
Journal of Computing and Information Technology - CIT 19, 2011, 2, 127–139
doi:10.2498/cit.1001706

127

A Recovery Scheme for Cluster
Federations Using Sender-based
Message Logging

Bidyut Gupta, Ruslan Nikolaev and Raja Chirra
Department of Computer Science, Southern Illinois University, Carbondale, Illinois, USA

A cluster federation is a union of clusters and is het-
erogeneous. Each cluster contains a certain number of
processes. An application running in such a computing
environment is divided into communicating modules so
that these modules can run on different clusters. To
achieve fault-tolerance different clusters may employ
different check pointing schemes. For example, some
may use coordinated schemes, while some other may
use communication-induced schemes. It may complicate
the recovery process. In this paper, we have addressed
the complex problem of recovery for cluster computing
environment. The proposed approach handles both inter
cluster orphan and lost messages unlike the existing
works in this area. We first propose an algorithm to
determine a recovery line so that there does not exist
any inter cluster orphan message between any pair of the
cluster level check points belonging to the recovery line.
The main feature of the proposed algorithm is that it can
be executed simultaneously by all clusters in the cluster
federation. Next we apply the sender-based message
logging idea to effectively handle all inter cluster lost
messages to ensure correctness of computation.

Keywords: cluster federation, cluster level, checkpoint,
recovery

1. Introduction

Cluster federation is a union of clusters and is
heterogeneous. Each cluster contains a certain
number of processes (nodes). Nodes in a clus-
ter are often linked by a system area network
and clusters are linked by local area networks
or even by wide area networks [2]. An Ap-
plication running in such a computing environ-
ment is divided into communicating modules so
that these modules can run on different clusters.
Clusters are usually deployed to improve speed
over that provided by a single computer, while

typically being much more cost-effective than
single computers of comparable speed or relia-
bility [1], [2], [9]. Some of the other reasons can
be security, hardware/software constraints, or
because the applications may need a very large
number of nodes. Code coupling applications
are usually run on such architectures. A cluster
federation can also be viewed as follows. With
the availability of large-scale global comput-
ing systems (grid computing, web services as
examples) a computing system may consist of
many geographically dispersed heterogeneous
subsystems (clusters) for large scale resource
sharing and problem solving [1]. Thus, a cluster
federation can also be viewed as a hybrid dis-
tributed environment containing multiple het-
erogeneous subsystems (clusters).
Because of its growing importance, fault-tolerant
aspect of cluster computing environment de-
serves significant attention. Check pointing and
rollback recovery are widely used techniques
that offer fault-tolerance in distributed systems
[4], [5], [16]-[23]. The basic idea is to peri-
odically record the system state as a checkpoint
during normal system operation and upon detec-
tion of faults, to restore one of the checkpoints
and restart the system from there [4], [5].
In cluster computing, a cluster may employ ei-
ther coordinated or independent check point-
ing scheme for its processes to take their local
checkpoints. We term this checkpointing as
the primary level of checkpointing. Note that
in cluster computing failure of a cluster means
failure of its one or more processes. It is also
the responsibility of each cluster to determine
its consistent local checkpoint set that consists

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14439534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

of one checkpoint from each process present in
it. This consistency means that between every
two checkpoints of this set there is no orphan
message [1], [2], [4], [5]. (It may be noted that
a message sent by a sender S is an orphan if its
sending event has not been recorded in a check-
point of the sender S, but its receiving event has
been recorded in a checkpoint of the receiver
R). But this consistent local checkpoint set (also
known as cluster level checkpoint of the clus-
ter) may not be consistent with the other clus-
ters’ consistent local checkpoint sets, because
clusters interact through messages which result
in dependencies between the clusters. There-
fore, a collection of consistent local checkpoint
sets, one from each cluster in the federation,
does not necessarily produce a consistent feder-
ation level checkpoint (also known as federation
level recovery line). Consequently, rollback of
one failed cluster may force some other clusters
to rollback in order to maintain consistency of
operation by the cluster federation. This un-
controlled propagation of rollback is known as
domino-effect [10], [24]. There is, therefore, a
need to have a second level of checkpointing
algorithm that helps in determining a consis-
tent federation level checkpoint so that there is
no inter cluster orphan message between any
two cluster level checkpoints of the recovery
line. Then, after recovery from a failure the
individual clusters in the federation can restart
their computation from their respective cluster
level checkpoints belonging to the recovery line.
In this context, note that after recovery from a
failure even if the clusters restart from their re-
spective cluster level checkpoints belonging to
a federation recovery line, still it does not nec-
essarily ensure correctness of computation. To
achieve it, any inter cluster message that may
become a lost message because of the failure
must be identified and resent to the appropriate
receiving cluster. The responsibility of the re-
ceiving cluster is that it must process all such
lost messages following the order of their arrival
before the occurrence of the failure [13]-[15].
An example of a lost message is shown in Fig-
ure 1. In this figure, after the system recovers
from the failure f, if the two clusters Ci and Cj

restart from their respective checkpoints CLCi

and CLCj, then message m will be treated as a
lost message. The reason is that cluster Cj does
not have a record of the receiving event of the
message as cluster Ci has the record of sending

it in its checkpoint CLCi. In such a situation,
for correct computation this lost message m has
to be identified and cluster Ci must resend it to
cluster Cj after the system restarts.

Figure 1. Message m is a lost message.

Although several recovery approaches exist for
distributed systems [3]-[8], [11], [12], [25], [28],
due to the complexity involved in finding a fed-
eration level recovery line, very few works exist
in the area of cluster computing [1], [2].

In this work, we present a recovery approach
for cluster computing environment that consid-
ers both determination of a federation level re-
covery line and resending of all inter cluster lost
messages. It is a two phase approach. First, we
propose a fast recovery algorithm to determine
a federation level recovery line that guarantees
the absence of any inter cluster orphan message
with respect to the cluster level checkpoints be-
longing to the recovery line. Then we apply
the existing idea on sender-based message log-
ging approach for distributed computing [13] to
cluster computing to identify and resend inter
cluster lost messages. It helps a receiving clus-
ter, after it restarts, to process these messages
following the order of their arrival before the
occurrence of the failure.

2. Relevant Data Structures

Before we state the relevant data structures and
their use in our proposed algorithm we need to
define the following. A cluster level checkpoint
(CLC) of a cluster is defined as a set of local
checkpoints, one from each process belonging
to the cluster, such that these checkpoints are
mutually consistent. In other words, a CLC
represents a recovery line for the cluster; how-
ever this CLC may not be consistent with CLCs

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 129

of other clusters. As in [1] and [2], we assume
that inside a cluster processes take these local
checkpoints periodically in a coordinated way
[12]. A CLC taken in this way is termed in
this paper as regular cluster level checkpoints.
Besides, in our approach a cluster also takes a
cluster level checkpoint in a coordinated way if
it receives an inter cluster application message
from another cluster. We call it a forced cluster
level checkpoint. Therefore, a forced CLC may
be considered as a communication-induced one
[6], [26], [27]. As in [2], we assume that the two
events of receiving an inter cluster application
message and taking a forcedCLCoccur together
atomically. A consistent federation level check-
point (i.e. a federation level recovery line) is a
set of the CLCs, one from each cluster, such
that these CLCs are mutually consistent; that is,
there is no orphan message in the system with
respect to this set of the CLCs.

Below we justify the motivation for using hier-
archical check pointing approach.

We assume that inside a cluster processes take
local checkpoints periodically in a coordinated
way. This ensures that these checkpoints in-
side a cluster are consistent. The assumption
that the number of inter cluster messages is
low justifies the use of communication induced
check pointing scheme between two commu-
nicating clusters. In our approach a cluster
takes a cluster level checkpoint in a coordi-
nated way if it receives an inter cluster appli-
cation message from another cluster which we
call a forced cluster level checkpoint and it is in
fact a communication-induced checkpoint. This
means that each cluster takes its CLC indepen-
dently, but information is added to each inter-
cluster communication that results in taking a
forced CLC by its receiving cluster. Therefore,
we propose a hierarchical protocol combining
coordinated and communication-induced check
pointing.

It may be noted that taking a forced CLC ev-
ery time a cluster receives an inter cluster ap-
plication message is not an overhead because,
in general, such type of message exchange be-
tween any two clusters occurs quite infrequently
[1], [2]. We use the following notations in this
work to represent a cluster and its processes.

Let the cluster federation under consideration
consist of N clusters, where each cluster con-
sists of a number of processes. The jth process

of the ith cluster is denoted as pi
j and ith cluster

as Ci. For cluster Ci consisting of r processes,
its mth cluster level checkpoint is represented
as CLCi

m = {cpm
1 ,cpm

2 , . . . ,cpm
r-1,cp

m
r }, where

cpm
j is the mth local checkpoint taken by pro-

cess pj of cluster Ci. Note that all these mth

local checkpoints are taken following the co-
ordinated checkpointing approach and so are
mutually consistent. That is, CLCi

m represents
a recovery line for cluster Ci. In this context,
note that by the statement, ‘a process pi

j in Ci

stores the corresponding CLCi
m in the stable

storage’, we mean that process pi
j stores its local

mth checkpoint cpm
j that belongs to CLCi

m. Also
in cluster computing environment, communica-
tion between two clusters means communica-
tion between two processes belonging to these
two clusters respectively and failure of a cluster
means failure of its one or more processes.

Corresponding to every cluster level checkpoint,
for example say CLCi

m, every process pi
j in clus-

ter Ci maintains the following three vectors at
its mth local checkpoint, which are same for all
processes in the cluster at their respective mth

local checkpoints. Since CLCi
m is the set of

these mth local checkpoints of the processes in
Ci and these vectors are same for all processes
in Ci, hence for simplicity we will assume that
as if cluster Ci maintains these three vectors at
CLCi

m. These three vectors are initialized with
0s at the initial state (starting state) of a cluster
(i.e. at the starting states of the processes in it).
These vectors are stated below.

1. Vi
m(sent) = [vi,0

m ,vi,1
m , . . . ,vi,N-1

m], where
|Vi

m(sent)| =N=Number of clusters in the

cluster federation and vi,j
m represents the num-

ber of inter cluster application messages sent
from cluster Ci to any cluster Cj. Initially
vi,j

m = 0, for 0 ≤j≤N−1.

2. Vi
m(recv) = [ri,0m ,ri,1m , . . . ,ri,N-1

m], where
|Vi

m(recv)| =N=Number of clusters in the

cluster federation and ri,jm represents the num-
ber of inter cluster application messages re-
ceived by cluster Ci from cluster Cj. Initially
ri,jm = 0, for 0 ≤j≤N−1.

3. CICi
m = [ci,0

0 ,ci,1
1 , . . .,ci,m-1

m-1], and |CICi
m| =m

=Number of CLC’s taken by Ci.

130 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

whereCICi
m(m)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

CICi
m(m − 1) + 1
if the CLCi

m is a
forced checkpoint

CICi
m(m − 1)
if the CLCi

m is a
regular checkpoint.

For example, at the initial checkpoint CLCi
0,

the vector CICi
0 = [ci,0

0] = [0]. And at the sec-
ond checkpoint CLCi

1, the corresponding vector
CICi

1 = [ci,0
0 ,ci,1

1] = [0,ci,1
1], where ci,1

1 =ci,0
0 +

1 = 1, if the checkpoint CLCi
1 is a forced clus-

ter level checkpoint; and ci,1
1 = 0 if the check-

point CLCi
1 is a regular cluster level checkpoint.

In a similar way all other entries in the vector
CICi

m are updated. In this work, note that when
we do not need to specify a particular check-
point number, we will simply use the notations
Vi

(sent),V
i
(recv), and CICi to represent the three

vectors.

Besides the above mentioned vectors, each pro-
cess in a cluster maintains a Boolean flag. The
use of this flag has been stated in the following
section.

Observation 1: At any cluster level checkpoint
CLCi

r in cluster Ci, the value of the last element
of the CICi

r vector denotes the total number of
forced checkpoints taken by cluster Ci till its
checkpoint CLCi

r.

Observation 2: At any cluster level checkpoint
CLCi

r in cluster Ci, the length of the CICi
r vec-

tor (i.e. the number of elements in it) denotes
the total number of cluster level checkpoints,
including both regular and forced ones taken by
the cluster Ci till its checkpoint CLCi

r.

The updating of the vectors will become clearer
in the following section.

3. Working Principle

In this section we first present how different
vectors are updated. We then briefly outline
how the proposed recovery mechanism works,
followed by an illustration.

The updating of the vectors will become clear
from the following example. Consider the two
cluster system as shown in Figure 2. Two inter
cluster application messages, m1 and m2, are
sent from Ci to Cj. Initially, the two clusters

take their respective initial cluster level check-
points CLCi

0 and CLCj
0. The CIC vectors at the

two clusters are given in Table 1.

Figure 2. An example of updating the vectors.

In Table 1 consider CICj at the cluster level
checkpoint CLCj

3. It is [0 1 2 2]. In this vector,
total number of elements (= 4) represents the
total number of CLCs (including both regular or
forced ones) taken by cluster Cj and the value of
the last element (= 2) in the vector represents
the total number of forced CLCs taken.

Cluster Checkpoint V(sent) V(recv) CIC

CLCi
0 [0 0] [0 0] [0]

Ci

CLCi
1 [0 2] [0 0] [0 0]

CLCi
0 [0 0] [0 0] [0]

CLCj
1 [0 0] [1 0] [0 1]

Cj
CLCj

2 [0 0] [2 0] [0 1 2]
CLCj

3 [0 0] [2 0] [0 1 2 2]

Table 1. Vectors at different checkpoints.

For a clear understanding of our approach,
throughout this paper we will use the follow-
ing interpretations needed to design the pro-
posed recovery algorithm: (1) by the statement
‘a cluster Ck rolls back to its rth cluster level
checkpoint CLCk

r ’ we mean that all processes
in cluster Ck rollback to their respective lo-
cal checkpoints which form together the cluster
level checkpoint CLCk

r ; (2) by ‘initiator cluster’
we mean the cluster that contains the initiator
process. In fact, in our work a failed process

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 131

inside the initiator cluster actually initiates the
recovery mechanism after this process recovers
from the failure; (3) by the statement ‘a cluster
Ck receives a request from the initiator cluster
Ci and sends its vector and its Boolean flag to it’,
we mean that the process (∈Ck) receiving the
request from the initiator process (∈Ci) sends
its vector and its flag to the initiator; (4) by the
statement ‘the initiator cluster sends/receives
a message’ it means that the initiator process
in this cluster actually sends/receives the mes-
sage; (5) if any of the processes in a cluster
rolls back, the respective Boolean flags of all
processes in that cluster are set at 1; other-
wise these flags are set at 0 each; (6) finally
by ‘a computation done or an action taken by
the initiator cluster associated with the recovery
scheme’ it means that it is actually performed
by the initiator process belonging to this cluster.
Similarly, by ‘a computation done or an action
taken by any other cluster associated with the
recovery scheme’ it means that it is performed
by a process of this cluster.

Recoverymechanism: Unless otherwise needed,
we will simply use the notations Vi

(sent), V
i
(recv),

and CICi to represent the three vectors. A failed
process pi

j inside a cluster Ci initiates the recov-
ery mechanism after it recovers from the failure.
Therefore, cluster Ci acts as the initiator clus-
ter. To start with, this initiator cluster first rolls
back to its latest cluster level checkpoint and
then sends a request message to each cluster
Ck, for 0 ≤k≤N−1, k �=i asking it to send its
Vk

(sent) vector corresponding to its latest clus-
ter level checkpoint. After receiving the vector
Vk

(sent) from all clusters, the initiator cluster Ci

forms a two dimensional array VN.

VN =

∣∣∣∣∣∣∣∣∣∣

v0,0 v0,1 · · · v0,N−1

v1,0 v1,1 · · · v1,N−1

...
... · · · ...

vk,0 vk,1 · · · vk,N−1

vN−1,0 vN−1,1 · · · vN−1,N−1

∣∣∣∣∣∣∣∣∣∣

where the kth row represents Vk
(sent) correspond-

ing to cluster Ck, for 0 ≤k≤N−1. The initiator
cluster then computes the column sums to create
the following vector.

Vc = [v0
c, v

1
c, v

2
c , . . . , v

k
c, . . . , v

N−1
c]

where vk
c = column sum of the entries of the kth

column of VN and is given by vk
c = ΣVN(l, k),

for l= 1 to N. Therefore, vk
c represents the total

number of inter cluster messages sent to cluster
Ck from all other clusters.

The initiator cluster then unicasts vk
c(=Vc(k))

to each corresponding cluster Ck, for 0 ≤ k
≤N−1, k �=i. After receiving vk

c from the ini-
tiator, each cluster Ck adds the elements of
its Vk

(recv) vector (actually as mentioned earlier
this computation is performed by the process
pk

x(∈Ck) which has received the unicast infor-
mation vk

c). Let the sum be vk
r . Therefore, vk

r
represents the total number of inter cluster mes-
sages received by the processes in cluster Ck

from all other clusters.

Cluster Ck (i.e. Process pk
x) now computes

Dk =vk
r−vk

c. The difference Dk (if > 0) be-
tween vk

r and vk
c gives the exact number of inter

cluster orphanmessages received by a cluster Ck

from all other clusters. Process pk
x now checks

the last element (let it beX) present in CICk vec-
tor at its latest checkpoint; this element is the
number of forced CLCs taken so far by cluster
Ck. Process pk

x rolls back to its latest check-
point (say, it is the lth checkpoint) where the
last element in its corresponding CICk vector is
equal to X−Dk. It also unicasts a message to
all other processes in its cluster to rollback to
their respective lth checkpoints. Observe that all
these lth checkpoints of the processes of clus-
ter Ck form the cluster level checkpoint CLCk

l .
Thus, effectively, it can be said that the clus-
ter Ck rolls back to its cluster level checkpoint
CLCk

l . Observe that all these lth checkpoints
of the processes of cluster Ck are assumed to
have been taken during the lth execution of the
coordinate checkpointing protocol.

We have already mentioned that if any of the
processes in a cluster Ck rolls back (i.e. Dk >
0), the Boolean flags of all processes in Ck are
set at 1. The effect of this rollback is that the cor-
responding cluster Ck (i.e. actually process pk

x)
sends this flag value (= 1) along with its Vk

(sent)
corresponding to the checkpoint to which it has
rolled back. If the cluster does not roll back
(i.e. Dk ≤ 0), then it will send only a flag value
of 0. The algorithm will terminate when for

132 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

each cluster Ci, its corresponding flag value is
equal to zero. That is, none of the clusters rolls
back. Otherwise, the algorithm starts its next
iteration. In this case, for any cluster that sent
a flag of 0, its sent vector used in the previous
iteration is used again in the current iteration.

An Illustration: Figure 3 gives an illustration
of how cluster level checkpoints are taken in
our approach as well as how a federation level
recovery line is determined. Each horizontal
line represents a parallel execution on a cluster.
Each cluster Ci (i.e. each process in this clus-
ter) maintains three vectors Vi

(sent), Vi
(recv), and

CICi.

Initially all these vectors are initialized with ze-
ros at the initial checkpoints. Cluster C1 takes
a forced cluster level checkpoint CLC1

1 as soon
as it receives the application message m2 and
updates CIC1

1 from [0] to [01] (we take the last
value in the vector at prior checkpoint, incre-
ment it by 1 and append it to the vector so that
the last element of the new vector gives us the
total number of forced checkpoints taken so far)

and V1
1(recv) from [000] to [001] because it has

received an inter cluster application message
from cluster C2. It also updates V1

1(sent) from
[000] to [100] because it has sent an inter cluster
application message m3 to cluster C0 after the
checkpoint CLC1

0 was taken.

Consider the cluster level checkpoint CLC1
2 in

cluster C1. As this checkpoint is a regular CLC
taken within the cluster, the CIC1

2 is updated
from [01] to [011], V1

2(sent) remains same as

[100]. V1
2(recv) also remains same because it

has not received any inter cluster application
message after the checkpoint CLC1

1. Similarly
all checkpoints for all other clusters are taken
and their vectors updated.

Suppose at time t, a failure ‘f’ occurs in cluster
C1. After recovering from the failure, clus-
ter C1 first rolls back to the checkpoint CLC1

2.
The algorithm is now initiated by cluster C1.
To start with, initiator cluster C1 broadcasts a
request asking the clusters C0 and C2 to send

CIC [0]

V

0

0
0

0

0

0(sent)

0(recv)

0

[000]

V [000]

CLC

CIC [0111]

V

0

3
0

0

0

3(sent)

3(recv)

3

[001]

V [010]

CLC

C
0

CIC [01112344]

V

0

7
0

0

0

7(sent)

7(recv)

7

[001]

V [031]

CLC

CIC [0]

V

1

0
1

1

1

0(sent)

0(recv)

0

[000]

V [000]

CLC

CIC [011]

V

1

2
1

1

1

2(sent)

2(recv)

2

[100]

V [001]

CLC

C
1

CIC [01]

V

1

1
1

1

1

1(sent)

1(recv)

1

[100]

V [001]

CLC

CIC [0]

V

2

2

2

0

0(sent)

0(recv)

0

[000]

V [000]

CLC
1

CIC [011]

V

2

2
2

2

2

2(sent)

2(recv)

2

[010]

V [100]

CLC

C
2

m1 m3

m2

m4 m5 m6

Failure (f)

: Forced cluster level checkpoint : Regular cluster level checkpoint

Figure 3. Federation level consistent checkpoints {CLC0
3, CLC1

2, CLC2
2}.

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 133

their sent vectors corresponding to their latest
checkpoints. In this example cluster C0 sends
the vector [001] and cluster C2 sends [010]. Af-
ter receiving the vectors the initiator creates a
two dimensional array and performs the column
sum and calculates V3 in the following way:

∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣

V3 = Column Sum = 1 1 1

Now, cluster C1 unicasts vk
c to each cluster Ck,

for k = 0, 2. After receiving vk
c, each cluster

Ck adds the elements in its Vk
(recv) at its latest

checkpoints to compute vk
r and then it computes

Dk (= vk
r−vk

c). In this example, at the respec-
tive latest checkpoints of the three clusters we
get the following: D0 equal to 3 for cluster C0,
D1 equal to 0 for cluster C1, and D2 equal to 0
for cluster C2. This implies that cluster C0 has
received three orphan messages with respect to
its latest checkpoint CLC0

7; in fact the orphan
messages are m4, m5, and m6. Observe that
cluster C1 and cluster C2 have received no or-
phan messages.

Now cluster C0 checks the last element (=X) of
CIC0

7. In this example it is 4. Then it calculates
the difference d (=X−D0); in this example d is1
(= 4 − 3). C0 will now skip to a latest check-
point where the last element of CIC0 vector is
equal to 1. This checkpoint is CLC0

3.

Now cluster C0 rolls back by 4 checkpoints i.e.
to CLC0

3 and sends a flag of 1 along with its
V0

3(sent) to the initiator cluster. Cluster C2 sends
only a flag of 0 because it has not rolled back.

Cluster C1 checks whether the flag values from
all the clusters are equal to zero. If they are, then
it will ask all clusters to restart their applications
from their respective present CLCs; else it ex-
ecutes the next iteration. In this example, flag
of cluster C0 is equal to 1 and so the algorithm
executes its next iteration. Cluster C0 sends its
sent vector at its checkpoint CLC0

3. Since both
the initiator cluster C1 and cluster C2 have not
rolled back, their flags are 0 each. As a conse-
quence, in this iteration the initiator cluster will
use the same sent vectors both for itself as well

as for C2 which it used in the previous iteration.
So we again calculate V3. It is given below.

∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣

V3 = Column Sum = 1 1 1

Cluster C1 unicasts vk
c to cluster Ck, for k = 0, 2.

As before, after receiving vk
c each cluster Ck,

adds the elements in its Vk
(recv) to compute vk

r

and then it computes Dk (= vk
r−vk

c). In this
second iteration, we get D0 equal to 0 for the
checkpoint CLC0

3 of cluster C0; D1 equal to 0
for cluster C1 for its checkpoint CLC1

2 and D2

equal to 0 for clusterC2 for its checkpointCLC2
2.

This implies that there is no orphan message in
the cluster federation with respect to these three
checkpoints.

Now both clusters C0 and C2 send a flag of 0.
Cluster C1 has its own flag also set at 0. This
is the termination condition of our approach.
Hence the federation level recovery line can be
represented as the set {CLC0

3, CLC1
2, CLC2

2}.
Observe that in this example in the second itera-
tion cluster C0 starts from CLC0

3 and in the first
iteration it started from CLC0

7. So we have been
able to skip the comparison with checkpoints
in between these two checkpoints, because they
cannot belong to any federation level recovery
line. Also note that the number of trips to the
stable storage has been reduced by the number
of checkpoints that have been skipped. Ob-
serve that the work in [2] fails to avoid these
unnecessary trips to stable storage, resulting in
a slower execution for recovery line determina-
tion compared to our work. Also, observe that
the clusters simultaneously take their decisions
whether to rollback or not. Thus our approach
offers parallel execution as in [2].

The above discussion leads to the following
Lemmas and Theorems.

Lemma1: IfDi > 0, then clusterCi has received
Di number of orphan messages from other clus-
ters.

Proof: vi
r represents the total number of mes-

sages cluster Ci has received so far and these
are recorded in Ci’s latest CLC, and vi

c repre-
sents the total number of messages sent by all

134 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

other clusters to Ci as recorded in their latest
CLC’s. Therefore Di(= vi

r− vi
c) > 0 means that

at least some cluster Ck (k �= i) has sent some
message(s) to cluster Ci after taking its latest
checkpoint. Since all such Di messages have
been received and recorded in Ci’s latest CLC,
but remain unrecorded by the sending clusters,
Ci has received Di number of orphan messages
from the rest of the clusters.

Lemma 2: If Di ≤ 0, then cluster Ci has not
received any orphan message.

Proof: Di = 0 means that the number of mes-
sages received by cluster Ci is equal to the num-
ber of messages sent to cluster Ci and so the
sending events of these messages are already
recorded by the sending clusters in their lat-
est checkpoints. Hence, the received messages
cannot be orphan.

Also, Di < 0 means that the number of the re-
ceived messages by cluster Ci is less than the
number of messages sent to it. It means that all
themessages received by cluster Ci have already
been recorded by the senders. Hence none of
such received messages can be an orphan.

Theorem 1: Let Di > 0 at the rth checkpoint
CLCi

r of cluster Ci and the last element of the
CICi

r vector at this checkpoint be X. Let CLCi
m

be the latest checkpoint prior to CLCi
r such that

the last element of CICi
m is equal to X−Di.

Then none of the checkpoints CLCi
r, CLCi

r−1,
CLCi

r−2, . . . , CLCi
m+1 can belong to any feder-

ation level recovery line.

Proof: According to Lemma 1, Ci has received
exactly Di number of orphan messages from
all other clusters till its latest checkpoint CLCi

r.
Given that the last element of the CICi

r vec-
tor at the checkpoint CLCi

r is X, this implies
that the cluster Ci has taken X forced check-
points so far according to Observation 1. But a
cluster takes a forced CLC whenever it receives
an inter cluster application message. Thus, in
this case cluster Ci has recorded the events of
receiving X inter cluster application messages
at the checkpoint CLCi

r. With respect to the
checkpoint CLCi

r it is clear that Di is the num-
ber of orphan messages received by cluster Ci

from all other clusters. So out of these X mes-
sages, only X−Di messages are such that their
sent events are recorded by some other clusters.
Thus cluster Ci has to rollback to a latest check-
point which has recorded the receiving event

of the (X−Di)th inter cluster application mes-
sage, skipping all the checkpoints which have
recorded the events of receiving the orphan inter
cluster application messages, received after the
(X−Di)th inter cluster application messages.

We also have assumed that the CLCi
m is the

latest checkpoint prior to CLCi
r such that the

last element of CICi
m is equal to X−Di, thus

CLCi
m is the latest checkpoint that has recorded

the receiving event of the (X−Di)th inter clus-
ter application message. Thus, the application
messages which have caused the creation of
the checkpoints CLCi

r, CLCi
r−1, CLCi

r−2, . . . ,
CLCi

m+1 are orphan and hence these check-
points cannot belong to any federation level re-
covery line.

Theorem 2: If Di ≤ 0 at the latest checkpoint
of each cluster Ci, for 0 ≤ i ≤ N−1 (i.e. flag
of each Ci is 0), then the recovery algorithm
terminates and all such latest checkpoints form
a consistent federation level checkpoint of the
cluster federation.

Proof: According to Lemma 2, Di ≤ 0 at the
latest checkpoint of each cluster Ci means that
none of the clusters in the cluster federation has
received any orphanmessage till its latest check-
point. Thus the set of all such checkpoints, one
from each cluster, are mutually consistent and
hence they form a consistent federation level
checkpoint of the cluster federation.

4. Algorithm Recovery

Input: Given the latest N cluster level check-
points, one for each cluster Cj, 0 ≤ j≤N−1, for
an N cluster system and the corresponding vec-
tors Vj

(sent), Vj
(recv), CICj at these checkpoints.

Output: A federation level recovery line which
is also a maximum consistent state of the cluster
federation.

The responsibilities of each cluster Ci and the
initiator cluster Ck are stated below.

Initiator cluster Ck:

Step 1: it asks each cluster Ci for 0 ≤ i ≤ N−1,
i �=k, to send its Vi

(sent) at its latest checkpoint
CLCi

r;

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 135

/* at CLCi
r the vectors are same for all processes

in cluster Ci */

Step 2: it receives all Vi
(sent) for 0 ≤ i ≤ N−1;

Step 3: it computesVc = v0
c, v

1
c, v

2
c, . . . , v

k
c, . . . ,

vN−1
c ;

Step 4: it unicasts vi
c(=Vc(i)) to each cluster

Ci, for 0 ≤ i ≤ N−1;

Step 5: it receives either a flag or (flag and
Vi

(sent)) from each cluster if flag = 0 for each
cluster Ci, for 0 ≤ i ≤ N−1

/* no cluster rolls back, i.e. Di ≤ 0 for each
cluster Ci */

cluster Ck asks every cluster Ci for 0 ≤ i ≤
N−1, i �=k to restart the application program
from its last checkpoint corresponding to which
Di ≤ 0 and cluster Ck does the same for itself;
the algorithm terminates;

/* a federation level recovery line is determined
*/

else

control flows to step 3;

/* for any cluster which has sent a flag of 0, its
sent vector received in the previous iteration is
used again */

Cluster Ci:

Step 1: cluster Ci receives request from cluster
Ck;

if Ck has requested to restart

processes in Ci restart from their respective lo-
cal checkpoints corresponding to the CLCi

where Di ≤ 0;

else

it sends Vi
(sent) at its latest cluster level check-

point to the initiator cluster Ck;

Step 2: it receives vi
c from initiator cluster Ck;

Step 3: it computes Di;

Step 4: if Di > 0

/* Ci needs to rollback */

it calculates (X−Di);

/* X is the last element in CICi
r */

it sends a flag of 1 and Vi
(sent) corresponding to

its checkpoint CLCi
m; (i.e. CLCi

r is replaced by
CLCi

m)

/* Ci rolls back to CLCi
m and CLCi

m is the
latest checkpoint prior to CLCi

r such that the
last element of CICi

m is equal to X−Di; that
is, the checkpoints CLCi

r, CLCi
r−1, CLCi

r−2,. . .,
CLCi

m+1 cannot belong to any federation level
recovery line*/

else

it sends a flag of 0 to cluster Ck;

Correctness Proof: Each Cluster Ci repeats its
steps 1, 2, 3 and 4 to arrive at a checkpoint
that has not recorded the receipt of any orphan
message from the other clusters (using the ob-
servations of Lemmas 1 and 2). In other words,
it identifies the checkpoints that cannot belong
to the federation level recovery line and skips
them (using the logic of Theorem 1). This de-
cision is made based on the value of Di. How-
ever, the initiator cluster Ck decides when to
terminate the algorithm, i.e., when the cluster
level checkpoints can become mutually consis-
tent. Cluster Ck checks to see if Di ≤ 0 for
each cluster Ci. If so, the algorithm terminates
according to Theorem 2. Note that the con-
dition Di ≤ 0 must always occur during the
execution of the algorithm. It may be observed
that in the worst case, because of some typical
communication pattern, the domino effect may
force processes in all clusters to restart from
their initial states where for each cluster Ci we
always have Di = 0. Besides, since the al-
gorithm starts with the latest checkpoints, the
number of events (states) rolled back at each
cluster is a minimum. This is true because, in
its Step 4 each cluster Ci skips only the check-
points that cannot belong to a federation level
recovery line. Thus, the algorithm determines a
federation level recovery line which is the max-
imum consistent state of the federation as well.

Message Complexity: Suppose the termination
of the algorithm requires the construction of the
vector VN by the initiator cluster Ck to occur k
times (i.e. k number of iterations). During each
such time every cluster in the N-cluster system
exchanges a couple of messages with initiator
cluster Ck. Thus, O(N) messages are sufficient
for each time. Thus, considering k times, the
message complexity of the algorithm is O(kN).

136 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

5. Inter Cluster Lost Messages

The sender-based message logging scheme pro-
posed for distributed computing [13] to identify
and resend lost messages is used in this work.
This scheme has been the choice since it does
not require message ordering and message log-
ging is done asynchronously. We apply it to
cluster federation in the following way. When a
sending process, say pi in a cluster sends an in-
ter cluster message m to a process pk in another
cluster, the message m is piggybacked with a
send sequence number (SSN) which represents
the number of messages sent by this process.
The sender also logs the message m and its
SSN in its local log. The receiving process pk
will assign a receive sequence number (RSN)
to the message m, which represents the num-
ber of messages received by pk. The RSN is
incremented each time pk receives a message.
It then sends the RSN back to the sender pi.
After receiving the RSN corresponding to m,
the sender records the RSN with the log of the
message m. Thus message m is called a fully
logged message. This local log is saved in sta-
ble storage when pi takes its next checkpoint.
Process pi then sends an acknowledgement, ack
to the receiver. In the meantime after sending
the RSN to pi, process pk continues its execu-
tion, but cannot send any message (intra or inter
cluster) until it has received the ack. Note that
if the receiver fails before sending the RSN of
the message m, the log of m does not have the
RSN. In such a situation message m is called
partially logged.

Recovery is performed when pk fails. It restarts
from its checkpoint that belongs to the feder-
ation level recovery line as determined by Al-
gorithm Recovery. Now pk looks for those (if
any) inter cluster messages such that their send-
ing events have already been recorded in the re-
spective senders’ checkpoints and the receiving
events have not been recorded in pk’s check-
point belonging to the recovery line. These are
the inter cluster lostmessages. To get thesemes-
sages back, the receiver broadcasts a request to
all clusters for resending the lost messages. At
this time the receiver also sends the value of
the SSNs for different sender processes. Every
sender then resends only those messages with
a higher SSN that were sent to pk before the
failure.

The messages received by pk from the senders
are consumed by pk in the order of their RSNs.

Since the messages that were assigned an RSN
by the receiver form a total order, therefore pro-
cess pk gets the same sequence of messages as it
did before the failure and therefore executes the
same sequence of instructions as it did before
the failure.

Next, pk receives the partially logged messages
following the fully logged ones. These partially
logged messages do not have any RSN values
attached to them. So there is no total ordering
imposed on them by pk. However, according
to the work in [13] the receiver was constrained
from communicating with any process if the
ack for any message it had received was pend-
ing. Therefore any order inwhich these partially
logged messages are resent to pk is acceptable
[13].

Observe that in our approach a federation level
recovery line means that there does not exist
any inter cluster orphan message between any
two cluster level checkpoints belonging to the
recovery line. Hence the mechanism to handle
orphan messages in [13] is not needed in our ap-
proach. In this context, note that if the CLCs are
taken following the single phase non-blocking
check pointing algorithm of [3], there will be
no intra cluster orphan messages either. Also
note that the above schemes about handling in-
ter cluster lost messages can be similarly ap-
plied to handle any intra cluster lost messages.
Thus absence of any orphan and lost messages
ensures correctness of computation.

6. Comparison

In the present work, we have considered both
the determination of a federation level recovery
line and identification of any inter cluster lost
messages. The works in [1] and [2] have not
considered the identification of inter cluster lost
messages. The authors considered only the de-
termination of a federation level recovery line.
So we compare below only the effectiveness of
our approach to find a recovery line with those
of the works in [1] and [2].

Comparisonwith thework in [1]: In [1] a check-
pointing/recovery algorithm has been proposed
for typical cluster federation architecture which
integrates independent and coordinated check-
pointing schemes for applications running in

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 137

a hybrid distributed environment. In this ar-
chitecture multiple coordinated checkpointing
subsystems are connected with a single inde-
pendent checkpointing subsystem. Each such
coordinated subsystem represents a group of
smaller coordinated subsystemswhich have fre-
quent message exchanges among them and mul-
tiple independent subsystems are combined into
one larger independent subsystem. The archi-
tecture is a very restricted one in the sense that
the above mentioned multiple coordinated sub-
systems cannot communicate directly with each
other; rather, they do it via the independent sub-
system.

The assumed restricted architecture is the main
shortcoming of this work. Our proposed ap-
proach is independent of any particular archi-
tecture.

Comparison with the work in [2]: The algo-
rithm in [2] and ours have the following similari-
ties. Both are architecture independent unlike in
[1] and both determine the same federation level
recovery line. Also these algorithms are simul-
taneously executed by all participating clusters,
which obviously contributes to the speed of their
execution.

However, the main drawback of the algorithm in
[2] is that if we consider a particular application
message pattern because of which all the clus-
ters have to roll back except the failed cluster,
then all these clusters broadcast a control mes-
sage (named as alert message) before the start
of the next iteration. This results in message
storm. In our algorithm no such situation arises
since its execution is centrally controlled by the
initiator cluster.

Also, in [2] a cluster may have to make much
larger number of trips to the stable storage com-
pared to our approach, in order to determine
which cluster level checkpoint(s) need to be
skipped (i.e. which checkpoints cannot belong
to the recovery line of the cluster federation).
Note that larger the number of such trips, larger
will be the execution time of the algorithm. To
compare this number of trips for the two ap-
proaches, let us assume the following approxi-
mate analysis that offers a clear understanding
of the advantage our approach offers over the
one in [2]. Let us assume that in both algorithms
each cluster will skip on an average r number
of checkpoints per iteration and the algorithms
will determine the federation level recovery line

in k number of iterations. Then we find that in
[2] the number of trips to the stable storage is
(k+kr) compared to just k in our approach. In
Table II we have summarized the comparisons.

Criteria Our Algorithm Algorithm [2]

Message Storm No Yes
Simultaneous execution

by clusters Yes Yes

Architecture dependent No No
Number of trips
to stable storage k k+kr

Message complexity O(kN) O(kN2)

Table 2. Comparison with the work In [2].

Efficiency of the algorithm in terms of commu-
nication cost: To get a clear idea about how the
communication cost of our recovery algorithm
varies with the increase in the number of clus-
ters when compared to that of the algorithm in
[2], we do the following.

Let Cair be the communication cost of send-
ing a message from one cluster to another
cluster;

and Cbroad be the communication cost of
broadcasting a message to all clusters.

The algorithm in [2] and the one we have pre-
sented here will require the same number of it-
erations in order to determine a federation level
recovery line. In its worst case [2], all clusters,
except the failed one, rollback in each iteration
until the recovery line is determined. There-
fore, all these clusters will broadcast a control
message (alert message) in each iteration.

So, in the worst case in each iteration, the cost
is: (N−1)·Cbroad =(N−1)2·Cair.

Total cost in k iterations is: k·(N−1)2·Cair.

On the other hand, if on an average N/2 clusters
roll back, the total cost is: k·(N/2)·(N−1)·Cair.

For best case in [2], only one cluster rolls back
in each iteration; so the total cost is: k·Cbroad =
k·(N−1)·Cair.

In our approach, in each of the k iterations every
cluster exchanges a couple of messages with the
initiator cluster, irrespective of how many clus-
ters roll back.

138 A Recovery Scheme for Cluster Federations Using Sender-based Message Logging

Thus, in our approach the total cost is always:
k·2(N−1)·Cair .

Without any loss of generality we have assumed
Cair = 1. Figure 4 illustrates how the costs are
affected by the increase in the number of clus-
ters in [2] and in our approach. It is observed
that the best case in [2] performs better than
ours. However, our approach is shown to offer
much better result when considering the worst
and average cases of [2].

Figure 4. Efficiency of the algorithm in terms of
communication cost.

7. Conclusion

In this paper, we have proposed a recovery ap-
proach for handling both inter cluster orphan
and lost messages. The main feature of the pro-
posed recovery algorithm to handle inter cluster
orphan messages is that it is executed simulta-
neously by all participating clusters while de-
termining a federation level recovery line. Be-
sides, the algorithm in its each iteration does not
need to compare all vectors at all checkpoints of
the clusters. It reduces computational overhead
to a good extent and as a result its execution
becomes even faster. Also, the algorithm offers
much smaller number of trips to the stable stor-
age compared to the same in [2]. Note that if the
CLCs are taken following the single phase non-
blocking check pointing algorithm of [3], there
will be no intra cluster orphan messages as well.
We have used the existing idea of sender-based
message logging [13] to handle effectively inter
cluster lost messages. This idea can be sim-
ilarly extended to handle all intra cluster lost
messages as well. Thus absence of any orphan

and lost messages ensures correctness of com-
putation. Also, the proposed algorithm can be
easily extended to handle multiple cluster fail-
ures. For this purpose we just need to have a
watchdog process that will select the initiator
cluster from the faulty clusters after their recov-
ery. Then the algorithm can be executed by this
initiator cluster.

Finally, note that we have not done any exper-
iment, because existing tools are not sufficient
to implement the algorithm. As a result, a large
amount of additional work will be required for
its implementation.

References

[1] J. CAO ET AL., Y. HE, Checkpointing in Hybrid
Distributed Systems. Proceedings of the 7th Intl.
Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN’04), Hong Kong, China,
(2004), pp. 136–141.

[2] S. MONNET ET AL., Hybrid Checkpointing for Paral-
lel Applications in Cluster Federations.Proceedings
of the 4th IEEE/ACM Intl. Symposium on Cluster
Computing and the Grid, Chicago, USA, (2004),
pp. 773–782.

[3] B. GUPTA ET AL., A Low-Overhead Non-Blocking
Checkpointing Algorithm for Mobile Computing
Environment. Springer Verlag Lecture Notes in
Computer Science, 3947 (2006), pp. 597–608.

[4] R. KOO, S. TOUEG, Checkpointing and Rollback-
Recovery for Distributed Systems. IEEE Transac-
tions on Software Engineering, SE-13 (1) (1987),
pp. 23–31.

[5] Y.-M. WANG, Consistent Global Checkpoints That
Contain a Given Set of Local Checkpoints. IEEE
Transactions on Computers, 46(4) (1997), pp. 456–
468.

[6] J. TSAI, S.-Y. KUO, Y.-M. WANG, Theoretical Anal-
ysis for Communication-Induced Checkpointing
Protocols with Rollback Dependency Trackabil-
ity. IEEE Transactions on Parallel and Distributed
Systems, 9(10) (1998), pp. 963–971.

[7] B. GUPTA ET AL., Design of New Roll-Forward
Recovery Approach for Distributed Systems. IEE
Proceedings – Computers and Digital Techniques,
149(3) (2002), pp. 105–112.

[8] D. MINIVANAN, M. SINGHAL, AsynchronousRecov-
ery Without Using Vector Timestamps. Journal of
Parallel and Distributed Computing, 62 Issue 62
(2002), pp. 1695–1728.

[9] X. QI ET AL., An Efficient End-Host Architecture
for Cluster Communication. Proceedings of 2004
IEEE Intl. Conference on Cluster Computing, San
Diego, USA, (2004), pp. 83–92.

A Recovery Scheme for Cluster Federations Using Sender-based Message Logging 139

[10] M. SINGHAL, N. G. SHIVARATRI, Advanced Con-
cepts in Operating Systems, McGraw-Hill, Inc.,
(1994).

[11] E. N. ELNOZAHY ET AL., The Performance of Con-
sistent Checkpointing. Proceedings of the 11th Sym-
posium on Reliable Distributed Systems, (1992),
pp. 86–95.

[12] G. CAO, M. SINGHAL, On Coordinated Checkpoint-
ing in Distributed Systems. IEEE Transactions on
Parallel and Distributed Systems, 9(12) (1998), pp.
1213–1225.

[13] D. B. JOHNSON, W. ZWAENEPOEL, Sender-Based
Message Logging. Proceedings of the 17th Intl.
Symposium on Fault Tolerant Computing Systems,
Pittsburgh, (1987), pp. 14–19.

[14] M. L. POWELL, D. L. PRESOTTO, Publishing: A Re-
liable Broadcast Communication Mechanism. Pro-
ceedings of the 9th ACM Symposium on Operating
Systems, (1983), pp. 100–109.

[15] L. ALVISI, K. MARZULLO, Message Logging: Pes-
simistic, Optimistic, and Causal. Proceedings of the
15th IEEE Intl. Conference on Distributed Comput-
ing Systems, (1995), pp. 229–236.

[16] K.M.CHANDY, L. LAMPORT,Distributed Snapshots:
Determining Global States of Distributed Systems.
ACM Transactions on Computing Systems, 3(1)
(1985), pp. 63–75.

[17] B. GUPTA ET AL., A Novel Low-Overhead Roll-
Forward Recovery Scheme for Distributed Sys-
tems. IET Computers and Digital Techniques, 1(4)
(2007), pp. 97–404.

[18] G. CAO, M. SINGHAL, Mutable Checkpoints: A
New Checkpointing Approach for Mobile Comput-
ing Systems. IEEE Transactions on Parallel and
Distributed Systems, 12(2) (2001), pp. 157–172.

[19] S. VENKATESAN, T. T.-Y. JUANG, S. ALAGAR, Opti-
mistic Crash Recovery Without Changing Applica-
tion Messages. IEEE Transactions on Parallel and
Distributed Systems, 8(3) (1997), pp. 263–271.

[20] T.-Y. JUANG, S. VENKATESAN, Efficient Algorithm
for Crash Recovery in Distributed Systems. Pro-
ceedings of the 10th Conference on Foundations
on Software Technology and Theoretical Computer
Science, (1990), pp. 49–361.

[21] P. LEU, B. BHARGAVA, Concurrent Robust Check-
pointing and Recovery in Distributed Systems. Pro-
ceedings of the 4th International Conference on
Data Engineering, (1988), pp. 154–163.

[22] J. MCDERMID, Checkpointing and Error Recovery
in Distributed Systems. Proceedings of the 2nd In-
ternational Conference on Distributed Computing
Systems, (1982), pp. 271–282.

[23] R. E. STROM, S. YEMINI, Optimistic Recovery in
Distributed Systems, ACM Transactions on Com-
puting Systems, 3(3) (1985), pp. 204–226.

[24] K. VENKATESH, T. RADHAKRISHNAN, H. F. LI, Op-
timal Checkpointing and Local Recording for
Domino-Free Rollback Recovery. Information Pro-
cessing Letters, 5(25) (1987), pp. 295–304.

[25] D. MANIVANNAN, M. SINGHAL, Quasi-synchronous
Checkpointing: Models, Characterization, and
Classification. IEEE Transactions on Parallel and
Distributed Systems, 10(7) (1999), pp. 703-713.

[26] R. BALDONI, J. M. HELWAY, A. MOSTERFAOUI, M.
RAYNAL, A Communication-induced Checkpoint-
ing Protocol that Ensures Rollback Dependency
Trackability. Proceedings of IEEE International
Symposium on Fault-tolerant Computing, (1997),
pp. 68–77.

[27] R. BALDONI, F. QUAGLIA, P. FORNARA, An Indexed-
based Checkpointing Algorithm for Autonomous
Distributed Systems, IEEE Transactions on Par-
allel and Distributed Systems, 10(2) (1999), pp.
181–192.

[28] O. P. DAMINI, V. K. GARG, How to Recover Ef-
ficiently Asynchronously When Optimism Fails.
Proceedings of the 16th International Conference
on Distributed Computing Systems, (1996), pp.
108–115.

Received: June, 2009
Revised: June, 2011

Accepted: June, 2011

Contact addresses:

Bidyut Gupta
Department of Computer Science

Southern Illinois University
Carbondale, IL 62901

USA
e-mail: bidyut@cs.siu.edu

Ruslan Nikolaev
Department of Computer Science

Southern Illinois University
Carbondale, IL 62901

USA
e-mail: rnikola@siu.edu

Raja Chirra
Department of Computer Science

Southern Illinois University
Carbondale, IL 62901

USA
e-mail: rchirra@siu.edu

BIDYUT GUPTA received his M.Tech. and Ph.D. degrees from the Uni-
versity of Calcutta, India. At present he is a Professor at the Department
of Computer Science, Southern Illinois University in Carbondale. His
research interests include secured data communication, mobile and dis-
tributed computing. He is a senior member of IEEE.

RUSLAN NIKOLAEV received his MS degree in computer science from
the Department of Computer Science, Southern Illinois University in
Carbondale. At present he is a doctoral student at Virginia Tech., USA.

RAJA CHIRRA received his MS degree in computer science from the
Department of Computer Science, Southern Illinois University in Car-
bondale. At present he is working as a software engineer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

