
25

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

Piano Crossing – Walking on a Keyboard

Authors

Bojan Kverh, Matevž Lipanje, Borut Batagelj, Franc Solina*

Faculty of Computer and Information Science,
Computer Vision Laboratory,
University of Ljubljana, Slovenia
*E-mail: franc.solina@fri.uni-lj.si

Abstract:

Piano Crossing is an interactive art installation which turns a pedestrian crossing
marked with white stripes into a piano keyboard so that pedestrians can generate
music by walking over it. Matching tones are created when a pedestrian steps on a
particular stripe or key. A digital camera is directed at the crossing from above. A
special computer vision application was developed, which maps the stripes of the
pedestrian crossing to piano keys and detects by means of an image over which key
the center of gravity of each pedestrian is placed at any given moment. Black stripes
represent the black piano keys. The application consists of two parts: (1) initializa-
tion, where the model of the abstract piano keyboard is mapped to the image of
the pedestrian crossing, and (2) the detection of pedestrians at the crossing, so that
musical tones can be generated according to their locations. The art installation
Piano crossing was presented to the public for the first time during the 51st Jazz
Festival in Ljubljana in July 2010.

Keywords:
Interactive Art Installation, Computer Vision, Background Removal,
Music Tone Generation

udc 7.05:004.9
original scientific paper

received: 21-12-2010
accepted: 23-02-2011acta graphica 187

1. Introduction

Computer vision is now widely used to sense
the presence and actions of humans in the en-
vironment. Novel surveillance systems can re-
liably track and classify human activity, detect
unusual events and learn and retrieve a number
of biometric features (Essa, 1999). Due to the

low cost and the ubiquity of personal video
technology, the research has recently shifted
towards developing novel user interfaces that
use vision as the primary input. In the area of
personal computing, the most prominent areas
of research are desktop interfaces that track ges-
tures (Kortum, 2008). On a wider scale, human
motion can be used to interact with smart envi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14435244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

ronments (Pentland, 1996), for example, trigger
smart public displays (Batagelj et al., 2008), or
interact with virtual environments.

Real-time interaction of people with virtual
environments is a well-established concept, but
finding the right interface to do it is still a chal-
lenging task. Wearing different kinds of sensors
attached to the body of the participants is often
cumbersome. Computer vision offers the excit-
ing possibility to get rid of such sensors and to
record the body movements by means of a cam-
era. On the other hand, people, their appearance
(i.e. face), their emotions and their movements
are increasingly becoming an important study
object in computer vision research (Essa, 1999).

The number of application areas for virtual
environments has been growing ever since the
costs of making virtual environments started
going down. Sports games, used as training or
for rehabilitation, are in general an attractive
area for virtual technology. Many training ma-
chines or cycling, running, rowing are enhanced
with a virtual world to make the training more
interesting. Instead of a static scene in the fit-
ness room, one can get a feeling of moving along
a real scene or even racing against another real
or virtual competitor. At their most complex,
virtual exercisers are sophisticated simulations
that deliver demands, stresses and sensations of
a sport or exercise with unprecedented verisi-
militude and precision.

Artists on the other hand experiment freely
with new technologies and try to invent new and
better ways of interfacing with virtual worlds
(Levin et al., 2002). More than ten years ago we
have started the ArtNetLab (ArtNetLab, 2010)
as permanent cooperation of the Computer Vi-
sion Laboratory at the Faculty of Computer and
Information Science with the Academy of Fine
Arts, both at the University of Ljubljana (Soli-
na, 2004b; 2000). This cooperation enabled the
production of more than a hundred new media
projects developed by students in the past ten
years. Producing art installations gives us more
freedom to experiment with the latest technol-
ogy and to test, adapt or invent new methods
in computer vision (Peer & Batagelj, 2009). This
also enables us to show our results to a wider

public in an art gallery setting (Solina, 2005). We
initiated several art installations where compu-
ter vision played the central role. Some of the
most successful ones are the following:

The installation 15 seconds of fame (Solina,
2004a; 2005) was inspired by Andy Warhol’s cel-
ebrated statement that “In the future everybody
will be famous for 15 minutes” and his photogra-
phy derived paintings of famous people. Our in-
stallation attempts to produce instant celebrities
by reversing Warhol’s process, making Warhol-
like celebrity portraits of common people and
hanging them on the walls of the gallery to
make the them implicitly famous. Faces of peo-
ple in front of the installation are detected from
images taken by the camera, which is built into
the picture frame where the portraits are dis-
played. One of the faces is randomly selected for
the next 15 second celebrity and transformed in
pop-art fashion using computer graphic meth-
ods.

The main goal of the Smart Wall project (Peer
and Batagelj, 2009) is to provide a platform for
rapid prototyping of computer-supported inter-
active presentations that sense human motion.
The system is composed by a front end applica-
tion, where the developer defines a number of
hot spots in the camera view, a Hotspot Proces-
sor, which senses the activity in each of the hot
spots, and a Player, which displays interactive
content triggered by the activity in hot spots. By
associating actions or sequences of actions in
the environment to the actions in the interactive
presentation, a variety of complex interactive
scenarios can be developed and programmed
very easily. Due to the modular architecture, the
platform supports distributed interaction, con-
necting physical activity and content display at
remote locations.

The installation Virtual skiing (Solina, 2005;
Solina et al., 2008) is set up in a room with white
walls and a floor covered with artificial snow. The
skier stands on a pair of skis, which are attached
to the floor. The virtual slope, as seen from the
position of the skier, is projected on the entire
wall in front of the skier. By using the same
movements as on real snow the skier can nego-
tiate the virtual slope as well. The movements of

27

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

the skier are captured by a video camera in front
of the skier which in turn controls the anima-
tion of the virtual slope. The skier makes turns
down the virtual slope to avoid scarcely planted
trees just by changing the posture of his body.
The interface is very intuitive since the skier just
repeats the actions that he knows from real ski-
ing, and learns to control his movements in the
virtual world in less than a minute.

The Virtual dance project (Dovgan et al., 2008)
provides a flexible framework which allows a
dancer to set up an interactive virtual dance per-
formance by defining markers, videos and inter-
active visual icons associated with markers. The
system is then able to interact between dancer’s
real movements and his virtual movements. We
used standard tracking methods and modified
them to support fast moving markers, small
markers and discontinuous tracking of markers.
The real dance and its virtual presentation are
inseparably connected because of the real time
video processing. Every movement in the real
world immediately produces a movement in the
virtual world. Dancers can observe the virtual
dance that is produced by their movement as
a video projection. The dancers can therefore
interact with the virtual space through their
dance.

A classical or static anamorphic image re-
quires a specific, usually a highly oblique view
direction, from which the observer can see the
anamorphosis in its correct form. Dynamic an-
amorphosis (Solina & Batagelj, 2007) adapts it-
self to the changing position of the observer so
that wherever the observer moves, he sees the
same undeformed image. The dynamic chang-
ing of anamorphic deformation, in concert with
the movement of the observer, requires the sys-
tem to track the 3D position of the observer’s
head and the recomputation of the anamorphic
deformation in real time. This is achieved by
using computer vision methods which include
face detection and tracking of the selected ob-
server in 3D. We used dynamic anamorphosis
for the first time in the context of an art instal-
lation. A human face staring directly ahead is
projected on the wall of a dark room, so that
the only visible cues seen by the user are given
by the projected image. The position of a single

user determines the anamorphic deformation,
so that the user always sees the same, respective-
ly undeformed image from all positions in the
room. Dynamic anamorphosis therefore disas-
sociates the geometric space in which the user
moves away from the visual cues they see, since
wherever the observer moves, they see the same
image. Henceforth there is no way to escape the
gaze of the projected face in this art installation.
On a symbolic level, the installation epitomizes
the personification of ubiquitous video Surveil-
lance systems (Levin et al., 2002).

Piano crossing, the subject of this article, is an
art installation which turns a pedestrian cross-
ing into a piano keyboard, where pedestrians
themselves generate music by walking over
it. The installation was initially conceived by
Matevž Lipanje for his master’s thesis (Lipanje,
2010). It consists of a pedestrian crossing with
added black lines, computer-equipped with
loudspeakers and a digital camera pointed to
the pedestrian crossing from above. A specially
developed computer vision application maps
piano keys to the stripes of the pedestrian cross-
ing and then detects which stripe a pedestrian
is located upon at a particular moment, so that
a corresponding music tone can be generated.
Each white line of the crossing represents one
white key on the piano, while black lines are laid
down between white lines to represent the black
keys. A pedestrian who walks over the crossing
makes music with his feet similarly just as a pi-
anist does with his fingers. In fact, merely the
“centre” of a pedestrian and its relation to the
keys must be detected.

In this article we present technical details of
the installation, especially the computer vision
methods for segmenting the pedestrian crossing
into an abstract keyboard and detecting the pe-
destrians and their position at that crossing.

The idea of playing the piano with feet in-
stead of hands is in the air for quite some time.
The Philadelphia engineer, kinetic artist and
inventor Remo Saraceni created the Big piano
or Walking piano in 1976 (Big piano, 2010; Sa-
raceni, 2010). This piano can be played by actu-
ally stepping on the piano keys. It was featured
in films and is today installed at several public

28

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

institutions, such as art centres, hospitals, toy
stores and shopping malls.

The Walking piano is produced in several ver-
sions, small for children and bigger for adults.
The main motivation in producing the Big pi-
ano was entertainment.

A slightly different motivation lies behind
the Piano stairs which are installed in the Stock-
holm underground station (Piano stairs, 2009).
Individual stairs were turned into piano keys by
mounting appropriate touch sensors on them.
The piano stairs should motivate people to
climb the stairs instead of riding on a moving
stairway.

The visual similarity between pedestrian
crossings and keyboards was not lost out with
visual designers (Design crosswalks, 2010; Walk
the tune, 2010). At some of those crossings piano
music soundtrack starts playing when a pedes-
trian steps on the crossing. Most of them just
serve for various promotional purposes.

The main purpose of our interactive piano
crossing is promotion with an added twist of in-
teractivity. The installation does not require any
physical change of the road surface since the lo-
cation and time that a person touches the stripes
of the zero crossing is detected by computer vi-
sion methods.

The rest of the paper is organized as follows:
Section 2 describes the generation of an abstract
keyboard (nicknamed zeboard), in Section 3
two methods for background modelling are pre-
sented, while Sections 4 and 5 are reserved for
experimental results and conclusions.

2. Generating the zeboard

With this initial operation, it is necessary to
transform the image of the crossing into a ze-
board (an abstract keyboard made out of a pe-
destrian crossing) by segmenting it into areas
of white lines and spaces between them. The

process should be independent of the length
and width of the crossing, which also makes the
placing of the camera unbound to some exact
position and not vulnerable to changing illumi-
nation conditions. The process should also be as
automatic as possible. Each key on the zeboard
must be associated with an image region, midi
number and key status, whether it is pressed or
not. This allows the next stage, Locate and play
to actually generate musical tones as a pedes-
trian walks over the crossing. midi (Musical
Instrument Digital Interface) is a protocol that
transmits information such as the pitch and in-
tensity of musical notes to play.

The process of generating the zeboard is di-
vided into the following steps:

image pre-processing: 1.
•	noise	reduction,	
•		transforming	the	colour	image	into	

intensity image,

pyramid segmentation,2.

search for the contours of white and 3.
black keys:
•	thresholding,	
•	contour	analysis,

generation of a 4. midi keyboard.

2.1. Image pre-processing

Within this stage, we first reduce the noise in
the captured image. Since the Gaussian noise is
most likely to be present, we use a Gaussian fil-
ter to convolve our image with. We used a Gaus-
sian filter in the form of 3 x 3 matrix. After noise
reduction, the image is transformed into inten-
sity image using the following formula:

 (1)

Parameters r, g and b are intensities of red,
green and blue components for each pixel in our
original image, while c is the resulting intensity
of the same pixel in the intensity image. Fig. 1
shows the results of pre-processing.

29

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

2.2. Pyramid segmentation

Pyramid segmentation is used to divide the
intensity image into coherent regions. Ideally,
each region should represent a key on the ze-
board. The process is divided into the following
steps:

generation of a Gaussian pyramid,1.

pixel linking,2.

grouping linked pixels into regions.3.

Figure 1. During pre-processing the original colour image

is converted to an intensity image.

Steps 2 and 3 are repeated until the desired
level of segmentation is reached.

A Gaussian pyramid is a collection of images,
generated from the original image by downsam-
pling. The original image is downsampled until
we reach the desired resolution. To obtain the
image on level i+1 we first convolve the image
on level i with a Gaussian filter and then leave
out pixels in even rows and even columns. Seg-
mentation starts at the highest level of the pyra-
mid, i.e. at the image with the lowest resolution.
Relations of inheritance are formed between
consecutive levels, as each pixel on level i + 1 has
four potential ancestors on level i.

The relation between pixel a on level i and
pixel b on level i+1 is formed if p(c(a), c(b)) < t1,
where c(a) is the intensity level of pixel a, t1 is a
threshold value and function p is defined as:

 (2)

Relations obtained in this way form linked
pixels which are then grouped into regions. Two
areas of linked pixels a and b belong to the same
group if p(c(a), c(b)) < t2, where function p is the
same as before, t2 is another threshold value, while
c(a) is the average intensity for the entire area a.

Figure 2. Results of pyramid segmentation for different threshold values t1 and t2, from the worst (top left) to the best

(bottom right).

30

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

The optimal threshold values t1 and t2 are ob-
tained empirically. The user interface of the ap-
plication provides two sliders, which allow us
to change those values and see which the most
appropriate ones are. Fig. 2 shows the results of
segmentation for different threshold values.

2.3. Search for the contours

The first part of this step is thresholding the
intensity image into a binary image. We need
two different binary images, one containing
black lines on white background and another,
containing only white lines on black back-
ground, as shown in Fig. 3.

We can search for the contours around areas
on the binary image, which represent the fore-
ground. Contours can be represented either by
a list of pixels, located on the border of the area,
or by a list of vertices of the polygon that sur-
rounds the area. We use the latter and we want
our polygon to be as simple as possible to facili-
tate further analysis. Thus, starting with a poly-
gon represented by all of the pixels and located
on the border, we use the Douglas-Peucker al-
gorithm to minimize the number of polygon
vertices (Douglas and Peucker, 1973). Since there
can be several disturbances on the image of the
pedestrian crossing such as shadows, also to be
seen on the example images (Figs. 1, 2, 3 and 4),
we needed to set some criteria, by which the
individual areas are accepted or not accepted
as zeboard keys. The areas whose width and
height do not match the predefined values are
filtered out. The result of searching for contours
is shown in Fig. 4.

2.4. Generation of a midi keyboard

In the final step we actually generate neces-
sary instances of data structures. Data structure,
representing an individual key, consists of the
following:

contour representation, using Open•	 CV
library structure CvSeq,

the •	 midi number of the key,

a flag, which denotes whether the key is •	
pressed or not,

pointer to the next key.•	

Data structure, representing the entire key-
board, is very simple and consists of the pointers
to the list of white and black keys, respectively.

3. Locate and play

In order to generate a midi sequence in ac-
cordance to the pedestrian walking over the
crossing, we need a way to distinguish a pedes-
trian from the background in a video, obtained
by our camera. Thus we need a background
model which is then subtracted from the proc-
essed image. This model needs to be regularly
updated during the locating procedure, which
enables it to adapt to the illumination and other
changes of the scene and effectively detect the
pedestrians in the foreground. The application
makes use of two adaptable techniques for sepa-
rating foreground from the background: simple
and advanced technique.

Figure 3. Thresholding the intensity image (left) into two binary images, with black lines on white background (centre)

and white lines on black background (right).

31

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

3.1. Separation of foreground from
background - simple technique

In this case, the first frame of the video is re-
garded as the reference background image. We
can denote this frame as b. It is important that
there are no pedestrians, vehicles or other ob-
jects on the pedestrian crossing when we start
recording the video. At time t, a frame it is ob-
tained from the camera and we calculate the dif-
ference ||it – b||. Since it and b are both intensity
images, the difference between the two is calcu-
lated as a sum of absolute differences between
intensity values of pixels from the same location
on both images.

If the difference exceeds some predefined
threshold value T, the frame it contains objects
in the foreground. T should denote the maxi-
mum level of noise in the video frames and it
was set to 20 in our experiments. This approach
works well in the areas with constant illumina-
tion, which is not the case on open scenes un-
der natural illumination. For outside scenes the
background model has to adapt to the changes
of illumination.

We used the following formula to obtain
this:

 (3)

This formula was first used in the system
pfinder (Wren et al., 1997).

The speed of adaptation to the new in-
coming frames is regulated by parameter
α. We discovered that the optimal value for
our application is 0.003. With this formula
each new frame is slightly integrated into
the reference background image b, which
consequently adapts to the slow illumina-
tion changes. Note that every pixel from
the current frame contributes equally to
the adaptation, regardless of whether it be-
longs to the background or the foreground.
Slow moving objects or pedestrians could
be integrated into the background image
entirely over time. To avoid such problems,
we could use a much smaller value of α (or
even 0) for pixels which belong to the fore-
ground. The results of using this technique
are shown in Fig 5.

Figure 4. Searching for contours, representing black (top) and white (bottom) keys.

Initial contours (left) are filtered using the compliance to their widthand height (middle) and simple polygon contours

are calculated from the remaining ones (right).

32

the rgb vector of the pixel in the i-th frame. Each
code word cj is represented by two vectors:

 (4)

These parameters are explained below

 — the average rgb colour of the code
word,

 — minimal and maximal brightness,

 — codeword frequency,

 — longest interval of absence of this code
word,

 — first and last appearance of the
code word.

The algorithm which generates the codebook
from the time series X for each pixel location
is quite straightforward. For each pixel vector
xi in the time series it searches for a compatible
codeword in C. The rgb value of xi = (r, g, b)
is compatible with codeword cj if the following
two criteria are both true:

 (5)

Function brightness simply calculates a sum
of pixel rgb components, while colordist calcu-
lates the distance between the pixel colour and
the line that represents the colour regardless
of the brightness in rgb space. This line goes
through the origin of rgb space and the average
colour of the code word as shown in Fig. 6. It is
defined as follows:

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

This technique works well if we have a static
background and fast moving objects in the fore-
ground. However, when the objects in the fore-
ground move too slowly, they get integrated into
the background reference image, making the
detection more difficult and inaccurate. We thus
had to find a better solution for background re-
moval.

3.2. Separation of foreground from
background – advanced technique

The most popular method for background
modelling, mog (Stauffer and Grimson, 1999),
where each pixel is modelled as a combination of
K Gauss distributions, proved to be too slow to
use in real time with video of size 640 x 480. We
therefore decided to use a technique where the
image is modelled with the help of a codebook
(Kim et al., 2005). The principle of encoding im-
age changes in the given time frame functions as
follows: the values of each pixel element which
change during the time period that is modelled
are encoded with a set of code words or a code-
book, which represents the compressed model of
the background for this pixel location over this
time period. The method is appropriate for static
and dynamic environments.

Each pixel in the image is represented by its
codebook C = {c1, c2, … cL}, where c1, c2, … cL are
code words and L is the number of code words
for a specific pixel location. Normally, L << N,
where N is the number of video frames or images
in the sequence that is modelled by the codebook.
A codebook C for a given pixel location is gener-
ated from the time series of values of that pixel X
= {x1, x2, … xN} over N video frames, where xi is

Figure 5. Simple technique of separating the foreground (two pedestrians and their shadows) from the background

with different α values. From the left: original image, difference images with values α = 0.003, α = 0.1, α = 0.5.

If the value of α is too large, only the silhouette of the foreground is detected.

33

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

 (6)

Figure 6. Distance between pixel and code word in rgb

space is drawn in red. Note that xxx and xxx .

Parameter α should be set between 0.4
and 0.7. If we find a compatible code word
(let denote it with index m), we update it
as follows:

 (7)

If we cannot find for a compatible code word,
we increase by one, create a new code word and
set its parameters as follows:

 (8)

After all in the time series X have been evalu-
ated and the codebook C has been created for a
given pixel location, we check each codeword cj
for an eventual update of λj which denotes the
longest interval of absence of this codeword. If
we consider the series of N pixel values X a cir-
cular list and if the number of frames between
the first appearance (p) and the last appearance
(q) of codeword cj in it is greater than current
λj , then λj is updated to that number of frames,
which is N - qj + pj - 1.

Finally, we need to scan the codebook and
filter out the code words, where λ is larger
than some threshold value tM. This rejects code
words, which have not appeared in the image
for a long time and thus most likely belong to
some foreground objects. In our application, tM
has been set to N/2.

To determine whether a given pixel in a new
video frame belongs to the foreground or the
background, all we have to do is check whether
the value of this pixel is compatible with any of
the code words for this pixel location.

Compatibility is checked by the same set of
conditions as in Eq. 5. If a pixel in the new frame
is compatible with at least one of the code words
for this pixel location, it is labelled as back-
ground. Some experimental results using this
technique are shown in Fig. 7.

34

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

Note that it is also possible to use this code
word method with other colour systems than the
rgb, for example with the yuv or hsv colour
systems, where one of the components is bright-
ness itself. The main reason for using other col-
our systems is that most of the changes between
video frames are due to a change in brightness
and not in the colour itself. When one of the
colour system components is brightness, we do
not need anymore the colourdist function to de-
termine the compatibility between a pixel and
a code word. Instead, we can simply check if a
value of each pixel’s component is within the
code word interval, like we did with the func-
tion brightness in the rgb colour model (Eq.
5). This way, the entire process of separating the
foreground from the background in the image
becomes simpler and faster, and this is very im-
portant for real-time applications like ours.

In our experiments, the time series of N =
100 video frames were used to build the initial
codebook which was then updated after every
500 frames.

3.3. Locating the pedestrians and
generation of midi sequence

The result of separating the foreground from
the background is a simple binary image, on
which pixels that belong to the foreground ob-
jects are marked by white pixels. The next step
is to group the pixels belonging to a single pe-
destrian, and to calculate their mass centre. An
iterative algorithm is used for region labelling
(Rosenfeld and Pfaltz, 1966), which uses an array

of labels. The method scans the binary image
and labels every white pixel encountered with
the label of one of its white neighbours. If such a
neighbour does not exist, a new label is created
and assigned to the pixel. In the next step, the
array of labels is scanned in search of equivalent
labels, i.e. those which are assigned to neigh-
bouring pixels. Pixels labelled with equivalent
labels are considered to be part of a single re-
gion.

Figure 8. Labelled regions in the binary image show-

ing the foreground objects (two pedestrians and their

shadows) and their corresponding frames.

After region labelling, we compute the frame
around each region (Fig. 8) and its mass cen-
tre, which is then regarded as the position of a
corresponding pedestrian. If the camera is not
positioned above the pedestrian crossing, but
looks at it from the side, the calculated mass
centre could not appear on the line which the

Figure 7. Codebook technique of separating foreground (two pedestrians and their shadows)

from background in images. The middle and right image show the results

with and without the filtration of code words with large λ, respectively.

35

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

pedestrian is moving along at the moment. If a
pedestrian projects a shadow, the shadow also
moves with the pedestrian and is integrated into
the region whose mass centre we compute. In
such cases the mass centre shifts towards the
feet of the pedestrian. In general, if the viewing
angle of the camera differs considerably from
the vertical orientation, we have to translate the
calculated mass centre for some predefined vec-
tor, which could be determined empirically.

The generation of the final midi sequence is
straightforward; the application calculates the
location of the pedestrian at each given video
frame and compares it with the initially detect-
ed zeboard key contours. If the pedestrian’s mass
centre is inside a certain key contour, the cor-
responding midi number for this key is added
to the midi sequence. The algorithm for gen-
erating the midi sequence runs for every im-
age in the image sequence over all keys on the
keyboard to check if any of the detected blobs
corresponds to it.

The key is also labelled as active, which pre-
vents the generation of several activations of
the same tone when the pedestrian is crossing
a single zeboard key area. Only after the pedes-
trian leaves the key area, the key is labelled as
inactive again. This method corresponds to the
mechanics of a real piano; once a key is pressed,
it cannot be pressed again before it is released.
If several people are walking on the zeboard at
the same time, several tones are generated, each
corresponding to the mass centre of individual
blobs. If blobs of several people temporarily
merge, just a single tone is generated according
to the mass centre of the merged blob. Once a
blob separates again into two blobs, each of the
two starts generating their own tones.

4. Experimental results

We tested our application on three pedestri-
an crossings. The first one was a smaller version
of a pedestrian crossing, set up inside a build-
ing; the second was a real pedestrian crossing at

a newly built crossroad which has not yet been
open for traffic. The third one was just a mini-
mized version made out of paperboard which
was used to test different levels of illumination.
We achieved good results in detecting white and
black lines on pedestrian crossings and locating
the pedestrians who walk over them. Notable
exceptions were at the second pedestrian cross-
ing where the shadow of a tree made it impossi-
ble to detect a couple of lines as shown in Fig. 9.
However, locating the pedestrians was still good
enough, as we can see in Fig. 10.

Figure 9: Detected contours of white and black keys on

a real pedestrian crossing.

Figure 10: Comparing simple (up) and advanced (down)

techniques for the separation of foreground and

background showing in both cases the original

image with the activated key next to the image

with the located pedestrian.

36

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

In July 2010 a real installation of our applica-
tion was set up during the 51st Jazz Festival in
Ljubljana (Jazz 51, 2010). A pedestrian crossing
with added black lines that resembled a real pi-
ano was set up near the entrance to the open air
theatre Križanke where the Jazz Festival took
place. The public could test the application and
generate music by walking over the crossing
(Fig. 11).

5. Conclusions

We created the art installation Piano crossing
which applies the methods of computer vision
to transform a normal pedestrian crossing into
a music instrument. Computer vision serves
as an interface between the physical world of
people walking over a pedestrian crossing and
the computer-generated musical tones. We de-
veloped an application that maps virtual piano
keys to the stripes of the pedestrian crossing and
that segments pedestrians from the background
so that their mass centre can be computed and

the corresponding musical tone generated. A
particular challenge was that the installation is
normally set up outside where the illumination
changes frequently. We had to select and adapt
appropriate computer vision methods for seg-
menting the stripes of the pedestrian crossing
from the rest of the image and to segment the
moving pedestrians from the background.

The application itself could be improved in
several ways. The model of the piano keyboard
is generated only at the beginning, if a camera is
moved in any way due to the wind for example,
the virtual piano keys become misaligned with
the stripes of the pedestrian crossing. Musical
tones are generated according to the alignment
of the mass centre of a pedestrian with the vir-
tual keyboard. A more advanced application
could detect the actual position of user’s feet on
the virtual keyboard to make the correlation to
piano playing even more convincing. The ap-
plication could also implement the tracking of
pedestrians instead of just locating them. In
this way, a different musical instrument could
be randomly assigned to individual pedestrians.
We believe that this project is not interesting
merely from an artistic viewpoint, but it could
be also used for the promotion of events, serv-
ices or products. On the other hand, it presents
an interesting area for further research, namely
how the transformation of motion into sound
could help us in visual surveillance. Normal
and routine events should sound the same, ex-
ceptional occurrences and unusual incidents
should alert us with different sounds, rhythms
or melodies.

References

ArtNetLab, 2010. http://black.fri.uni-lj.si,
September 2010.

Batagelj, B. Ravnik, R. & Solina, F.,
2008. Computer vision and digital signage.
In Tenth International Conference on Mul-
timodal Interfaces, pages 1-4. ACM, 2008.

Figure 11. Art Installation Piano crossing during

the 51st Jazz Festival in Ljubljana,

 July 2010. (Photo: Nada Žgank)

37

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

Big piano, 2010. http://en.wikipedia.org/
wiki/Big_piano, December 2010.

Design crosswalks, 2010. http://www.
crookedbrains.net/2010/01/design_09.
html, December 2010.

Douglas, D. H. & Peucker, T. K., 1973.
Algorithms for the reduction of the number
of points required to represent a digitized
line or its caricature. Cartographica: The
International Journal for Geographic Infor-
mation andGeovisualization, 10(2):112-122,
1973.

Dovgan, E., Čigon, A., Šinkovec, M., &
Klopčič, U., 2008. A system for interac-
tive virtual dance performance. In 50th In-
ternational Symposium ELMAR, volume 2,
pages 475-478, Zadar, Croatia, 2008.

Essa, I. A., 1999. Computers seeing people. AI
Magazine, 20(2):69-82, 1999.

Jazz 51, 2010. http://en.ljubljanajazz.si/photo-
gallery/piano-crossing/, September 2010.

Kim, K., Chalidabhongsb, T. H., Har-
wood, D., & Davis, L., 2005. Real-time
foreground-background segmentation us-
ing codebook model. Real-Time Imaging,
11(3):172-185, 2005.

Kortum, P., editor, 2008. HCI Beyond the GUI
: Design for Haptic, Speech, Olfactory, and
Other Nontraditional Interfaces. Morgan
Kaufmann, 2008.

Levin, T. Y., Frohne, U. & Weibel, P.,
2002. CTRL [SPACE], Rhetorics of Surveil-
lance from Bentham to Big Brother. MIT
Press, 2002.

Lipanje, M., 2010. Klavir za pešce - ustvar-
janje glasbe z računalniškim vidom /Piano
crossing - generating music using computer
vision. Master’s thesis, University of Ljublja-
na, Faculty of Computer and Information
Science, 2010.

Peer, P. & Batagelj, B., 2009. Art - a perfect
testbed for computer vision related research.
In M. Grgić, K. Delać, and M. Ghanbari,
editors, Recent Advances in Multimedia
Signal Processing and Communications,
volume 231 of Studies in Computational In-
telligence, pages 611-629. Springer, 2009.

Pentland, A. P., 1996. Smart rooms. Scien-
tific American, 274(4):68-76, 1996.

Piano stairs, 2009. http://thefuntheory.
com/, 2009.

Rosenfeld, A. & Pfaltz, P., 1966. Sequen-
tial operations in digital picture processing.
Journal of the Association for Computing
Machinery, 12:471-494, 1966.

Saraceni, R., 2010.. http://www.walkingpi-
ano.com, December 2010.

Solina, F., 2000. Internet based art installa-
tions. Informatica, 24(4):459-466, 2000.

Solina, F., 2005. 15 sekund slave in virtualno
smu_canje / 15 Seconds of Fame and Virtual
Skiing, 2005. Exhibition Catalogue. ArtNet-
Lab, Ljubljana, 2005.

Solina, F., 2004a. 15 seconds of fame. Leon-
ardo, 37(2):105-110, 2004.

Solina, F., 2004b., Artnetlab - the essential
connection between art and science. In M.
Gržinić, editor, The future of computer arts
& the history of The International Festival
of Computer Arts, Maribor 1995-2004, pag-
es 148-153. Maska, Ljubljana, 2004.

Solina, F., & Batagelj, B., 2007. Dynamic
anamorphosis. In Enactive/07 enaction in
arts: Proceedings of the 4th International
Conference on Enactive Interfaces, pages
267-270, Grenoble, France, 2007. Associa-
tion ACROE.

38

Kverh et al.: Piano Crossing – Walking on a Keyboard, acta graphica 22(2010)3-4, 25-38

Solina, F., Batagelj, B., & Glamo-
canin, S., 2008. Virtual skiing as an
art installation. In 50th International
Symposium ELMAR, volume 2, pages
507-510, Zadar, Croatia, 2008.

Stauffer, C. & Grimson, W. E. L., 1999.
Adaptive background mixture models
for real-time tracking. In IEEE Confer-
ence on Computer Vision and Pattern
Recognition, volume 2, pages 246-252,
1999.

Walk the tune, 2010. http://www.magdale-
na.org/en/gallery/entries/40199/details.
html, December 2010.

Wren, C. R., Azarbayejani, A., Dar-
rell, T. & Pentland, A. P., 1997.
Pfinder: Real-time tracking of the hu-
man body. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence,
19(7):780-785, 1997.

