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Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using 
methods of the spectral analysis. Topographic data are acquired by means of the optical profi lometr MicroProfFRT. 
Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method 
combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is 
characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to 
the fi ne texture of the surface studied. 
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Analiza topografi je površina titanove legure nakon rezanja vodenim mlazom pomoću spektralne analize. Eks-
perimentalna studija površine titana klase 2 dobivene abrazivnim rezanjem vodenim mlazom je provedena korištenjem 
metode spektralne analize. Topografski su podaci prikupljeni pomoću optičkog profi lometra MicroProfFRT. Procjena 
površinske snage spektralne gustoće je provedena periodogram metodom u kombinaciji sa Welch metodom. Pozor-
nost je posvećena površinskoj snazi spektralne gustoće koja je karakterizirana pomoću kutnih spektara gustoće snage. 
Struktura površinskog spektra gustoće je povezana sa istraživanom fi nom teksturom površine.

Ključne riječi: Rezanje abrazivnim vodenim mlazom, površinska topografi ja, spektralna analiza 

INTRODUCTION

Over the last decades, research and engineering 
practice have been characterized by the development of 
non-traditional methods of material machining. Various 
machining technologies of high-speed cutting by using 
of liquid jets can be included in this category. Whereas, 
the technology of high-speed jet machining itself is well 
defi ned, the studies of abrasive waterjet (AWJ) quality 
parameters in the depth of produced cuts are still desir-
able. The attempt to defi ne the depth of zone where the 
AWJ - produced surface is yet satisfactory for usual ma-
chinery practice has been done e.g. by Hashish [1,2]. 
Guo suggested the classifi cation of cutting zones by 
means of the surface roughness spectral analysis and 
the same problem has been solved also by a wavelet-
based topography analysis [3,4]. Surface irregularities 
in the form of striation were studied in [5–7], where also 
the quantitative surface roughness data were presented. 
The most widespread tool used in practice for a surface 
roughness measurement is a stylus profi lometer. Its 
main drawbacks are an ability of only 2-D assessment 
of a surface topography and a contact with the surface, 
which can cause a destruction of certain surfaces and 
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misinterpretation of data measured. Aforementioned 
drawbacks of the 2-D assessment of a surfaces quality 
lead to needs of a new generation of instruments ena-
bling a non-contact 3-D assessment of a surface quality 
(it is along a selected area of the surface). Such an in-
strument is the optical profi lometer MicroProf  FRT 
(Fries Research & Technology GmbH).

We shall focus our attention to the spectral analysis 
of surface 3D topographic data obtained by means of 
the optical profi lometer MicroProf  FRT from titan 
surfaces generated by abrasive waterjet.  

AREAL POWER SPECTRAL 
DENSITY OF A RANDOM FUNCTION

It is interesting to apply spectral analysis of a sur-
face topography to surfaces generated by AWJ cutting. 
These surfaces are of a random character. It is possible 
to select individual zones of the surface in which the 
surface function can be considered as a stationary (i.e. 
there is not any change of the surface character within 
the whole individual zone) and ergodic (i.e. we can 
evaluate features of the whole surface topography with-
in the individual zone from an individual suffi ciently 
large realization of the surface within the zone) 2D ran-
dom function. We shall confi ne our attention only to the 
so called transition zone. The reason is that the surface 
quality within this zone is changing from suffi cient to 
defi cient from the viewpoint of engineering production 
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requirements. Considering the surface under study as a 
random function we have to describe the surface by 
means of mean quantities derived from amplitude Fou-
rier spectra of its realizations or, as usually, from squares 
of these spectra in the frequency domain (so called en-
ergy or power spectra of the surface realizations). We 
shall describe a non-limited (i.e. defi ned along the whole 
plane x, y) realization of the random surface under study 
by the surface function z=z (x, y) in the coordinate sys-
tem Oxyz, where z is the height of the surface with re-
spect to the plane x, y in the point [x, y]. Hence, the 
function z=z (x, y) is the realization of a stationary and 
ergodic random function zr≡{z(x, y)}  selected by a 
process of a measurement. The function  z=z (x, y) is 
defi ned along the whole plane x, y. But we acquire in-
formation on the function z=z (x, y) only from a fi nite 
region X, Y of the plane x, y by the measurement. So we 
deal with the function zX,Y=zX,Y(x, y)defi ned as follows:
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Then it is possible to defi ne the areal power spectral 
density (APSD) of the function z=z (x, y)  as follows 
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APSD of the whole random function zr is defi ned as:
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where the symbol 〈 〉 denotes the mean of the surface 
realizations population. The quantity Pzr(fx, fy) indicates 
in what way the mean power of the studied surface is 
distributed within the frequency domain. We shall use it 
for the characterization of surfaces generated by AWJ. 
The characterization of the surface topography within 
the transition zone along an individual surface profi le 
can be also performed by means of amplitude – fre-
quency analysis (2D surface evaluation) [8-10]. More 
advanced approach is the surface topography charac-
terization by means of the discrete fast Fourier trans-
form (DFFT) [11-13] of 2D data (maps of surface 
heights) within the zone. According to our best knowl-
edge the application of the areal data spectral analysis 
has not been used for a topography characterization of 
surfaces generated by the AWJ cutting yet.

ANGULAR POWER SPECTRAL DENSITY
It is possible to characterize the shape of APSD by 

means of the angular power spectral density (AnPSD) 
of the function [11]. To defi ne this quantity it is neces-
sary to transform APSD (see Equation 4) into polar co-
ordinates within the frequency domain.
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Then AnPSD is defi ned as follows [11]:
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where 0 ≤ θπ and frmax (θ) is a maximum spatial fre-
quency contained in the section of APSD given by the 
angle θ. We can describe a distribution of the power of 
the studied random function along individual directions 
within the frequency plane by this quantity.

PERIODOGRAM ANGULAR 
POWER SPECTRAL DENSITY ESTIMATION

We cannot analyze infi nite number of possible real-
izations of the infi nite function zr. It leads to the fact that 
our result must be only the estimation of APSD from 
Equation (4) as 
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where Q is the number of realizations available. 
Hence, we can approximately express Equation (4) as 
follows:
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where 0 ≤ k ≤ M – 1; 0 ≤ l ≤ M – 1.

Using the relation (7) we employ so called periodo-
gram method of the determination of the ASPD estima-
tion of the random function zr.

WELCH’S METHOD

Calculation of the right side of Equation (7) can be 
carried out in several ways. We selected the Welch’s 
method. Within the framework of this method we re-
solve the measured domain of the given realization into 
a suffi cient number of mutually overlapping sub-do-
mains ZX’,Y (xm’,, ym‘). Then we carry out weighting the 
surface function in each sub-domain by a chosen weight-
ing function w(xm’,, ym‘). Thereafter we determine the 
following expression for each the weighted sub-domain 
denoted by the indices q’: 
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for 0 ≤ k ≤ M´ – 1; 0 ≤ l ≤ N´– 1, M´M, N´N
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denotes the Fourier transform of the surface function 
weighted by the function w(m'∆, n'∆y) within the se-
lected q' th domain X', Y'. In conclusion we calculate the 
arithmetic average of Q' spectra of weighted surface 
function within all sub-domains
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Considering the assumption of the function zr ergo-
dicity the term (9) is equivalent to the arithmetic aver-
age of the given number of fi nite realizations of zr . The 
term (9) is the resulting statistical estimate of the APSD 
defi ned by Equation (4). 
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As regards to the discrete form of the term (5) for 
AnPSD we used an appropriate numerical algorithm for 
their calculation.

RESULTS

The 3D matrix of surface heights measured by the 
optical profi lometer MicroProf  FRT on a typical titan 
grade 2 surface prepared by AWJ cutting under condi-
tions listed in Tab.1 is presented in Figure 1. 

The evaluation of the surface topography has been 
done within the transition zone marked by the white 
rectangle. The estimate of the APSD obtained by men-
tioned procedure is presented in Figure 2. This fi gure 
shows contours of the APSD for the sake of clearness. 
Two lines in the fi gure represent the directions in which 
AnPSD is reaching its maximum for low (the solid line) 

and high spatial frequencies (the dashed line). The head-
ing angles of both the lines equal the angular coordi-
nates θ of the normalized AnPSD maximum for low and 
high spatial frequencies. Values of those maxima 
AnPSD angular coordinates are as follows:

 θml = (174,9±0,3)°, θmh = (158,6±0,2)°

These values were obtained from 10 independent 
procedures of the parameters evaluation; their random 
uncertainties are of 95 % confi dence level.

DISCUSSION
We can interpret the difference between θml and θmh  

in the following way. The topography of the surface 
studied shows typical striation (see Figure 1). With re-
gard to dimensions of this striation they contribute to 
the APSD within the low spatial frequencies region (the 
smallest contour in Figure 2) In accordance with the 
theorem of similarity, which is valid for the Fourier 
transform [10], we can state that the main orientation of 
this striation is perpendicular to the solid line in Figure 
2. For the same reasons we can also state that there is a 
fi ne texture corresponding to high spatial frequencies in 
the surface topography, the main orientation of which is 
slightly rotated with respect to the direction of the sur-
face striation. In the case presented the difference be-
tween these directions is ∆θ = θml – θmh= (16,3±0,3)°. It 
can be explained by a supposed mechanism of the sur-
face generation. The abrasive water jet creates surface 
striation as the main feature of the surface topography 
in transition and so called rough zones. Inside an indi-
vidual groove the turbulent fl ow of the abrasive water 
jet originates a fi ne texture in the surface topography 
with a prevailing direction different from the prevailing 
direction of the surface striation. This proposed mecha-
nism is supported by the detailed study of the surface 
topography by means of optical microscopy which has 
been carried out too.

Figure 1  Digital map of the typical titan grade 2 surface 
topography produced by AWJ cutting (Optical 
profi lometer MicroProf  FRT)

Figure 2 Contours of the APSD of the surface from Figure 1 
within the transition zone (semilogarithmic scale). 
Solid line –direction of surface striation, dashed line – 
direction of the fi ne surface texture.
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CONCLUSION

In this paper we studied a titan grade 2 surface to-
pography prepared by abrasive waterjet cutting. Topo-
graphic data were acquired by optical profi lometer Mi-
croProf  FRT. We focused our attention to the transi-
tion surface zone. Using APSD and AnPSD we found 
that an abrasive water jet creates besides striation also a 
fi ne texture inside individual grooves. These two com-
ponents of the surface topography show different pre-
vailing directions which were determined by means of 
the angular coordinate of the maximum of the normal-
ized AnPSD. We explained this fact by the proposed 
mechanism of AWJ surface generation, i. e. by a turbu-
lent fl ow of the abrasive water jet inside an individual 
surface groove. We can conclude that the spectral analy-
sis of surfaces generated by AWJ provide results useful 
for topography characterization of such surfaces. These 
results can be used for an optimization of the AWJ ma-
chining process.
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