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“The scientist is usually looking for invariance whether 
he knows it or not. Whenever he discovers a functional re-
lationship his next question follows naturally: under what 
conditions does it hold?” (Stevens, 1951)

As pointed out in the quotation by Stevens (1951), the 
issue of invariance is a highly relevant topic in scientific 
measurement. Concepts of invariance and the development 
of methods to determine whether or not specific aspects of 
equivalence are hold for a given measurement instrument 
have a long history in psychometrics and can be traced 

back to Thorndike (1904) and Thurstone (1925, 1947; see 
Engelhard, 1992 for a historical review). There is a bifocal 
perspective on the concept of invariance in psychometrics, 
that Thurstone emphasized and that was later immersed by 
Rasch (1961). One perspective is that of sample invariance 
of a measure and the other perspective is that of item invari-
ant measurement of individuals (see also Engelhard, 1992). 
Evidence of sample invariance of a measure or a single test 
item is given, when subgroup characteristics (like gender, 
age, social class etc.) do not influence ability estimates or an 
item scale value. Item invariant measurement refers to the 
concept of minimizing discrepancies between ability esti-
mates of an individual when using for example two different 
item pools. In the present paper we will focus on the issue of 
sample-related invariance. 

The main goal of this paper is to present and illustrate 
two analytical approaches for the investigation of measure-
ment invariance. To this end we will first shortly review 
the concept of cross-group (sample-related) psychometric 
invariance defined in factor analytical context and name 
some of the prevailing research questions linked to its in-
vestigation. Second will be the description of the commonly 
used method to study invariance (Multiple-Group Mean 
and Covariance Structures – MGMCS) and the discussion 
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of some disadvantages of this method particularly in the 
context of investigating developmental research questions. 
The two complementary usable analytical approaches will 
then be presented. These methods allow a more stringent 
investigation of specific aspects of invariance whenever 
group or sub-sample characteristics are continuous vari-
ables. This outline will be followed by an implementation 
of the two approaches for cognitive ability measures in an 
age heterogeneous sample. We will conclude by discussing 
advantages and disadvantages of the proposed methods and 
by considering further possible implementations beyond ag-
ing research.

Measurement and factorial invariance 

In Confirmatory Factor Analysis (CFA) the question of 
invariance is traditionally the one of construct comparabil-
ity across discrete groups (sub-samples at different devel-
opmental levels, like young vs. older individuals, males 
vs. females, or groups of different culture, ethnicity etc.). 
However, for example in the case of age the “grouping vari-
able” is indeed a continuous variable, whenever observa-
tions on a broader age range are available. Cases like culture 
or ethnicity might in fact be a similar case (Betancourt & 
Lopez, 1993). Usually such naturally continuous variables 
are categorized for analytical purposes in the literature. But 
categorization brings along loss of information and there-
fore has, other things being equal, less power to detect true 
differences (MacCallum, Zhang, Preacher, & Rucker, 2002; 
Preacher, Rucker, MacCallum, Nicewander, 2005). Obvi-
ously, the categorization of continuous variables is also as-
sociated with poor sensitivity to detect onsets of changes or 
other discontinuities. 

The importance of testing sample-invariance at the 
level of observed variables 

There are plenty of practical reasons to ask whether a test 
is measuring the same construct, independent of discrete or 
continuous contextual factors characteristic for sub-samples 
investigated with it. Ethnicity, culture, social status, gender 
and age are perhaps the most frequently investigated fac-
tors which potentially affect measurement outcomes. In or-
der to establish fair and unbiased assessments of constructs 
the goal of test development is to reduce the influence of 
such factors regarding the meaning of the measures. Evi-
dence for barred influences can be provided by establishing 
measurement invariance, which is a precondition of cross-
group comparisons on latent factor level (Meredith, 1993). 
Measurement invariance testifies that “reliable measure-
ment properties have been defined in the same operational 
manner” (Little, Card, Slegers, & Ledford, 2007, p. 125) 
independently from contextual “grouping” factors. 

But what does measurement invariance exactly mean? 
Approximately one and a half decades after the influential 

work by Meredith (1993), the practical and theoretical guide 
on studying measurement invariance by Horn and McArdle 
(1992) and the hot and informative discussions (see Labou-
vie & Ruetsch, 1995b; McDonald, 1995; Meredith, 1995; 
Nesselroade, 1995a, 1995b) on this topic, elicited by the 
work of Labouvie and Ruetsch (1995a), who suggested a 
relaxation of previously established demands of invariant 
factor loadings as prerequisite of measurement invariance, 
it was Little and coworkers who elaborated a scientifically 
updated and very useful guide on measurement and factorial 
invariance (see Little et al., 2007). The definitions we will 
introduce and the terminology we will use in the present 
paper, mainly rely on the work by Little et al. (2007). 

There are three levels of invariance implied by the term 
of measurement invariance: 1) Configural invariance – is 
substantiated if a given set of observed variables are shown 
to be indicators of the same construct(s) across disjoint 
samples. This means that the number of factors extracted 
from a set of observed variables is the same across sub-sam-
ples. But configural invariance also implies an equivalent 
pattern of factor loadings. For example, if an indicator re-
quires dual-loadings in a specific sample, whereas only one 
factor accounts for the systematic variance of the respec-
tive indicator in another sample-group, the assumption of 
configural invariance is affected; 2) weak invariance (also 
known as metric invariance) – requires equally sized fac-
tor loadings across groups and entails therewith a first level 
of quantitative invariance. But note that factor loadings are 
just relatively equal at the weak invariance level, because 
factor variances can still vary across groups. Hence factor 
loadings are weighted by the difference in latent variances 
at this level. A further step of establishing measurement 
invariance in the factor analytic approach is the 3) strong 
invariance (also called scale invariance) – which is dem-
onstrated when loadings and intercepts of the indicators are 
equivalent across groups. Note that equivalence of residual 
variance of the indicators – referred to in the literature as 4) 
strict invariance – is not needed for measurement invari-
ance, because the residuals do not contain reliable, construct 
common variance of the indicators (see Little et al., 2007; 
Meredith, 1993).

The importance of testing sample-invariance at the 
level of latent constructs

Once measurement invariance (demonstrated by strong 
invariance and not strict) was established cross-group com-
parisons on the level of constructs can be meaningfully car-
ried out. Theoretical considerations can raise further facto-
rial invariance questions beyond those of the measurement, 
now at the level of constructs (latent factors). There are at 
least three latent level parameters which are usually of inter-
est in theoretically guided cross-group comparisons or com-
parisons as a function of continuous contextual variables: 
1) factor variances, 2) between factor covariances (correla-
tion), and 3) factor means. 
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In order to illustrate age-group comparisons of factor 
variances and covariances as they are frequently found in 
the literature, we will consider the influential differentiation-
dedifferentiation hypothesis, elaborately investigated in the 
developmental research of cognitive abilities (Lindenberger 
& Baltes, 1997; Reinert, 1970; Tucker-Drob & Salthouse, 
2008). The hypothesis postulates changes of the organiza-
tion of intelligence across the lifespan that go beyond mean 
improvements during childhood and youth and mean de-
cline in old age: Performances on a set of cognitive tasks 
in early childhood can be described by a narrower factor 
space, which differentiates during childhood development. 
This means that the number of factors explaining cognitive 
performances increase until early adulthood. Whereas adult 
age is characterized by stability of the factorial structure of 
cognition, a reintegration or dedifferentiation follows dur-
ing old age. We will further consider only the dedifferentia-
tion part of the hypothesis for our exemplification. A strict 
form of dedifferentiation postulate that the number of cogni-
tive factors will decrease with aging. This would imply that 
not even configural invariance could be established in older 
groups compared to groups of younger adults. However, 
cross-sectional and longitudinal lifespan data do not sup-
port strict factorial dedifferentiation (Cunningham, 1981; 
Schaie, Willis, Jay, & Chipuer, 1989; Schaie, Maitland, Wil-
lis, & Intrieri, 1998). Testing a weak form of dedifferentia-
tion transfers the hypothesis to the domain of parameters of 
the latent level, because the question is whether covariances 
(correlations) between cognitive factors and also their vari-
ance increase in old age. Furthermore, invariance related 
hypotheses regarding latent level covariances are also high-
ly relevant in any validation context. 

There are plenty of studies on mean level comparisons 
across groups in many psychological research fields (gender 
difference, cross-cultural, developmental studies etc.). Un-
fortunately most of these studies are based on single tasks 
or small samples or both. Consequently, conclusions on the 
level of abilities – as opposed to specific tasks – can not be 
drawn on their basis. An up-to-date method of investigating 
cross-group mean differences on the level of constructs is 
to test such differences after factorial invariance was estab-
lished for the measures. Factorial invariance means that the 
constructs can be equally interpreted in all groups. Hence, 
testing mean level differences after establishing measure-
ment invariance precludes that “apples and oranges will be 
compared”. 

Analytical approaches of testing age-invariance

The approaches of investigating measurement and facto-
rial invariance reviewed further below will be exemplified 
on a cross-sectional lifespan sample. For this reason, we 
will elaborate our discussion of the methods especially for 
the case of testing age-invariance and point out further pos-
sible applications later on. The used techniques of invari-

ance testing are all implemented in the context of Structural 
Equation Modeling (SEM) or CFA. For details on SEM 
modeling see for instance Kline (2005).

Multiple-Group Approaches. The traditional procedure 
to investigate measurement and factorial invariance is the 
modeling of Multiple-Group Mean and Covariance Struc-
tures (MGMCS; Little et al., 2007). In MGMCS analysis a 
defined structure is fitted across different groups in a series 
of models with varying restrictions of parameter-equality 
with the general goal to determine whether the structure is 
the same or not across groups. This simultaneous modeling 
allows testing whether specific parameters (factor loadings; 
intercepts; latent factor correlations) can be restricted to 
have the same value in the subgroups. Testing measurement 
invariance consequently requires the comparison of a series 
of nested models (see Bollen, 1989). In a first step (config-
ural invariance) the same model is fitted but all model pa-
rameters are allowed to vary across groups. In a second step 
factor loadings are constrained to be equal across groups 
(weak invariance) – the metric invariance model is a nested 
version of the configural model. In a third step (strong in-
variance) a nested model of the weak invariant model is 
tested, which constrains intercepts to be equal across groups. 
Based on the χ2-difference test the amount of loss of fit as a 
consequence of parameter restrictions can be tested (Bollen, 
1989). Due to the fact, that χ2-values are highly sensitive 
to large sample sizes and number of constraints, further al-
ternative indices of evaluating deterioration due to restric-
tions were developed. For example, Browne and Du Toit 
(1992) proposed a rescaling of the Δχ2_value in the metric 
of RMSEA. The authors called the rescaled value Index of 
Root Deterioration per Restriction (RDR). MGMCS mod-
els in which restrictions lead to values higher than RDR=.08 
should not be considered invariant.

MGMCS approaches are methodologically sophisticated 
tools and should be promoted to conduct cross-group com-
parisons on measures in the case of discrete (categorical) 
grouping variables. However, there are some disadvantages 
of MGMCS models for the study of age-related invariance 
or changes of individual differences across the lifespan. 
Age is obviously a continuous variable, but in MGMCS 
approaches it is treated as a categorical variable. Usually 
a relatively high number of age points are compressed into 
one value (15-20 years or even more), and so within-group 
observations can represent developmentally strongly dif-
ferent states. Furthermore, the category boundaries defin-
ing the groups are frequently arbitrarily defined. One could 
only overcome the problem of compression by collecting 
a high number of observations within a narrowly defined 
age range (e.g. 5 years). Such cross-sectional design would 
easily imply very large samples (e.g. 1,000 participants or 
more) if a larger age range is investigated (e.g. age range 20-
80 years). This is rarely feasible, particularly in expensive 
laboratory studies. 

In the following, we want to illustrate several models 
using the equation of the dependency of an indicator Y on a 
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latent factor F modeled in the measurement model part of 
the SEM:

Y= λ0 + λa F + ε       , a=1, ..., A                                 (1)

where λa denotes the factor loading of Y on the latent factor 
F in one of the A age groups a. Note, that if metric invari-
ance does not hold, the factor loadings are allowed to dif-
fer in different age groups and are implicitly modeled as a 
regression step function which realizes different values for 
the different age groups, but a constant factor loading within 
all ages of one age group.

To overcome these disadvantages of MGMCS analyses 
a less frequently used (but see Tucker-Drob, 2009, for an ex-
ception) but very useful analytical approach – Latent Mod-
erated Structural Equations (Klein & Moosbrugger, 2000) – 
can be applied in the context of invariance testing. With this 
method the equivalence of specific parameters from CFA or 
SEM models can be estimated avoiding the rather arbitrary 
discretization of the age variable. Another fruitful procedure 
to investigate the onset and shape of age-related changes 
in factorial structures or factor levels with relatively low 
sample sizes at any age point is the modeling of a series of 
Age-Weighted Measurement or Local Structural Equation 
Models using weighting functions. We will further describe 
these two methods below and apply them to real data in the 
empirical section of this paper.

Latent Moderated Structural Equations. A recently de-
veloped analytical approach – Latent Moderated Structural 
Equation (LMS; Klein & Moosbrugger, 2000) – imple-
mented in the statistical software Mplus (Muthén & Muth-
én, 1998-2007), can be complementary used to MGMCS 
analyses to test metric and factorial age-related invariance. 
Usually, in CFA or SEM the indicators (observed variables) 
are linearly related to the latent factors. In age heterogene-
ous samples it is however possible that the regression slopes 
(loadings of the indicators) are moderated by age. Thus their 
magnitude might change as a function of age. In terms of 
MGMCS this would be visible as a lack of age-related met-
ric invariance. Furthermore, as already mentioned above, 
SEM approaches are used to test linear relationships (cor-
relation or regression) between latent variables. But these 
relationships can be moderated by age or nonlinear trans-
formations of age. This would be visible as evidence in sup-
port of differentiation or dedifferentiation of ability space 
as discussed above. Using LMS one can test, whether the 
influence of an exogeneous (independent) latent variable on 
an endogeneous (dependent) latent variable is moderated by 
age or transformations of age and thus investigate factorial 
invariance in a given model. 

Such moderation effects can be tested by defining an in-
teraction term between the exogeneous latent variable and 
a continuous observed variable (e.g. age) and regress the 
dependent variables onto the interaction term. Dependent 
variables are indicators in the case of testing metric and en-
dogeneous latent variables if the aim is to investigate facto-
rial invariance. Formally, this can be written in the follow-
ing two equations:

Y= λ0 + λ1 (a) F+ ε                                                     (2)

λ1 (a) = β0 + β1a + β2a
2                                                 (3)

Equation 2 assumes a linear relationship of the indicator on 
the latent factor, whereas in equation 3, F is regressed on age 
using additionally a quadratic regression. Plugging equation 
3 into equation 2, this leads to the combined equation

Y= λ0 + λ1 β0 F+ λ1 β1 Fa + λ1 β2 Fa2 + ε                     (4)

The interaction terms of factor F and age a indicate the de-
pendence of the factor loading on age. The reasercher has to 
determine if the regression coefficients β1 and β2 are reason-
ably high to reject the hypothesis of a constant factor load-
ing across age.

Similar to the case of MGMCS models where fit indices 
of more or less restricted models are compared with each 
other in order to prove whether the imposed restrictions de-
teriorate the fit, in the case of LMS, models with and with-
out interaction effects are compared. If the exclusion of the 
interaction impairs the fit of the model this constitutes an in-
dication for lack of metric or factor covariance invariance.

LMS models are limited compared to linear SEM mod-
els in that many established fit statistics (like CFI, RMSEA 
etc.) are not applicable to them. In regular SEM models the 
H0 is a restricted and the H1 an unrestricted covariance ma-
trix between which the discrepancy is estimated. However, 
interaction models generate non-linear outcomes where 
sample covariance matrices are not sufficient statistics any 
more. In the absence of popular fit indices the interaction vs. 
non-interaction model can be compared using likelihood ra-
tio tests or penalty functions, both based on the χ2-statistic. 

Apart from their limitation concerning the lack of fit 
indices, LMS models have a substantial advantage over 
MGMCS models in testing invariance across the lifespan 
because they allow treating age as a continuous variable. 
LMS models dispel any kind of disadvantages related to the 
problem of categorization of continuous variables. Taking 
another point of view, LMS “smoothes out” the regression 
step functions in multiple-group models and can be seen 
as parametrizations of structural variations in MGMCS. In 
principle, also more complex nonlinear functions of age than 
in equation 3 can be specified if sample size permits this.

Age-Weighted Measurement or Local Structural Equa-
tion Models. A further analytical approach we wish to in-
troduce in this work is the use of Age-Weighted Measure-
ment or Local Structural Equation Models (LSEM). Such 
models can be very informative in testing invariance ques-
tions, because they allow the description of age-gradients 
of parameter estimates from CFA and SEM models across a 
wide age-range based on relatively small age heterogeneous 
samples. Locally-weighted averaging, used in nonparamet-
ric regression (Fox, 2008) and nonparametric mixed effects 
models (Wu & Zhang, 2006), can be implemented in SEM 
context in order to define observation weights as a function 
of age and fit a series of models using differently weighted 
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observations. This approach also allows treating age as a 
continuous variable. 

In the empirical exemplification we will use a kernel 
function of weighting observations (Gasser, Gervini, & 
Molinari, 2004) around focal (central) age points. Note that 
alternative weighting functions could also be implement-
ed (Wu & Zhang, 2006). Focal age points can be defined 
even in one year steps. Let us assume that age based sam-
ple weights for a focal point of 50 years shall be calculated 
which is illustrated by the solid curve in Figure 1. Obser-
vations at the focal point of 50 years receive the highest 
weight. Using the kernel weighting function sample weight 
of observations around a focal age point can be calculated. 
Calculated weights will fall off symmetrically with increas-
ing distance of an observation from the focal value which 
has the maximum weight in the case of using a normal ker-
nel function. The idea is that ages nearby the focal point of 
50 years are used to borrow information for the calculation 
of the SEM on that focal point and ages far distant from 
50 years should have negligible influence. Using this calcu-
lated sample weights, a SEM with weighted observations is 
being estimated. 

Based on calculated sample weights for a series of focal 
age points (see calculation steps of weights in the results 
section of this paper), CFA or SEM models can be sequen-
tially fitted moving the weighting window along the age 
variable. Parameter estimates and fit indices for the series 
of models can further be plotted against age in order to visu-
alize their equivalence or change. Age related changes can 
than be computed for the parameter estimates and the fit 
indices. In essence, pursuing our illustration example, the 
factor loadings are allowed to smoothly vary for all differ-
ent ages a:

Y= λ(a)F+ ε                                                                (5)

Equation 5 highlights the difference to the MGMCS and 
the LMS approach. In MGMCS the loading function was 
discretely defined and is a (nonparametric) regression step 
function (see equation 2). In LMS models a parametric load-
ing function is being imposed (see equation 4). Therefore, 
both MGMCS and LMS can be regarded as approximations 
of the local SEM. The deviation of the loading function λ(a) 
from a constant function (say, the calculation of a standard 
deviation λ(a)) can be interpreted as an effect size of spe-
cific parametric non-invariance. 

Empirical illustration – higher-order-structure of cog-
nitive abilities

In this section we will exemplify the introduced analyti-
cal approaches of testing measurement and factorial invari-
ance on the basis of a higher-order structure model of cogni-
tive abilities. 

METHOD

Sample

The data for this illustration are performance measures 
from a sample of 448 individuals with a mean age of 49 
years (SD = 20) and a heterogeneous educational back-
ground. Half of the participants were female. The sample 
can be divided into three almost equally sized sub-samples 
of young (Age Range = 18-35 years, Mage = 24, SD = 5), 
middle-aged (Age Range = 36-64 years, Mage = 49, SD = 8), 
and older adults (Age Range = 65-82 years, Mage = 72, SD = 
5). Gender distribution does not vary across age groups, all 
consisting of 50% females. Educational background of the 
participants was heterogeneous in each age group and com-
parable to each other, except the slightly more positively 
selected older group in the direction of a somewhat higher 
proportion of participants with academic degrees. To evalu-
ate general cognitive functioning of the older participants 
the Mini-Mental State Examination (MMSE; Folstein, Fol-
stein, & McHugh, 1975) was administrated. No individual 
performed below the cut-off score of 24 taken to indicate 
increased risk of mild cognitive impairment (Folstein et al., 
1975; Small, Viitanen, & Bäckman, 1997; Schramm et al., 
2002). 

Procedure

The data were collected within a large cross-sectional 
aging study on face cognition abilities (Hildebrandt, Som-
mer, Herzmann, & Wilhelm, submitted). The data relevant 
for this paper are ability measures on abstract cognitive 
tests. Each task was separately instructed directly before its 
administration. Tasks were programmed using Inquisit 2.0©  
and conducted on PCs with 17 inch color monitors, 85 Hz 

Figure 1. Course of defined sample weights – schematic illustra-
tion.
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refreshing rate, 1280 × 1024 resolution, and a viewing dis-
tance of approximately 50 cm.

Tasks

Working Memory 
Memory updating (MU). This task of measuring work-

ing memory was adapted from Oberauer, Süß, Schulze, Wil-
helm, and Wittmann (2000). In a three by three grid matrix 
– depending on the memory load of a trial – two to seven 
cells were white, whereas the others were black. One-digit 
numbers consecutively appeared for one second in each 
white cell. Participants memorized the numbers and their 
localization in the grid. Following the presentation of the 
last digit, four arrows pointing vertically up or down ap-
peared in the white cells, one at a time. If upward-pointing 
arrows appeared in a cell participants mentally added one to 
the digit a priory presented in that cell and maintain the new 
number. Downward-pointing arrows instructed participants 
to decrease the digit by one and to maintain the new number. 
After the last computing instruction participants had to re-
call the updated numbers for each white cell. In the recall 
phase question marks appeared one at a time and the final 
number for the specific cell had than to be typed in. Par-
ticipants worked on five practice and 18 experimental trials. 
During practice, feedback was provided.

Rotation Span (RS). A second working memory task was 
adapted from Shah and Miyake (1996). The task required 
memorizing and recalling a sequence of arrows, while con-
currently engaging in a secondary task of letter-rotation. 
Each item consisted of a sequence of alternated storage and 
processing trials. First, an arrow was presented, which radi-
ated out from the centre of a circle and showed in one of 
eight possible directions (up, down, left, right, diagonal left 
up, diagonal left down, diagonal right up and diagonal right 
down). In addition arrows were short or long, so that 16 
possible arrows resulted. Presented arrows had to be memo-
rized. Following the presentation of an arrow a normally 
or mirror-reversed letter (“G”, “F”, or “R”), rotated at 0, 
45, 90, 135, 180, 225, 270, or 315 degrees was displayed. 
Participants indicated if presented letters were normally dis-
played or mirror-reversed. After response a second arrow 
was presented, which also had to be memorized. The arrow 
was again followed by a letter-decision trial. Memory load 
(list length) of the items varied between two and five arrow-
letter pairs. At the end of a sequence of letter-arrow pairs, 
a graphic depicting the 16 possible arrows appeared. Par-
ticipants used the mouse to indicate the arrows they memo-
rized by clicking on the corresponding points of the answer 
screen. Recall was required in the correct order of presenta-
tion. A total of 12 items were presented. 

Raven’s Advanced Progressive Matrices (RAV) 
Sixteen items from the original full test (Raven, Court, 

& Raven, 1979) were included. Items consisted each of a 

three by three matrix of symbols with the bottom right hand 
symbol missing. Participants had to choose the symbol that 
logically completed the matrix from eight options presented 
below the matrix. 

Participants older than 65 years worked only on 11 of 
the item sequence administered for young and middle aged 
persons. Elderly worked on five easier items from Raven’s 
Standard Progressive Matrices. Scoring in this task is con-
sequently based on a linked 2-Parameter Logistic Model 
(see Scoring and data treatment section of the paper for 
details).

Immediate and Delayed Memory 
Three tasks, each with immediate and delayed recall 

were our measures of memory. One of these tasks, which 
required memorizing of word pairs and recalling a second 
word when confronted with the first one, was taken from the 
Wechsler Memory Scale (WMS; Härting et al., 2000). The 
task was slightly modified and computerized. The number 
of trials was increased from six to eight in order to circum-
vent possible ceiling effects, because the original six trials 
were expected to be too easy for mentally healthy young 
participants. In this work, we will refer to the immediate 
recall part of this task as Verbal Memory Immediate (VMI) 
and to the delayed part as Verbal Memory Delayed (VMD). 

A second memory task was adapted based on the WMS, 
and required memorizing first and last names and recall-
ing the surname when the first name was presented (Name 
Memory Immediate - NMI). Eight pairs of first and last 
names were used. There was also a delayed recall after ap-
proximately one and a half hours (Name Memory Delayed 
– NMD).

Finally, a third memory task was adapted using the same 
procedure applied in the WMS. In this task pairs of street 
names and house numbers were learned and immediately 
recalled after learning (Address Memory Immediate – AMI) 
and again recalled after a delay time of approximately one 
and a half hours (Address Memory Delayed – AMD). 

Mental Speed 
Finding A’s (FAs). German words were presented in this 

task, one at a time. Participants had to decide whether the 
displayed word contains an “A” or not and responded as 
quickly as possible by pressing a labeled key on the left if 
words did not contain an “A” and a key on the right hand 
side if they contained one. We administered six practice tri-
als with accuracy feedback followed by 80 test trials. 

Symbol Substitution (SyS). One of the following four 
symbols appeared in the middle of the screen: “?”, “+”, 
“%”, or “$”. Participants were required to respond by press-
ing the upward-pointing arrow key to “?”, the right-pointing 
arrow key to “+”, the down-pointing arrow key to “%”and 
the left-pointing arrow key to “$”. There were six practice 
trials with feedback on accuracy, and 80 test trials.

Number Comparison (NC). Two number strings, vary-
ing from 3 to 13 digits in length, were presented in each 
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trial. Participants were required to decide whether or not the 
number strings were identical or differed in one number and 
to press the corresponding button. There were 6 practice tri-
als with feedback about the accuracy of the decision, fol-
lowed by 80 test trials.

Scoring and data treatment

Performance indicators in working memory tasks were 
defined as the average of remembered stimuli at the correct 
position across all items. Memory tasks were scored as the 
average of correct responses in the immediate recall and de-
layed recall respectively. 

Scores on the Raven’s progressive matrices included 
in the structural analyses are ability estimates from a 2-Pa-
rameter Logistic Model (2PL), since 31% of the completed 
items were different for participants older than 65 years. 
We replaced the five most difficult items administered to 
the younger participants with easy items taken from the 
standard matrices, in order to avoid floor effects and frus-
tration in the older group. In a 2PL-Model, person (ability) 
parameters are estimated using logistic item characteristic 
curves, which connect observed responses to continuous la-
tent traits. The estimation of a person parameter is based on 
the response pattern of the individual, taking the item dif-
ficulty and the item discrimination parameter into account 
(Schmiedek, 2005). 

Parameters of interest for the mental speed indicators 
were the averages of the inverted latencies obtained across 
all correct responses, calculated as 1000 / reaction time in 
milliseconds. The scores can be interpreted as number of 
correctly processed trials per second. To minimize the influ-
ence of outliers, before calculating the inverted latencies, 
reaction times smaller than 200 ms were set to missing. Re-
sponse latencies 3.5 intraindividual SDs above the individ-
ual mean were fixed to the individual mean value plus 3.5 
intraindividual SDs. This procedure was repeated as long as 
there was no latency with a value above the individual mean 
plus 3.5 intraindividual SDs left. In no case more than 20% 
of the intraindividual reaction times had to be replaced by 
their mean plus 3.5 intraindividual SDs.

RESULTS

The Higher-Order Factor Model of Cognitive Abilities

There are many different CFA models introduced in the 
intelligence literature aimed to represent the structure of in-
dividual performance differences in cognitive ability tests 
(Schulze, 2005). One frequently used structure – particu-
larly in the area of age related changes in cognitive abilities 
(Tucker-Drob, 2009) – is the higher-order factor model (see 
Figure 2). This model postulates a hierarchical organization: 

There are several narrow first-order ability factors, directly 
linked to the indicators (observed performance in the tasks), 
and a single second-order ability factor capturing the com-
munality of the first-order factors. The second-order factor 
is usually labeled as general cognitive ability (g) or fluid in-
telligence (gf). Higher-order factors are considered to have 
greater nomological breadth than first-order factors, because 
they are linked indirectly to more observed variables. The 
proportion of unexplained variance in a first-order factor is 
called residual or disturbance and they are represented by a 
d and the corresponding factor label in Figure 2.  

In order to explain performances in the 12 tasks admin-
istered in the present study, we postulated three first-order 
factors and one second-order fluid ability factor. Latent fac-
tors are represented as ellipses in Figure 2, observed varia-
bles as rectangles, and factor loadings are depicted as direct-
ed arrows. First-order factors are: Immediate and delayed 
memory (IDM) – modeled by the three memory tasks, each 
having an immediate and a delayed recall condition (six in-
dicators; with expected correlations between error terms of 
two indicators from one task); mental speed (MS) – based 
on three speed tasks, each with one condition of adminis-
tration (three indicators) and reasoning/working memory 
(REA) – based on the Raven’s matrices score and two tasks 
of working memory (three indicators). The rationale behind 
using working memory tasks as indicators of reasoning abil-
ity relies on strong evidence in the literature of very high 
latent level correlations between working memory and fluid 
intelligence (reasoning) – see the seminal work of Kyllonen 
and Christal (1990) or the reanalysis of the meta-analytic 
data from Ackerman, Beier, and Boyle (2005) conducted by 
Oberauer, Schulze, Wilhelm, and Süß (2005). The authors 
report a latent level correlation of r = .85. Schmiedek, Hilde-
brandt, Lövdén, Wilhelm, and Lindenberger (2009) also 
found very strong correlations in a recent study based on a 
single sample (.78-.84, depending on the working memory 
tasks used to model the working memory factor). 

Before proceeding to the modeling of the postulated 
higher-order model of cognitive abilities across age-groups 
we fitted the model for the young sub-sample, with partici-
pants’ age ranging between 18-35 years. This model serves 
as a baseline and tests whether the postulated structure is 
true for the present young sample. This analytical step is 
important because most studies that established the higher-
order structure of cognitive abilities rely on young samples. 
Misfit in the young sample would compromise the intend-
ed invariance analyses. We scaled the latent factors in this 
baseline model by fixing their variance to one.

The model for the young sample fitted the data very well: 
χ2 [48] = 60.5, p = .10, (N = 149), CFI = .98, RMSEA = .04, 
SRMR = .06. Standardized factor loadings of the reasoning 
/ working memory indicators ranged between λ = .67 – .73, 
of the memory indicators between λ = .50 – .86, and of the 
speed indicators between λ = .57 – .88. All were significant 
at p < .01. Loadings of the first-order factors on the higher 
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order factor of general cognition are λ = .62 (R2 = .39) in the 
case of reasoning, λ = .79 (R2 = .63) in the case of memory 
and λ = .45 (R2 = .21) for mental speed. Given the good fit 
of this model in the young sample this structural representa-
tion – depicted in Figure 2 – will be used in the following 
sections to test invariance and exemplify the analytical ap-
proaches discussed in this paper.

Invariance Testing using Multiple-Group Analyses

As discussed above, the traditional method of testing 
measurement invariance in the factor analytic approach is 
the estimation and evaluation of MGMCS models. In a first 
step, the baseline model established in the young sample (see 
Figure 2) was fitted for three age groups of young, middle-
aged and older adults. In this model we postulated the same 
factorial and loading pattern depicted in Figure 2 across 
the three age-groups (configural invariance). We scaled la-
tent factors using a recently developed method by Little, 
Slegers, and Card (2007). Based on this method latent scales 
are identified by fixing the loadings for each latent variable 
to an average of one and the sum of indicator intercepts to 
zero. This has the advantage that all indicator loadings, fac-

tor variances, and factor means are freely estimated in all 
groups. The configural model fitted the data well: χ2 [144] 
= 212.5, p < .01, CFI = .969, RMSEA = .06, SRMR = .06, 
supporting the first step of measurement invariance defined 
by an equal number of factors and the same pattern of factor 
loadings across groups. In this model the parameters are al-
lowed to vary in their magnitude across sub-samples. Table 
1 displays freely estimated standardized factor loadings of 
the indicators on the first-order factors across age-groups. 
By inspecting Table 1, strong variations of loadings can be 
noticed for two of the speed indicators (FAs and SyS). The 
loadings of the remaining indicators show small variation 
across age groups. In the metric invariant model we will test 
if the observable disparities in the magnitude of the loadings 
estimated in the configural model are statistically significant 
or not. 

For this purpose in a second MGMCS model unstand-
ardized factor loadings of all indicators were constrained to 
be equal across groups (metric invariance). This model still 
fitted the data reasonably well: χ2 [162] = 256.2, p < .01, CFI 
= .958, RMSEA = .06, SRMR = .09, but the Δχ2 of 43.7 cor-
responding to a difference of 18 degrees of freedom between 
the configural and the metric model reached significance. 

Figure 2. Higher-order structure model of cognitive abilities
Note. g – General Cognition; REA – Reasoning; IDM – Immediate and Delayed Memory; MS – Mental Speed; R – Residual variance, 
not accounted for by g; RAV – Raven;  RS – Rotation Span; MU – Memory Updating;  VMI – Verbal Memory Immediate; VMD – Verbal 
Memory Delayed; NMI – Name Memory Immediate;  NMD – Name Memory Delayed; AMI – Address Memory Immediate;  AMD – Ad-
dress Memory Delayed; FAs  – Finding A’s;  SyS – Symbol Substitution; NC – Number Comparison.
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Thus the strict statistical test does not support metric invari-
ance across age. However, as pointed out above, the Δχ2_val-
ues are highly sensitive if a large number of constraints is 
estimated in larger samples. For such cases Browne and Du 
Toit (1992) recommended a rescaling of the Δχ2_values into 
the RMSEA metric. This Index of Root Deterioration per 
Restriction (RDR, calculated as √ Δχ2- Δdf / Δdf * N) can 
be interpreted like an RMSEA coefficient. Values below .05 
indicate that the difference in fit can be considered of only 
minor importance. Based on the RDR and also the minor de-
terioration in other descriptive fit indices (CFI and RMSEA) 
we prefer the metric invariant over the configural model. 
We proceed by comparing the weak invariant model with a 
model testing measurement invariance, by fixing the indica-
tor intercepts to be equal across groups and test, whether 
strong (scale) invariance is supported by the data. Model fit 
indices for the stepwise MGMCS models for testing invari-
ance are summarized in Table 2.

Constraining indicator intercepts to be equal across age-
groups (strong or scale invariance) considerably affected 
the model fit: χ2 [180] = 344.3, p < .01, CFI = .927, RMSEA 

= .08, SRMR = .12. The χ2-difference test (Δχ2 = 88.1 cor-
responding to Δdf = 18), the RDR Index (RDR = .09) and 
the strong loss of fit also expressed by the CFI and RMSEA 
values all suggest that strong invariance is not supported by 
the data (see also Table 2). 

Consequently, testing the invariance of the loadings of 
the three first-order factors on the higher-order factor was 
carried out based on the weak invariant model. This model 
tests whether the common variance of the factors is equal 
in magnitude across age-groups and is a form of testing the 
factorial invariance on the first-order level. The age-related 
invariance or change of these loadings is tested by the ded-
ifferentiation hypothesis (see Tucker-Drob, 2009). A weak 
form of age-related dedifferentiation would be supported, 
if loadings were significantly higher in the older compared 
to younger groups. Fixing the respective loadings to be 
equal in the factorial invariant model (χ2 [166] = 262.9, p 
< .01, CFI = .957, RMSEA = .06, SRMR = .09) compared 
to the weak invariant model, did not significantly affect the 
goodness of fit, indicated by the non-significant Δχ2-value 
of 6.7 corresponding to four degrees of freedom difference 
between the models.  

Summing up, MGMCS models show that the configura-
tion of the model depicted in Figure 2 is true for all three 
age-groups and all non-standardized factor loadings (both 
λs of the indicators and λs of the first-order factors) can be 
fixed to be equal across groups (showing weak and first-
order level factorial invariance). However, as displayed in 
Table 1 there are at least slight variations in the estimated 
λ-parameters in the MGMCS models. As we argued in the 
introduction, MGMCS models are not viable to investigate 
the onset and shape of age-related changes of SEM mod-
el parameters, at least not with usual sample sizes of less 
than 200 observations for an age-range of 15-25 years or 
even more. In order to more adequately illustrate lifespan 
changes of such parameters by treating age as a continuous 
variable Age-Weighted Measurement or Structural Models 

Table 1
Standardized factor loadings of the indicators on the first-order factors (configural model - MGMCS)

Reasoning I & D Memory Mental speed
Task Young Middle Older Task Young Middle Older Task Young Middle Older
RAV .67 (.06) .59 (.06) .70 (.05) VMI .53 (.06) .52 (.07) .63 (.06) FAs .88 (.07) .64 (.06) .74 (.06)
RS .73 (.06) .75 (.05) .65 (.06) VMD .50 (.06) .54 (.07) .64 (.06) SyS .57 (.06) .81 (.07) .61 (.05)
MU .67 (.06) .74 (.05) .76 (.05) NMI .83 (.05) .71 (.06) .70 (.05) NC .61 (.06) .60 (.07) .75 (.05)

NMD .86 (.04) .74 (.06) .75 (.04)
AMI .74 (.05) .76 (.06) .78 (.04)
AMD .72 (.05) .63 (.07) .76 (.05)

Note. RAV – Raven;  RS – Rotation Span; MU – Memory Updating;  VMI – Verbal Memory Immediate; VMD – Verbal Memory Delayed; 
NMI – Name Memory Immediate;  NMD – Name Memory Delayed; AMI – Address Memory Immediate;  AMD – Address Memory De-
layed; FAs  – Finding As;  SyS – Symbol Substitution; NC – Number Comparison; SEs are presented in brackets.

Table 2
Invariance testing across age (MGMCS)

Model χ2 df CFI RMSEA Δχ2 Δdf RDR
Configural invari-
ance 212.5 144 .969 .06 --- --- ---

Weak (metric) 
invariance 256.2 162 .958 .06 43.7** 18 .05

Strong (scale) 
invariance 344.3 180 .927 .08 88.1** 18 .09

Factorial invari-
ance – comparison 
with the weak 
invariant model

262.9 166 .957 .06 6.7 4 ---
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(Local SEM) can be computed to visualize and describe 
age-gradients of the estimated parameters. 

Age-Gradients of Model Parameter form Age-Weighted 
Models (Local SEM)

In order to estimate a series of age-weighted models 
of the baseline model depicted in Figure 2 we computed 
observation weights around focal age points defined in one 
year steps from 20 to 80 years. We used a kernel function of 
weighting observations (Gasser et al., 2004). The following 
computations were carried out to define sample weights for 
61 focal age points between 20 and 80 years:

The bandwidth (bw) of the kernel function was calcu-
lated based on the formula:

bw = 2 * N (-1/5) * SDage                                              (1b)

A scaled distance (zx) was computed by subtracting the focal 
age from every observation for each focal point:

zx = (agex – focal age) / bw                                       (2b)

Weights were than calculated based on the normal kernel 
function for every focal point:

Kfocal age = (1 / √2π) * exp (- zx
2/2)                              (3b)

Finally, weights (W) were rescaled to obtain values between 
0 and 1:

Wfocal age = Kfocal age / .399                                             (4b)

Subsequently – based on sample weights calculated with 
the formulas 1b-4b – we estimated the higher-order struc-
ture model of cognitive abilities with the moving weight-
ing window along the 61 samples of weighted observations. 

Figure 3. Age-gradients of goodness of fit indices – Age-Weight-
ed Models.

Panel A 

Panel B 

Panel C

Figure 4. Age-gradients of indicator factor loadings – Age-
Weighted Models; Panel A: RAV – Raven; RS – Rotation Span; 
MU – Memory Updating; Panel B: VMI – Verbal Memory Im-
mediate; VMD – Verbal Memory Delayed; NMI – Name Memory 
Immediate;  NMD – Name Memory Delayed; AMI – Address 
Memory Immediate;  AMD – Address Memory Delayed; Panel 
C: FAs  – Finding A’s;  SyS – Symbol Substitution; NC – Number 
Comparison.
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The effective N for single computations depended on the 
frequency of observations at and around the respective focal 
point. Given varying N for the series of models, their good-
ness of fit will be estimated based on fit indices not affected 
by sample size: CFI, RMSEA, and SRMR. Figure 3 displays 
age-gradients of the fit indices estimated for the series of 61 
age-weighted models. The fit of the models is particularly 
good at the beginning and at the end of the age distribution. 
From 40-60 years the goodness of fit slightly decreased, but 
the fit indices still indicated reasonable fit.  

As we argued above, age-gradients of parameter esti-
mates from such age-weighted models can be very useful 
in case of lack of invariance, because they provide evidence 
about possible sources of misfit and are also indicative for 
the onset of relevant changes. Panel A, B, and C of Figure 
4 displays age-gradients of the loadings of the indicators on 
the first-order factors and Figure 5 loadings of first-order 
factors on the higher-order factor. Taken together, the gra-
dients show relative stability of factor loadings particularly 
in the case of reasoning / working memory (Figure 4, Panel 
A) and delayed memory (Figure 4, Panel B). The loadings 
of the immediate memory and two mental speed tasks (SyS 
and FAs, also suggested in MGMCS models; Figure 4, 
Panel C) show more notable variations across age. Whereas 
the loadings of the factors for reasoning / working memory 
and immediate and delayed memory on the general cogni-
tion factor (Figure 5) show no relevant age-changes (and 
therefore do not support the dedifferentiation hypothesis), 
the loading of mental speed considerable increases up to 
the age of 60 and slightly decrease thereafter. Note that a 
so called boundary bias can be responsible for changes at 

the tails of the age distribution, where the weighting curves 
become less symmetric. The LMS models we will discuss 
next might not be affected by this issue. These models will 
also allow more traditional inferential tests about the signifi-
cance of the age related changes we report. 

Testing Metric and Factorial Invariance using Latent 
Moderated Structural (LMS) Equations 

Metric (indicator loadings) and factorial invariance 
(first-order factor loadings) were tested in two independent 
analytic steps using LMS. In a first step, we estimated a cor-
relation model between the first-order factors. The higher-
order factor was not modeled directly in this case. Note 
that the two models (correlation and higher-order structure 
model) are statistically equivalent. Therefore, their fit is the 
same. In order to investigate age-related metric invariance 
using LMS equations, an interaction term between the latent 
factors and age has to be created. In the higher-order model, 
the general factor accounts for the common variance of the 
first-order factors. Creating the interaction between age and 
a first-order factor in such a model, the interaction will be 
defined based on the residual of the respective first-order 
factor (its variance accounted for by the higher-order factor 
being partialed out). However, the correlation model per-
mits the specification of interactions between age and unre-
sidualized first-order factors, so that the moderation effect 
with respect to the indicator loadings will be investigated 
more stringently in this case. 

In a second analytic step – aimed to test whether load-
ings of the first-order factors on the second-order factor 
change as a function of age – the higher-order model was 
fitted using LMS. In this case the interaction term was creat-
ed between age and the second-order factor. The first-order 
factors were then regressed onto the interaction. This model 
tested whether loadings between the first-order factors and 
the second-order factor change as a function of age. 

Further, to estimate the influence of quadratic age-effects 
on the loadings, in both modeling steps we used a non-lin-
ear term of the age variable (age-squared) on top of the age 
variable. For the LMS modeling – in order to reduce issues 
of multicollinearity – age was centered by subtracting the 
sample mean from the value of each observation.

We will first describe the results of the first modeling 
step (the correlation model to test metric invariance). A non-
interaction model assumes that indicator loadings do not 
change across age. Task performances were predicted by 
linear and quadratic age trends and their linear loadings on 
the first-order factors in this case. The loglikelihood-value 
of this model is displayed in Table 3. All linear loadings 
and linear age trend were significant at p < .01. Quadratic 
age effects were suggested only for reasoning at p < .01 (t 
= 3.082) and there was a trend in the case of mental speed 
(t = 1.974, p = .048). In the next model we defined inter-
action terms between all first-order factors and age. Task 

Figure 5. Age-gradients of first-order factor loadings – Age-
Weighted Models
Note. g – General Cognition; REA – Reasoning; WM – Working 
Memory; IDM – Immediate and Delayed Memory; MS – Mental 
Speed.
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performances were than predicted by linear and quadratic 
age trends, linear loadings and age-modified loadings (in-
teraction term). Table 3 displays the loglikelihood-value of 
this interaction model. In order to estimate whether there 
was a significant improvement in model fit in the interaction 
model we computed the Δχ2-value based on the loglikeli-
hood-values and the scaling correction factors estimated for 
both models. The difference value (Δχ2 = 71.36, Δdf = 12) is 
statistically significant. Therefore, including the interaction 
terms as predictors of task performances did improve the 
model fit and factor loadings are not age invariant. 

A closer inspection of the interaction effects shows 
which of the 12 loadings change as a function of age. Pa-
rameters for the moderation effects are displayed in Table 
4. Five of the 12 parameter estimates reach the conventional 
significance level. Loadings of Memory Updating, Verbal 
Memory Delayed, Address Memory Delayed and Finding A’s 
increase and the loading of Symbol Substitution decreases 
with advancing age. However, the age-gradients of indicator 
loadings estimated on the basis of parameter estimates from 
the age-weighted models displayed in Figure 4 suggest that 
there may be some quadratic moderation effect of age. This 
may be the case for Memory Updating, Name Memory Im-
mediate, Address Memory Immediate and Delayed, Symbol 
Substitution and Finding A’s. In order to test this assumption, 
in the next model further interaction terms between age-
squared and the three latent first-order factors were created. 

These terms were added as predictors of the performance in 
the named tasks. Loglikelihood values of this model are dis-
played in the third line of Table 3. The difference value (Δχ2 

= 7.22; Δdf = 6) is not statistically significant and suggests 
no improvement in model fit. Therefore, adding the age2-
interaction terms to the model is not indicated. As shown 
in Table 4, none of the age2-moderation terms of indicator 
loadings were significant. However, it should be noted that 
there was a strong loss in the age-interaction effects in the 
case of indicator loadings to which also quadratic effects 
were added. Furthermore, the age-interaction effects were 
not larger or “more” significant in this case, as displayed by 
the second value in the second line of Table 4. 

A further goal of the present paper was to investigate 
age-related changes of the loadings of first-order factors in 
a higher-order model of cognitive abilities as an exemplifi-
cation of testing factorial invariance using LMS equations. 
For this purpose, in the first step the hierarchical model was 
fitted with fixed indicator loadings. These loadings were 
fixed to values estimated freely in the preceding estimation, 
in order to reduce minor non-equivalence influences on the 
indicator level, when testing invariance at the factorial level. 
The likelihood-value and associated statistics of this model 
are shown in Table 5. In the second step we defined an in-
teraction term of age and the second-order factor of general 
cognitive ability and tested whether the interaction modifies 
the loadings of first-order factors. The loglikelihood of this 

Table 3.
Loglikelihood-values and comparison between the age and age2-modification model of indicator loadings  

and the metric invariant model

log-
likelihood 

(L)

scaling  
correction  
factor (scf)

free
parameters 

(fp)
Δχ2 Δdf AIC BIC

non-modification (A) 495.62 1.05 48 --- --- -895.2 -698.2
age-modification (B) 536.65 1.07 60 71.36 12 -953.3 -707.0
age2-modification (C) 539.72 1.05 66 7.22 6 -947.5 -676.5

Note. Δχ2 = 2 * (LB - LA) / c; where c = (scfB * fpB – scfA * fpA) / (fpB – fpA)

Table 4.
Age- and age2-modification effects of indicator loadings expressed as t-values

RAV RS MU VMI VMD NMI NMD AMI AMD FAs SyS NC
age-
mod .07 -.30 3.31 1.31 3.72 -1.63 -1.17 .52 2.77 2.90 -2.60 -.29

age2-
mod --- --- 1.42 

-.18 --- --- -.91
.55 --- -.53

.70
.35
.29

1.31
-.31

-.86
.09 ---

Note. Significant effects are printed bold; the second value in the second line of the table displayed the changed parameter estimate for the age-modifica-
tion term, after the age2-modification term was also added to the model; age-mod – Model with the age modification term of indicator loadings; age2-mod 
– Model with the added quadratic age modification term of indicator loadings; RAV – Raven; RS – Rotation span; MU – Memory updating; VMI – Verbal 
memory immediate; VMD – Verbal memory delayed; NMI – Name memory immediate; NMD – Name memory delayed; AMI – Address memory immedi-
ate; AMD – Address memory delayed; FA’s – Finding As; SyS – Symbol substitution; NC – Number comparison.
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model is shown in the second line of Table 5. The differ-
ence value (Δχ2 = 3.07, Δdf = 3) between the non-interac-
tion and the interaction model is not statistically significant 
and therefore suggests stability of the loadings across age. 
We also tested quadratic age-interaction effects, which were 
statistically not significant as well (see line three of Table 5; 
an LMS syntax for Mplus was published by Tucker-Drob, 
2009).

DISCUSSION 

The goal of this paper was to introduce and illustrate 
complementary and competing approaches for the investi-
gation of factorial invariance. More specifically, we investi-
gated two analytic approaches that can serve as alternative 
or complementary approaches to MGMCS analyses, when-
ever the influence of continuous contextual variables on the 
meaning of the measurement has to be estimated. Issues of 
measurement invariance are usually investigated by means 
of multiple-group analyses. However, problems associated 
with dichotomizations or categorizations of continuous var-
iables are well established in the methodological literature 
(MacCallum et al., 2002; Preacher et al., 2005). Therefore, 
the use of MGMCS is suboptimal in many instances and 
methodological alternatives need to be developed in order 
to test for the invariance of constructs for continuous con-
textual factors. Consequently, we attempted to present and 
develop useful tools for enhancing research on measure-
ment invariance along naturally continuous contextual fac-
tors. We will now review the methods presented here and 
discuss possible implementation beyond aging research. 

Assessment of the different methods and possible imple-
mentations beyond aging research

Multiple-Group Mean and Covariance Structure Analyses
Compared to the prevailing practice to investigate group 

differences by means of ANOVA, which disregard indi-
vidual differences, MGMCS analyses have the advantage 
to take within-group individual differences in consideration. 
Furthermore, abstracting from indicator specificities by esti-

mating latent factors in MGMCS models is very useful too. 
Nevertheless, these models come along with some disad-
vantages, we wish to shortly summarize here. 

First, in the case of naturally continuous contextual fac-
tors – like age, abilities, different trait factors, but also cul-
ture, socio-economical status, income, education etc. – the 
building of category boundaries is highly arbitrary in most 
cases and categories are in fact artificially created. We want 
to go one step further and argue that many MGMCS ap-
plications are overly simplistic. For example, testing for in-
variance across ethnical or cultural groups is usually based 
on self-reported group membership. The problem of what 
ethnicity really is (Betancourt & López, 1993) on a psycho-
logical level and – more important for the present purposes 
– how ethnicity might affect the construct under investiga-
tion is usually neglected. Obviously, it is not the case that 
the use of continuous variables by itself is a panacea to the 
problem. Indeed, our own treatment of the meaning of con-
textual variables is pivotal. What does “age”, for example, 
represent – regardless of whether it is used as categorical 
or continuous variable? Issues of the meaning of contextual 
variables and the nature and origin of the relation with the 
construct under investigation – including potentially theo-
retically derived reasons for a lack of invariance – are rarely 
investigated. Is the variable “age” we are interested in really 
“time passed since birth”? What is the mechanism of the 
“passing time” and how does it affect “age”? We are con-
vinced however that the use of continuous contextual factors 
allows a more profound and elaborate theorizing on mecha-
nisms of relations than categorical contextual factors. 

Second, in MGMCS-designs it is common that substan-
tial ranges from the continuum of the contextual variables 
are categorized into one value. Therefore, the method is not 
well suited to detect onsets and changes along the contin-
uum and it is also unprepared for the parametrization and 
estimation of nonlinear and interaction effects. 

To put the choice of the cut scores for the categoriza-
tion of a continuous variable in a different light, now from a 
methodological point of view, we emphasize that a specific 
categorization defines a “contrast” between subgroups. If 
these prespecified subgroups are compared with respect to 
invariance, then MGMCS is well suited for this design. We 

Table 5.
Loglikelihood-values and comparison between the age and age2-modification model of first-order factor loadings on the higher-order  

factor and the factorial invariant model

log-
likelihood 

(L)

scaling cor-
rection factor 

(scf)

free
parameters 

(fp)
Δχ2 Δdf AIC BIC

non-modification 495.59 1.06 39 --- --- -913.1 -753.1
age-modification 497.22 1.06 42 3.07 3 -910.4 -738.0
age2-modification 498.84 1.06 45 3.06 3 -907.7 -722.9



100

HILDEBRANDT, WILHELM and ROBITZSCH, Investigating measurement and factorial invariance, Review of Psychology, 2009, Vol. 16, No. 2, 87-102

claim that this is rarely the case. If no subgroups are defined 
a priori, we argue that a sequence of models with varying 
cut scores for the groups should be estimated to investigate 
the sensitivity of the invariance measures. If conclusions are 
stable under various conditions, then no further investiga-
tion is needed. However, such a procedure relies on rela-
tively large samples required across the whole frequency 
distribution. MGMCS compared to LMS have the advan-
tage to conceptualize all aspects of invariance (configural, 
weak, strong, factorial).

Local Structural Equation Models

In order to work around these two problems we intro-
duced the method of LSEM. The rational behind this method 
is that observations near a focal value of a contextual factor 
are more informative for that value than a more distal obser-
vation. This is intuitively plausible for continuous variables. 
The farer away neighboring points are, the less weight they 
have for that focal point. Age is conceptually opaque. Other 
continuous variables changing with age might be more plau-
sible contextual factors and of course more sophisticated 
concepts might be used to investigate invariance. The invar-
iance of intelligence might be more intensively investigated 
as a function of continuous factors, like ability levels for 
example. Evidently, the presented methods allow new per-
spectives on many research questions, including for exam-
ple the ability differentiation-dedifferentiation hypothesis 
traced back to Spearman (1927) and recently investigated 
with a latent interaction approach by Tucker-Drob (2009). 

Locally-weighted models have the great advantage of al-
lowing relatively small sample sizes in the investigation of 
invariance for continuous variables. LSEM also allow the 
detection and visualization of critical results. They can be 
used to visualize gradients of loadings, intercepts and la-
tent level parameters along continuous contextual variables 
and thus test weak (metric), strong (scale) and factorial in-
variance. Disadvantages of LSEM are the less symmetric 
weighting functions at the tails of the distribution and the 
lack of standard inferential tests for global model compari-
sons. Nevertheless, the amount of deviations from factor 
loadings and correlations with for example age can be used 
as an effect size of non-invariance for specific parameters. 

To derive inferential tests in LSEM, a researcher could 
conduct a permutation test approach (Good, 2005). Then, 
all ages in the sample are randomly paired with persons. In 
this pseudosample, all relations of loadings, variances and 
correlations should be independent of age. Conducting this 
permutation approach, a large number of times (say, 1000 
times) and applying LSEM to this pseudosample data leads 
to a distribution of LSEM parameters under the null hypoth-
esis of no relationship with age. Then, the LSEM age curves 
can be inspected and pointwise (i.e. for each age) or global 
tests can be applied.  

Latent Moderated Structural Equations 

LMS models do allow inferential comparisons not read-
ily available in LSEM. Such models – just as the LSEM 
models – also allow modeling of continuous variables in 
an attempt to investigate their influence on the structure of 
measurement outcomes. But LMS models go beyond local-
ly-weighted structures by additionally allowing traditional 
inferential statistics based on the loglikelihood of compet-
ing models. It will be interesting to see which further model 
evaluation tools and fit indices for LMS will be developed 
and recommended in the future. 

The disadvantage of categorization disappears in LMS 
models. However, their usage assumes a specific relation-
ship (linear, quadratic, cubic) of loadings (for example) in 
order to obtain estimates of regression coefficients of the 
relationship with age. A linear relationship of a factor load-
ing with age estimates two model parameters effectively, 
whereas in a MGMCS with three age groups three param-
eters are estimated such that one more parameter is used to 
describe the relationship with age. Therefore, LMS can be 
seen as restricted MGMCS if parametrization are imposed 
on regressions of model parameters on age groups. At the 
present, LMS can only be used to test weak (metric) and 
factorial invariance. If mean structure analysis are includ-
ed into LMS in the future, they will also applicable to test 
strong (scale) invariance.

Two-Step Procedures: Deriving parameter estimates 
from LSEM outputs

The output of a LSEM model can be used to calculate 
regression parameters or means when nonparametric regres-
sions of factor loadings are regressed linearly or categorized 
on age. For these derived parameter estimates, a distribution 
of pseudosamples obtained by the permutation approach 
defines the distribution under the null hypothesis of no rela-
tionship with age. In many cases, an extract of one or some 
parameters of a nonparametric regression is much easier for 
communication purposes and possesses a lower standard er-
ror than a loading estimate at one specific age. Therefore, 
an exploratory oriented LSEM can be a starting point for 
confirmatory analyses.

CONCLUSIONS

Conclusions derived from our analyses in the empirical 
section of this paper using the three approaches are con-
verging. Thus the same major interpretations can be drawn 
on their basis: There are minor age-related variations at the 
level of indicator loadings and no variation in the loadings 
of first-order factors. These conclusions were supported by 
the results from all three analytical approaches. Locally-
weighted models allow more detailed descriptions of misfit 
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on the indicator level than MGMCS analyses do. Further-
more, LMS equations facilitate inferential statistical estima-
tions of possible parameter changes and also allow more 
sophisticated modeling of non-linear trends.

Theoretical implications

Although the analyses were not aimed to test theoreti-
cal assumptions, but to exemplify modeling methods for the 
testing of a specific class of hypotheses (measurement in-
variance), there is one theoretical implication of our findings 
on a substantive level we wish to emphasize. As pointed out 
in the introduction, the age differentiation-dedifferentiation 
hypothesis has a very long history in the developmental re-
search and its investigation led to controversial discussions. 
Recently, Tucker-Drob (2009) presented comprehensive 
analyses of the age and ability differentiation-dedifferentia-
tion hypothesis, by applying LMS for the first time in the 
literature in order to test these hypotheses. The author did 
not find support for age-related dedifferentiation (expressed 
in higher loadings of first-order factors on g with increasing 
age). The analysis we presented here replicate the findings 
of Tucker-Drob (2009). LMS and LSEM might be more ad-
equate methods for the investigation of the dedifferentiation 
hypothesis than the methods used so far, which do not go 
beyond MGMCS and frequently fall short of a methodo-
logically adequate test of the dedifferentiation hypothesis.

Our recommendation

Closing up, we recommend the use of LMS and LSEM to 
test invariance in factor-analyses along continuous contex-
tual variables. Extending traditionally used MGMCS analy-
ses with the proposed LSEM and LMS equations, invari-
ance questions can be investigated in a more fine-grained 
setting and in this way sources of possible lack of invariance 
or nonlinearity can be estimated more precisely.
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