance Techniques, ACM SIGMOD Record, Septem-
ber 2005

[20] Y. Cui, J. Widom: Lineage tracing for general data ware-
house transformations, in Proc. VLDB’01, 471–480. Mor-
gan Kaufmann, (2001).

[21] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita: Improving data cleaning quality using a data lineage
facility, in Workshop on Design and Management of Data
Warehouses (DMDW), Interlaken, Switzerland, (2001).

[22] R. Kimball, M. Ross: The data warehouse toolkit: the com-
plete guide to dimensional modeling (2nd edition), John
Wiley & Sons, Inc; (2002).
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