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Abstract. In this study, using the concept of statistical σ−convergence which is stronger
than convergence and statistical convergence we prove a Korovkin-type approximation the-
orem for sequences of positive linear operators defined on C∗ which is the space of all
2π-periodic and continuous functions on R, the set of all real numbers. We also study the
rates of statistical σ−convergence of approximating positive linear operators.
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1. Introduction

For a sequence {Ln} of positive linear operators on C (X), which is the space of
real valued continuous functions on a compact subset X of real numbers, Korovkin
[14] first introduced the necessary and sufficient conditions for the uniform conver-
gence of Ln (f) to a function f by using the test function fi defined by fi (x) = xi,
(i = 0, 1, 2) (see, for instance, [3]). Later many researchers investigated these condi-
tions for various operators defined on different spaces. Using the concept of statis-
tical convergence in the approximation theory provides us with many advantages.
In particular, the matrix summability methods of Cesáro type are strong enough
to correct the lack of convergence of various sequences of linear operators such as
the interpolation operator of Hermite-Fejér [4], because these types of operators do
not converge at points of simple discontinuity. Furthermore, in recent years, with
the help of the concept of uniform statistical convergence, which is a regular (non-
matrix) summability transformation, various statistical approximation results have
been proved [1, 2, 6, 7, 8, 9, 12, 13]. Also, a Korovkin-type approximation theorem
has been studied via statistical convergence in the space C∗ which is the space of all
2π-periodic and continuous functions on R in [5]. Then, it was demonstrated that
those results are more powerful than the classical Korovkin theorem. Recently var-
ious kinds of statistical convergence stronger than the statistical convergence have
been introduced by Mursaleen and Edely [15].

We now recall some basic definitions and notations used in the paper.
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Let K be a subset of N, the set of natural numbers. Then the natural density of
K, denoted by δ(K), is given by:

δ(K) := lim
n

1
n
|{k ≤ n : k ∈ K }|

whenever the limit exists, where |B| denotes the cardinality of the set B. Then a
sequence x = {xk} of numbers is statistically convergent to L provided that, for
every ε > 0, δ {k : |xk − L| ≥ ε} = 0 holds. In this case we write st− limxk = L.

Notice that every convergent sequence is statistically convergent to the same
value, but its converse is not true. Such an example may be found in [10, 11, 17].

Let σ be a mapping of the set of N into itself. A continuous linear functional
ϕ defined on the space l∞ of all bounded sequences is called an invariant mean (or
σ−mean) [16] if it is nonnegative, normal and ϕ(x) = ϕ((xσ(n))).

A sequence x = {xk} is said to be statistically σ−convergent to L if for every
ε > 0 the set Kε(ϕ) := {k ∈ N : ϕ (|xk − L|) ≥ ε} has natural density zero, i.e.
δ(Kε(ϕ)) = 0. In this case we write δ(σ)− limxk = L. That is,

lim
n

1
n
|{p ≤ n : |tpm (xm)− L| ≥ ε}| = 0, uniformly in m,

where

tpm (xm) :=
xm + xσ(m) + xσ2(m) + ... + xσp(m)

p + 1
, t−1,m(xm) = 0

(for details, see [15]). Using the above definitions, the next result follows immedi-
ately.

Lemma 1. Statistical convergence implies statistical σ−convergence.

However, one can construct an example which guarantees that the converse of
Lemma 1 is not always true. Such an example was given in [15] as follows:

Example 1. Consider the case σ(n) = n + 1 and the sequence u = {um} defined as

um =
{

1, if m is odd,
−1, if m is even, (1)

is statistically σ−convergence (δ (σ) − limum = 0) but it is neither convergent nor
statistically convergent.

With the above terminology, our primary interest in the present paper is to
obtain a Korovkin-type approximation theorem by means of the concept of statistical
σ−convergence. Also, by considering Lemma 1 and the above Example 1, we will
construct a sequence of positive linear operators such that while our new results
work, their classical and statistical cases do not work. We also compute the rates of
statistical σ−convergence of the sequence of positive linear operators.
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2. A Korovkin-type approximation theorem

We denote by C∗ the space of all 2π-periodic and continuous functions on R. This
space is equipped with the supremum norm

‖f‖C∗ = sup
x∈R

|f (x)| , (f ∈ C∗) .

Let L be a linear operator from C∗ into C∗. Then, as usual, we say that L is a
positive linear operator provided that f ≥ 0 implies L (f) ≥ 0. Also, we denote the
value of L (f) at a point x ∈ R by L(f(u); x) or, briefly, L(f ; x).

We now recall the classical and statistical cases (for A = C1, the Cesáro matrix)
of the Korovkin-type results introduced in [14, 5], respectively.

Theorem 1. Let {Lm} be a sequence of positive linear operators acting from C∗

into C∗. Then, for all f ∈ C∗,

lim ‖Lm (f ; x)− f(x)‖C∗ = 0

if and only if

lim ‖Lm (1; x)− 1‖C∗ = 0,
lim ‖Lm (cos u;x)− cos x‖C∗ = 0,
lim ‖Lm (sinu; x)− sin x‖C∗ = 0.

Theorem 2. Let {Lm} be a sequence of positive linear operators acting from C∗

into C∗. Then, for all f ∈ C∗, we have

st− lim ‖Lm (f ; x)− f(x)‖C∗ = 0

if and only if

st− lim ‖Lm (1; x)− 1‖C∗ = 0,
st− lim ‖Lm (cosu;x)− cos x‖C∗ = 0,
st− lim ‖Lm (sinu; x)− sin x‖C∗ = 0.

Theorem 3. Let {Lm} be a sequence of positive linear operators acting from C∗

into C∗. Then, for all f ∈ C∗

δ (σ)− lim ‖Lm (f ; x)− f (x)‖C∗ = 0 (2)

if and only if the following statements hold:

δ (σ)− lim ‖Lm (1; x)− 1‖C∗ = 0, (3)
δ (σ)− lim ‖Lm (cos u; x)− cosx‖C∗ = 0, (4)
δ (σ)− lim ‖Lm (sinu; x)− sin x‖C∗ = 0. (5)
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Proof. Under the hypotheses, since 1, cos u and sin u belong to C∗, the necessity
is clear. Assume now that (2) holds. Let f ∈ C∗ and I be a closed subinterval of
length 2π of R. Fix x ∈ I. As in the proof of Theorem 1 in [5], it follows from the
continuity of f that

|f (u)− f (x)| < ε +
2Mf

sin2 δ1
2

sin2 u− x

2

which gives

|tpm (Lm (f ; x))− f (x)| ≤ Lm (|f (u)− f (x)| ;x) + Lσ(m) (|f (u)− f (x)| ; x)
p + 1

+ . . .

+
Lσp(m) (|f (u)− f (x)| ;x)

p + 1
+ |f (x)| |tpm (Lm (1; x))− 1|

≤ (ε + |f (x)|) ||tpm (Lm (1; x))− 1||+ ε

+
Mf

sin2 δ1
2

{|tpm (Lm (1; x))− 1|

+ |cos x| |tpm (Lm (cos u; x))− cosx|
+ |sin x| |tpm (Lm (sin u;x))− sinx|}

< ε +

(
ε + |f (x)|+ Mf

sin2 δ1
2

)
{|tpm (Lm (1; x))− 1|

+ |tpm (Lm (cos u; x))− cosx|
+ |tpm (Lm (sinu; x))− sin x|} ,

where Mf = ‖f‖C∗ . Then, we obtain

‖tpm (Lm (f))− f‖C∗ < ε + K
{‖tpm (Lm (1; x))− 1‖C∗

+ ‖tpm (Lm (cos u; x))− cosx‖C∗ (6)
+ ‖tpm (Lm (sinu; x))− sin x‖C∗

}
,

where

K := sup
x∈I

{
ε + |f (x)|+ Mf

sin2 δ1
2

}
.

Now given r > 0, choose ε > 0 such that ε < r. By (6), it is easy to see that
∣∣{p ≤ n : ‖tpm (Lm (f))− f‖C∗ ≥ r

}∣∣

≤
∣∣∣∣
{

p ≤ n : ‖tpm (Lm (1; x))− 1‖C∗ ≥
r − ε

3K

}∣∣∣∣

+
∣∣∣∣
{

p ≤ n : ‖tpm (Lm (cos u; x))− cosx‖C∗ ≥
r − ε

3K

}∣∣∣∣

+
∣∣∣∣
{

p ≤ n : ‖tpm (Lm (sinu; x))− sin x‖C∗ ≥
r − ε

3K

}∣∣∣∣ .

Now using (3), (4) and (5), we get (2) and the proof is complete.
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Remark 1. We now show that our result in Theorem 3 is stronger than its classical
and statistical versions. Now define the Fejer operators Fm as follows:

Fm (f ; x) =
1

mπ

π∫

−π

f (y)
sin2

(
m
2 (u− x)

)

2 sin2
[(

u−x
2

)] du, (7)

where m ∈ N, f ∈ C∗ [−π, π] . Then, we get (see [14])

Fm (1; x) = 1, Fm (cos u; x) =
m− 1

m
cosx, Fm (sinu;x) =

m− 1
m

sin x.

Now using (1) and (7), we introduce the following positive linear operators defined
on the space C∗ [−π, π] :

Lm (f ; x) = (1 + um)Fm (f ; x) . (8)

Since δ (σ)− lim um = 0, we conclude that

δ (σ)− lim ‖Lm (1; x)− 1‖C∗[−π,π] = 0,

δ (σ)− lim ‖Lm (cos u; x)− cos x‖C∗[−π,π] = 0,

δ (σ)− lim ‖Lm (sinu;x)− sin x‖C∗[−π,π] = 0.

Then, by Theorem 3, we obtain for all f ∈ C∗ [−π, π],

δ (σ)− lim ‖Lm (f ; x)− f(x)‖C∗[−π,π] = 0.

However, since u is not convergent and statistically convergent, we conclude that
classical (Theorem 1) and statistical (Theorem 2) versions of our result do not
work for the operators Lm in (8) while our Theorem 3 still does.

3. Rate of statistical σ−convergence

In this section, we study the rates of statistical σ−convergence of a sequence of
positive linear operators defined C∗ into C∗ with the help of modulus of continuity.

Definition 1. A sequence {xm} is statistically σ-convergent to a number L with the
rate of β ∈ (0, 1) if for every ε > 0,

lim
n

|{p ≤ n : |tpm (xm)− L| ≥ ε}|
n1−β

= 0, uniformly in m.

In this case, it is denoted by

xm − L = o(n−β) (δ (σ)) .

Using this definition, we obtain the following auxiliary result.

Lemma 2. Let {xm} and {ym} be sequences. Assume that xm−L1 = o(n−β1) (δ (σ))
and ym − L2 = o(n−β2) (δ (σ)) . Then we have
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(i) (xm − L1)∓ (ym − L2) = o(n−β) (δ (σ)), where β := min {β1, β2} ,

(ii) λ(xm − L1) = o(n−β1) (δ (σ)), for any real number λ.

Proof. (i) Assume that xm − L1 = o(n−β1) (δ (σ)) and ym − L2 = o(n−β2) (δ (σ)) .
Then, for ε > 0, observe that

|{p ≤ n : |(tpm (xm)− L1)∓ (tpm (ym)− L2)| ≥ ε}|
n1−β

≤
∣∣{p ≤ n : |tpm (xm)− L1| ≥ ε

2

}∣∣ +
∣∣{p ≤ n : |tpm (ym)− L2| ≥ ε

2

}∣∣
n1−β

≤
∣∣{p ≤ n : |tpm (xm)− L1| ≥ ε

2

}∣∣
n1−β1

+

∣∣{p ≤ n : |tpm (ym)− L2| ≥ ε
2

}∣∣
n1−β2

(9)

Now by taking the limit as n → ∞ in (9) and using the hypotheses, we conclude
that

lim
n

|{p ≤ n : |(tpm (xm)− L1)∓ (tpm (ym)− L2)| ≥ ε}|
n1−β

= 0, uniformly in m,

which completes the proof of (i). Since the proof of (ii) is similar, we omit it.

Now we remind of the concept of modulus of continuity. For f ∈ C∗, the modulus
of continuity of f , denoted by ω (f ; δ1), is defined to be

ω (f ; δ1) = sup
|u−x|<δ1

|f (u)− f (x)| .

It is also well known that for any δ1 > 0,

|f (u)− f (x)| ≤ ω (f ; δ1)
( |u− x|

δ1
+ 1

)
. (10)

Then we have the following result.

Theorem 4. Let {Lm} be a sequence of positive linear operators acting from C∗

into C∗. Assume that the following conditions holds:

(i) ‖Lm(1; x)− 1‖C∗ = o(n−β1) (δ (σ)),

(ii) w(f, αpm) = o(n−β2) (δ (σ)), where αpm :=
√‖tpm (Lm(ϕ; x))‖C∗ with ϕ(u)

= sin2 u−x
2 .

Then we have, for all f ∈ C∗,

‖Lm(f ;x)− f(x)‖C∗ = o(n−β) (δ (σ))),

where β = min {β1, β2}.
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Proof. Let f ∈ C∗ and fix x ∈ [−π, π]. Then, we may write, for all m ∈ N, that

|tpm (Lm (f ; x))− f (x)|

≤ Lm (|f (u)− f (x)| ;x) + Lσ(m) (|f (u)− f (x)| ;x)
p + 1

+ . . .

+
Lσp(m) (|f (u)− f (x)| ; x)

p + 1
+ |f (x)| |tpm (Lm (1; x))− 1|

≤
Lm

(
1 + (u−x)2

δ2
1

;x
)

p + 1
ω (f ; δ1)

+
Lσ(m)

(
1 + (u−x)2

δ2
1

; x
)

+ ... + Lσp(m)

(
1 + (u−x)2

δ2
1

; x
)

p + 1
ω (f ; δ1)

+ |f (x)| |tpm (Lm (1; x))− 1|

≤
Lm

(
1 + π2

δ2
1

sin2 u−x
2 ;x

)

p + 1
ω (f ; δ1)

+
Lσ(m)

(
1 + π2

δ2
1

sin2 u−x
2 ; x

)
+ ... + Lσp(m)

(
1 + π2

δ2
1

sin2 u−x
2 ; x

)

p + 1
ω (f ; δ1)

+ |f (x)| |tpm (Lm (1; x))− 1|

=
(

tpm (Lm (1; x)) +
π2

δ2
1

tpm (Lm(ϕ; x))
)

ω (f ; δ1)

+ |f (x)| |tpm (Lm (1; x))− 1| .

Hence we get

‖tpm (Lm (f ;x))− f (x)‖C∗ ≤ ‖f‖C∗ ‖tpm (Lm (1; x))− 1‖C∗ +
(
1 + π2

)
w(f, αpm)

+w(f, αpm) ‖tpm (Lm (1; x))− 1‖C∗ ,

where δ1 := αpm :=
√‖tpm (Lm(ϕ;x))‖C∗ . Then we obtain

‖tpm (Lm (f ;x))− f (x)‖C∗ ≤ K
{‖tpm (Lm (1; x))− 1‖C∗ + w(f, αpm)

+w(f, αpm) ‖tpm (Lm (1; x))− 1‖C∗
}

, (11)

where K = max
{‖f‖C∗ , 1 + π2

}
. Then, we have, from (11)

∣∣{p ≤ n : ‖tpm (Lm (f ;x))− f (x)‖C∗ ≥ ε
}∣∣

n1−β

≤
∣∣{p ≤ n : ‖tpm (Lm (1; x))− 1‖C∗ ≥ ε

3K

}∣∣
n1−β1

+

∣∣{p ≤ n : w(f, αpm) ≥ ε
3K

}∣∣
n1−β2

+

∣∣{p ≤ n : w(f, αpm) ≥ √
ε

3K

}∣∣
n1−β2

+

∣∣{p ≤ n : ‖tpm (Lm (1; x))− 1‖C∗ ≥
√

ε
3K

}∣∣
n1−β1

(12)
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where β = min {β1, β2}. Letting n →∞ in (12), we conclude from (i) and (ii) that

lim
n

∣∣{p ≤ n : ‖tpm (Lm (f ; x))− f (x)‖C∗ ≥ ε
}∣∣

n1−β
= 0, uniformly in m,

which means

‖Lm(f ;x)− f (x)‖C∗ = o(n−β) (δ (σ)) .

The proof is completed.
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