
Journal of Computing and Information Technology - CIT 19, 2011, 1, 1–10
doi:10.2498/cit.1001353

1

Examining the Relationships
between Software Coupling
and Software Performance:
A Cross-platform Experiment

Liguo Yu1 and Srini Ramaswamy2

1 Computer and Information Sciences Department, Indiana University, South Bend, USA
2 Industrial Software Systems, ABB Corporate Research Center, Bangalore, India

Coupling measures the degree of dependencies between
software modules. Considerable research has been
performed to relate software coupling with software
understandability, maintainability, and reusability, which
are the key properties of software maintenance and
evolution. However, only a few research works have
been reported that study the relationships between soft-
ware coupling and software performance. This study
implemented two benchmarks that measure and compare
the performance of software programs implemented with
different kinds of coupling, common coupling, data
coupling, and stamp coupling. The experiment is run
on three different platforms, Windows, Linux, and Mac.
The results show that (1) the relative performance of
systems implemented using different software coupling
is platform dependent; (2) while loose coupling is more
favorable than strong coupling with respect to software
maintenance and evolution, it has the drawback of re-
duced performance of a software program. Based on this
study, we make some suggestions to balance the use of
strong coupling and loose coupling in designing evolving
software systems in order to achieve both maintainability
and evolvability without compromising on performance.

Keywords: component dependency, coupling, perfor-
mance, cross-platform experiment

1. Introduction

Coupling is a measure of the degree of inter-
action between two software modules. Many
different types of coupling have been identi-
fied, including data coupling, stamp coupling,
control coupling, common coupling, and con-
tent coupling (Stevens et al., 1974; Page-Jones,
1980; Offutt et al., 1993, Offutt et al., 2008,

Alexander et al., 2010). Table 1 lists the def-
initions of several major types of coupling in
structured software systems, in which the de-
gree of dependency is considered in increasing
order from the bottom (data coupling) to the
top (content coupling). Strong coupling means
a high degree of dependency between software
modules, while loose coupling means a low de-
gree of dependency between software modules.

Name Definition

Content Coupling

Two modules are content
coupled if one accesses and
changes the internal data

or logic of the other.

Common Coupling
Two modules are common

coupled if they refer to
the same global variable.

Control Coupling

Two modules are control
coupled if one passes a
variable to the other

that is used to control the
internal logic of the other.

Stamp Coupling

Two modules are stamp
coupled if they pass data
through a parameter that
is a record (structure).

Data Coupling

Two modules are data
coupled if they pass data
through a parameter that

is a value.

Table 1. Definitions of various kinds of coupling in
structured software systems (Offutt et al., 1993).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14436216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Examining the Relationships between Software Coupling and Software Performance. . .

Maintenance and evolution are inevitable for
a software product. After a software prod-
uct is released, it requires continued mainte-
nance and evolution. Coupling between soft-
ware modules strengthens the dependency of
one module on others and increases the prob-
ability that changes in one module may affect
the other modules, which makes maintenance
and evolution difficult and more likely to in-
troduce regression faults (Banker et al., 1993;
Schach et al., 2003; Yu et al., 2004). It has
been shown that strong coupling is related to
fault-proneness of a software system (Kafura
and Henry, 1981; Selby and Basili, 1991; Troy
and Zweben, 1981). Furthermore, the fault-
proneness of one module can adversely affect
the maintenance and evolution of a number
of other modules. Therefore, many software
engineering researchers have suggested that a
good software system should have loose cou-
pling (say, data coupling) between components
while strong coupling (say, content coupling)
should be avoided as much as possible.

Moreover, with the increase in the number of ap-
plications using distributed computing the con-
cept of coupling is being extended beyond soft-
ware modules contained within one program. It
is now also used to represent interactions be-
tween software components in distributed sys-
tems. One such distributed computation frame-
work isweb services. Loose coupling or low de-
pendencies between distributed software com-
ponents indicate the flexibility of updating and
reconfiguring services (Kaye, 2003; Erl, 2004).
For example, if the server is down, loose cou-
pling allows the client component to easily con-
nect to a new server component and obtain the
same service. Therefore, distributed computa-
tion also requires loose coupling between the
client and the server components.

Hence, from the viewpoint of maintenance and
evolution, both software modules within a sys-
tem as well as software components distributed
over a network should utilize loose coupling in-
stead of strong coupling. However, the imple-
mentation differences between loose and strong
coupling might have different effects on system
performance. To our knowledge, very few re-
search works have been done in this area, to
understand the relationship between the issues
of software coupling and software performance.
This research is intended to study this issue by
building two benchmarks to test the difference
in performance of systems implemented with
different types of coupling.

The remainder of this paper is organized as fol-
lows. Section 2 describes the research objec-
tives. Section 3 describes the benchmarks and
the experiment. Section 4 contains the results
of the study. Conclusions and future work are
in Section 5.

2. Research Objectives

For the different types of coupling listed in Table
1, control coupling and content coupling repre-
sent the control flow in the software program.
Because of the poor design property of control
coupling and content coupling, they are rarely
used in both structured and object-oriented de-
sign methodologies. Especially content cou-
pling is not supported by modern programming
languages, such as C++ and Java. Therefore,
this study will not investigate control coupling
and content coupling.

The other three types of coupling identified in
Table 1, common, stamp, and data coupling rep-
resent three different kinds of interactions be-
tween software modules. They are commonly
used in most modern programming languages.
Figure 1 describes the difference among these
three types of coupling: the interactions be-
tween module m1 and module m2 can be imple-
mented via common coupling (a), data coupling
(b), or stamp coupling (c).

Figure 1. Three different types of coupling between
module m1 and module m2: (a) common coupling; (b)

data coupling; and (c) stamp coupling.

Common coupling is implemented through global
variables. Because both m1 and m2 can access
a global variable, the change of the value of
the global variable done by one module could
potentially affect another module. Data cou-
pling between m1 and m2 is established through

Examining the Relationships between Software Coupling and Software Performance. . . 3

the function (method) call, in which either a
data value or a data reference (data address or
pointer) is passed between m1 and m2. Stamp
coupling between m1 and m2 is achieved if a
record (data structure, class) is passed between
these modules. We remark here that stamp cou-
pling could also be implemented through pass-
ing the reference (address, pointer) of a record.
But it is not included in our current study.

In theory, any of these three types of coupling is
not a unique choice between any two modules in
a software system. In other words, the same ef-
fect of interactions between two modules can be
implemented through either common, data, or
stamp coupling. As we discussed before, data
coupling is a much looser form of coupling than
stamp coupling, which is in turn, a much looser
form than common coupling. Hence, from the
viewpoint ofmaintenance and evolution,we can
extrapolate that data coupling is more favored
over stamp coupling, which is more favored
over common coupling. However, not much
knowledge has been obtained with respect to
the effect of these different types of coupling on
software performance.

The objective of this study is to understand how
data coupling (pass by data value and pass by
data reference), stamp coupling (pass by data
structure), and common (pass by global vari-
able) might have different effects on the perfor-
mance of a software system. The experiment
is designed and run on different platforms to
deeply understand such effects.

3. Benchmarks and Experiment Overview

The benchmarks introduced in this study imple-
mented programs to verify the Goldbach’s con-
jecture (Zenil, 2007). The reason we choose to
verify Goldbach’s conjecture is, first, the solu-
tion to this problem is pretty simple, few mod-
ules are needed to implement the benchmarks,
which makes it easy to avoid the interference of
other factors on our experiment. Second, appro-
priate number (not too few and not too many)
of parameters are needed to pass between mod-
ules, which makes it both enough and easy to
implement all three types of coupling. Basi-
cally, Goldbach’s conjecture has two forms:

• Conjecture 1: Any even integer number
greater than 2 can be written as the sum of
two prime numbers.

• Conjecture 2: Any integer number greater
than 5 can be written as the sum of three
prime numbers.

In this study, Benchmark 1 implements a pro-
gram to verify Conjecture 1, and Benchmark 2
implements a program to verify Conjecture 2.
The architecture of the benchmarks is shown
in Figure 2. In each benchmark, three differ-
ent interactions are implemented between the
Main control module and the Find primes
module. InBenchmark 1, the three implementa-
tion are common coupling (pass by global vari-
able (GV)), data coupling (pass by data value
(DV)), and data coupling (pass by data refer-
ence (DR)). In Benchmark 2, the three imple-
mentations are common coupling (GV), data
coupling (DR), and stamp coupling (pass by
data structure – (DS)). The Main control mod-
ules can choose any of the three implementa-
tions to run the experiment.

Figure 2. The architecture of the benchmarks: (a)
Benchmark 1; and (b) Benchmark 2.

The benchmarks are implemented usingC/C++
for the purpose of cross-platform compatibil-
ity. Three different platforms (Windows,Linux,
and Mac) are chosen to run the benchmarks.
The detail information about the three platforms
is listed in Table 2.

Platform #
Hardware
Vendor

Operating
System Compiler

1 Dell Windows XP Visual
Studio

2 Dell Red Hat
Beowulf GCC

3 Apple Mac GCC

Table 2. The experiment platforms.

4 Examining the Relationships between Software Coupling and Software Performance. . .

The scenarios of running the two benchmarks
are listed in Table 3. Benchmark 1 verifies Con-
jecture 1 using even numbers in the specified
range of different scenarios; Benchmark 2 veri-
fies Conjecture 2 using all numbers in the speci-
fied range of different scenarios. Each scenario
for each benchmark is run 100 times for each
platform. The interaction time (time elapsed
between sending the request and receiving the
result between theMain controlmodule and the
Find primes module) is recorded in millisec-
onds. Therefore, with 54 experiments, each is
run 100 times, a total of 5400 data points were
collected.

Benchmark 1 Benchmark 2

Scenario 1 Even number
between [4, 10000]

Any number
between [6, 1000]

Scenario 2 Even number
between [4, 20000]

Any number
between [6, 2000]

Scenario 3 Even number
between [4, 40000]

Any number
between [6, 4000]

Table 3. Scenarios of running the benchmarks.

4. Experiment Results

4.1. Data Stability Analysis

Before the data are finely analysed, we study the
stability of the data collected. To validate the
data of 54 experiments, the mean and the stan-
dard deviation of the interaction time collected

in 100 iterations are calculated. The experiment
stability is defined using the following formula.

Definition 1: experiment stability=standard
deviation/mean

The experiment stability metric represents the
average percentage difference of each measure-
ment to the mean of all 100 measurements. Ta-
ble 4 shows the Experiment Stability of all 54
experiments.

From Table 4, we see that all the stability mea-
surements have values less than 8%. Thismeans
the systems are pretty stable. This analysis vali-
dates data stability and indicates that our exper-
iments are not affected by other programs that
might run at the same time.

4.2. Detailed analysis

4.2.1. Benchmark 1

Table 5 through Table 7 shows the detailed
results of running Benchmark 1 on Windows,
Linux, and Mac respectively. For all three sce-
narios running on three platforms, similar re-
sults were obtained: no big differences were
found among the mean of the interaction times
of three different types of coupling, pass by
global variable (common coupling), pass by
data value (data coupling), and pass by data
reference (data coupling).

Platform
Benchmark 1 Benchmark 2

Pass by GV DV DR GV DR DS

Scenario 1 0.32% 2.67% 0.36% 3.33% 0.51% 0.56%
Windows Scenario 2 0.13% 0.80% 0.35% 6.74% 0.32% 1.10%

Scenario 3 0.12% 0.42% 1.15% 1.66% 0.21% 0.21%
Scenario 1 0.95% 5.43% 3.96% < 0.01% < 0.01% 1.48%

Linux Scenario 2 0.43% 5.21% 2.77% < 0.01% < 0.01% 0.82%
Scenario 3 1.59% 7.69% 0.86% 1.80% 1.76% 0.30%
Scenario 1 0.21% 0.63% 0.25% < 0.01% < 0.01% < 0.01%

Mac Scenario 2 0.20% 0.20% 0.21% < 0.01% < 0.01% < 0.01%
Scenario 3 0.17% 0.19% 0.18% < 0.01% 0.98% 1.50%

GV: global variable; DV: data value; DR: data reference; DS: data structure

Table 4. The Experiment Stability.

Examining the Relationships between Software Coupling and Software Performance. . . 5

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 2.484 2.515 2.501

Pass by
data value 2.484 3.031 2.512

Pass by
data reference 2.484 2.515 2.495

Table 5a. Measurement of Benchmark 1, Scenario 1 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 10.828 10.953 10.838

Pass by
data value 10.807 11.453 10.859

Pass by
data reference 10.828 11.109 10.845

Table 5b. Measurement of Benchmark 1, Scenario 2 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by global
data variable 46.734 47.281 46.787

Pass by
data value 46.658 48.126 46.721

Pass by
data reference 46.673 48.857 46.960

Table 5c. Measurement of Benchmark 1, Scenario 3 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 2.10 2.26 2.114

Pass by
data value 2.11 2.86 2.183

Pass by
data reference 2.11 2.56 2.146

Table 6a. Measurement of Benchmark 1, Scenario 1 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 9.15 9.34 9.180

Pass by
data value 9.17 11.59 9.387

Pass by
data reference 9.15 10.44 9.278

Table 6b. Measurement of Benchmark 1, Scenario 2 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 39.45 44.30 39.697

Pass by
data value 39.44 52.22 39.739

Pass by
data reference 39.46 42.69 39.684

Table 6c. Measurement of Benchmark 1, Scenario 3 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 2.23 2.25 2.24

Pass by
data value 2.23 2.28 2.247

Pass by
data reference 2.23 2.25 2.239

Table 7a. Measurement of Benchmark 1, Scenario 1 on
Mac.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 9.72 9.77 9.747

Pass by
data value 9.72 9.78 9.741

Pass by
data reference 9.72 9.78 9.737

Table 7b. Measurement of Benchmark 1, Scenario 2 on
Mac.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 42.07 42.25 42.144

Pass by
data value 41.99 42.19 42.041

Pass by
data reference 41.09 42.16 41.992

Table 7c. Measurement of Benchmark 1, Scenario 3 on
Mac.

The detailed analyses are shown in Figure 3 and
Figure 4. Figure 3 shows the performance dif-
ference of three measurements (pass by global
variable, pass by data value, and pass by data
reference). Performance difference is defined
using the following formula.

Definition 2: performance difference=mean
of each measurement/average of the means of
three measurements

6 Examining the Relationships between Software Coupling and Software Performance. . .

Figure 3. The performance difference of three implementations of couplings (pass by global variable, pass by data
value, pass by data reference) measured in three scenarios (S1, S2, and S3) running on three platforms (Win, Linux,

and Mac).

The performance difference could be significant
or insignificant. In this work, we consider a dif-
ference of 10% or above as significant, while
less than 10% difference as insignificant.

Figure 4. The average performance differences of three
implementations of coupling (pass by global variable,

pass by data value, and pass by data reference).

Figure 4 averages the performance difference
of the three scenarios with respect to each plat-
form. It can be seen that in Windows and Mac,
the average performance differences of three
implementations of coupling are less than 0.5%,
while in Linux, the average performance differ-
ence of three implementations of coupling are
less than 2.5%. Therefore, based on the Bench-
mark 1, we conclude that there are no signifi-
cant performance differences for coupling im-
plemented via pass by global variable (common
coupling), pass by data value (data coupling),

or pass by data reference (data coupling). Com-
paring the three platforms, we see that experi-
ments running on three different platforms re-
turn similar results. However, we also notice
in Figure 3 and Figure 4, Linux has higher per-
formance difference than Windows and Mac.
So, we conclude that Benchmark 1 is platform
dependent, but not highly sensitive. Here we
use the word dependent to represent any differ-
ence (insignificant or significant) and the word
sensitive to represent a significant difference.

4.2.2. Benchmark 2

Table 8 through Table 10 show the detailed
results of running Benchmark 2 on Windows,
Linux, and Mac respectively. Results show
that three different scenarios running on the
same platform return similar results: For win-
dows, pass by global variable (common cou-
pling) has much smaller interaction time than
pass by data reference (data coupling) and pass
by data structure (stamp coupling); For Linux:
pass by global variable (common coupling) and
pass by data reference (data coupling) has much
smaller interaction time than pass by data struc-
ture (stamp coupling); For Mac: no big differ-
ences of interaction time are found among pass
by global variable (common coupling), pass by
data reference (data coupling), and pass by data
structure (stamp coupling).

Examining the Relationships between Software Coupling and Software Performance. . . 7

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.015 0.031 0.018

Pass by
data reference 1.374 1.421 1.386

Pass by
data structure 1.374 1.422 1.389

Table 8a. Measurement of Benchmark 2, Scenario 1 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.078 0.109 0.089

Pass by
data reference 11.040 11.384 11.059

Pass by
data structure 11.065 12.299 11.100

Table 8b. Measurement of Benchmark 2, Scenario 2 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.359 0.374 0.362

Pass by
data reference 87.950 89.324 88.010

Pass by
data structure 87.640 89.254 88.035

Table 8c. Measurement of Benchmark 2, Scenario 3 on
Windows.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.009 0.009 0.009

Pass by
data reference 0.009 0.009 0.009

Pass by
data structure 1.110 2.259 1.114

Table 9a. Measurement of Benchmark 2, Scenario 1 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.061 0.061 0.061

Pass by
data reference 0.061 0.061 0.061

Pass by
data structure 8.933 9.409 8.987

Table 9b. Measurement of Benchmark 2, Scenario 2 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.282 0.299 0.285

Pass by
data reference 0.282 0.308 0.288

Pass by
data structure 71.586 72.537 71.996

Table 9c. Measurement of Benchmark 2, Scenario 3 on
Linux.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.01 0.01 0.01

Pass by
data reference 0.01 0.01 0.01

Pass by
data structure 0.01 0.01 0.01

Table 10a. Measurement of Benchmark 2, Scenario 1 on
Mac.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.07 0.07 0.07

Pass by
data reference 0.07 0.07 0.07

Pass by
data structure 0.07 0.07 0.07

Table 10b. Measurement of Benchmark 2, Scenario 2 on
Mac.

Interaction time (seconds)
Coupling type Minimum Maximum Mean

Pass by
global variable 0.32 0.33 0.32

Pass by
data reference 0.32 0.33 0.321

Pass by
data structure 0.32 0.33 0.323

Table 10c. Measurement of Benchmark 2, Scenario 3 on
Mac.

The detailed analysis is given in Figure 5, which
shows the performance difference of three mea-
surements (pass by global variable, pass by data
reference and pass by data structure), and in
Figure 6, which averages the performance dif-
ference of three scenarios with respect to each
platform. It is worth noting that the perfor-
mance differences in Mac are less than 0.52%
in all scenarios.

8 Examining the Relationships between Software Coupling and Software Performance. . .

Figure 5. The performance difference of three implementations of coupling (pass by global variable, pass by data
reference, pass by data structure) measured in three scenarios (S1, S2, and S3) running on three platforms (Win,

Linux, and Mac).

It can be seen that although insignificant dif-
ferences of performance of Benchmark 2 are
found in Mac, they are found in Windows and
Linux, where over 50% of performance differ-
ences are detected. Therefore, based on the
Benchmark 2, we conclude that there are signif-
icant performance differences for coupling im-
plemented via pass by global variable (common
coupling), pass by data reference (data cou-
pling), and pass by data structure (data stamp
coupling). It also tells us that the experiments
running on three different platforms return dif-
ferent results, which indicates that Benchmark
2 is platform dependent and sensitive.

Figure 6. The average performance differences of three
implementations of coupling (pass by global variable,
pass by data reference, and pass by data structure).

4.2.3. Discussion

Based on the experiments of two benchmarks
on three platforms, we found that Benchmark 1
shows no significant performance differences of
pass by global variable, pass by data value, and

pass by data reference. However, Benchmark 2
returns significant difference among these cou-
plings in Windows and in Linux. Specifically,
we found, (1) in Windows, pass by global vari-
able (common coupling) has less interaction
time than pass by data reference (data cou-
pling), and pass by data structure (stamp cou-
pling); and (2) in Linux, pass by global variable
(common coupling) and pass by data reference
(data coupling) have less interaction time than
pass by data structure (stamp coupling).

On one hand, pass by global variable (common
coupling) and pass by data reference (data cou-
pling) do not involve the reallocation of mem-
ory as is done in pass by data value (data cou-
pling), and, accordingly, we expected them to
have less interaction time. On the other hand,
global variable and local variable might be al-
located on different locations of memory (heap
or stack), the access time difference to these
locations might affect the interaction time of
pass by global variable and pass by data refer-
ences. While these differences are not observed
in Benchmark 1, some noticeable differences
are observed in Benchmark 2.

Stamp coupling is related with passing values
of a data structure. Because a data structure
(not a reference to a data structure, but the data
structure itself) is passed between two modules,
reallocation of memory is involved in this pro-
cess. Therefore, it is expected to have more
interaction time than pass by global variable
(common coupling) and pass by data reference
(data coupling). These differences are observed
in Benchmark 2. Figure 7 summarizes all of
our observations and analyses. In all of the

Examining the Relationships between Software Coupling and Software Performance. . . 9

Figure 7. The performance differences of software modules implemented via different couplings.

experiments, pass by global variable (common
coupling) has the smallest interaction time.

It should be mentioned that these observed dif-
ferences are not platform independent. For
some platforms, the differences are significant,
for others, the differences are insignificant. We
speculate that the behavior differences of dif-
ferent platforms are due to either the design of
the operating system (such as resource alloca-
tion (ex.memory)mechanism), or the hardware
structure (the addressing and accessing mecha-
nism). More experiments are needed to under-
stand the effects of the platforms on software
performance.

As described before, strong coupling (such as
common coupling) has proven drawbacks of de-
creasing software understandability, maintain-
ability, and evolvability. Hence, it is generally
recommended to be avoided as much as possi-
ble. Loose coupling, such as parameter pass-
ing through data values or data structures, is
more beneficial to software maintenance and
evolution. However, our results through this
study show that strong coupling, such as com-
mon coupling, may lead to higher performance
over loose coupling. Therefore, to compensate
the contradictory effect of coupling in balanc-
ing between software maintenance needs versus
software performance needs, we make the fol-
lowing suggestions.

1. The use of strong coupling and loose cou-
pling should be appropriately balanced in de-
signing evolving software systems in order
to achieve both maintainability and evolv-
ability without compromising obtaining a
higher level of performance.

2. While maintainability and evolvability of
software programs are platform independent,
the performance of software programs is
more platform dependent. In software per-
formance testing, exclusive tests need to be
performed on different platforms to verify
the effects of different types of coupling on
the software system’s performance.

5. Conclusions

In this paper, we studied the performance dif-
ference of software systems that provide same
functionality, but is implemented utilizing dif-
ferent types of coupling. We built two bench-
marks and ran these experimentations on three
different widely-used platforms; Windows, Li-
nux, and Mac. Our results indicate that the
performance of different types of coupling is
platform dependent. Furthermore, we identi-
fied that, in general, strong coupling leads to
higher performance than loose coupling, with
respect to the interaction time between software
modules.

Future work will extend current study in other
areas of software performance, with respect
to software coupling and software dependency.
The specific plan is listed below.

1. We will study other types of coupling and
their relations with software performance.
More specifically, we will study stamp cou-
pling, which is induced through pass by ref-
erence of a data structure in structured sys-
tem and inheritance coupling that occurs in
an object-oriented system.

10 Examining the Relationships between Software Coupling and Software Performance. . .

2. We will study in more depth the platform de-
pendency property of software performance,
to understand how coupling is related to dif-
ferent platforms (operating systems, hard-
ware), which might also affect software per-
formance.

3. We will study the performance differences
in interactions between components located
on distributed networks. For example, in
service-oriented computation, the coupling
type between client component and service
component might affect their interaction ef-
ficiency.

References

[1] R. T. ALEXANDER, J. OFFUTT, A. STEFIK, Testing
Coupling Relationships in Object-oriented Pro-
grams. Software Testing, Verification & Reliability,
vol. 20, no. 4 (2010), pp. 291–327.

[2] R. D. BANKER, S. M. DATAR, C. F. KEMERER, D.
ZWEIG, Software Complexity and Maintenance
Costs. Communications of the ACM, vol. 36, no. 11
(1993), pp. 81–94.

[3] T. ERL, Service Oriented Architecture: A fieldGuide
to Integrating XML and Web Services. Prentice Hall
PTR, April 2004.

[4] D. KAFURA, S. HENRY, Software Quality Metrics
Based on Interconnectivity. Journal of Systems and
Software, vol. 2, no. 2 (1981), pp. 121–131.

[5] D. KAYE, Loosely Coupled: The Missing Pieces of
Web Services. RDS Associates; 1st edition, August
2003.

[6] J. OFFUTT, M. J. HARROLD, P. KOLTE, A Software
Metric System for Module Coupling. Journal of
Systems. and Software, vol. 20, no. 3 (1993), pp.
295–308.

[7] J. OFFUTT, A. ABDURAZIK, S. R. SCHACH, Quanti-
tatively Measuring Object-orientedCouplings. Soft-
ware Quality Journal, vol. 16, no. 4 (2008), pp.
489–512.

[8] M. PAGE-JONES, The Practical Guide to Structured
Systems Design. Yourdon Press, New York, 1980.

[9] S. R. SCHACH, B. JIN, D. R. WRIGHT, G. Z. HELLER,
J. OFFUTT, Quality Impacts of Clandestine Com-
mon Coupling. Software Quality Journal, vol. 11
(2003), pp. 211–218.

[10] R. W. SELBY, V. R. BASILI, Analyzing Error-prone
System Structure. IEEE Transactions on Software
Engineering, vol. 17, no. 2 (1991), pp. 141–152.

[11] W. P. STEVENS, G. J. MYERS, L. L. CONSTANTINE,
Structured Design. IBM Systems Journal, vol. 13,
no. 2 (1974), pp. 115–139.

[12] D. A. TROY, S. H. ZWEBEN, Measuring the Qual-
ity of Structured Design. Journal of Systems and
Software, vol. 2, no. 2 (1981), pp. 113–120.

[13] L. YU, S. R. SCHACH, K. CHEN, J. OFFUTT, Catego-
rization of Common Coupling and its Application
to the Maintainability of the Linux Kernel. IEEE
Transactions on Software Engineering, vol. 30, no.
10 (2004), pp. 694–706.

[14] H. ZENIL, Goldbach’s Conjecture. The Wolfram
Demonstrations Project, 2007,
http://demonstrations.wolfram.com/
GoldbachConjecture/

Received: September, 2008
Accepted: March, 2011

Contact addresses:

Liguo Yu
Computer and Information Sciences Department

Indiana University South Bend
1700 Mishawaka Ave.

P.O. Box 7111
South Bend, IN 46634, USA

e-mail: ligyu@iusb.edu

Srini Ramaswamy
Industrial Software Systems

ABB Corporate Research Center
Bangalore, India

e-mail: srini@ieee.org

LIGUO YU is an assistant professor at Computer Science Department,
Indiana University South Bend. He received his PhD degree in com-
puter science from the Vanderbilt University in 2004 and his MS degree
from the Institute of Metal Research, Chinese Academy of Science in
1995 and his BS degree in physics from the Jilin University in 1992.
Before joining IUSB, he was a visiting assistant professor at Tennessee
Tech University. His research interests include software dependency,
software maintenance, software reuse, software evolution, empirical
software engineering and open-source development.

SRINI RAMASWAMY earned his Ph.D. degree in computer science in
1994 from the Center for Advanced Computer Studies (CACS) at the
University of Southwestern Louisiana (now University of Louisiana at
Lafayette). His research interests are in intelligent and flexible control
systems, behavior modeling, analysis and simulation, software stabil-
ity and scalability. Currently, he is the head of Industrial Software
Systems, ABB Corporate Research Center, Bangalore, India. Before
joining ABB, he was the Chairperson of the Department of Computer
Science, University of Arkansas at Little Rock and the chairman of
Computer Science Department at Tennessee Tech University. He is a
member of the ACM, SCSI, CPSR, and a senior member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

