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We investigated the muscle tissue of a teleost Cyprinus carpio L. to fi nd out whether N-acetylcysteine 
(NAC), alpha-lipoic acid (LA), taurine (TAU), and curcumin (CUR) were able to counteract oxidative 
stress induced by acute exposure to cadmium (Cd). The muscle tissue was dissected 96 h after a single 
intraperitoneal injection of Cd (5 mg kg-1) and of antioxidant substances (50 mg kg-1). Using 
spectrophotometry, we determined the glutathione redox status, lipid peroxidation levels and the activities 
of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione disulphide 
reductase (GR). Accumulation of Cd in the muscle was analysed using inductively coupled plasma - optical 
emission spectrometry (ICP-OES).
All substances lowered Cd levels in the following order of effi ciency; LA=NAC>TAU=CUR. Cadmium 
increased SOD activity, but CAT activity declined, regardless of antioxidant treatment. Treatment with 
CUR induced GPx activity. Treatment with TAU lowered Cd due to higher total glutathione (tGSH). The 
most effective substances on lipid peroxidation were LA and NAC due to a greater Cd-lowering potential. 
It seems that the protective role of TAU, LA, and NAC is not necessarily associated with antioxidant 
enzymes, but rather with their own activity.
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Studies of the protective role of exogenous 
antioxidants against Cd toxicity in living organisms 
have mostly been limited to mammals and have seldom 
included aquatic organisms. Yet, aquatic organisms are 
more sensitive to Cd exposure and toxicity than 
mammals and may provide a good experimental model 
for the evaluation of subtle effects of oxidative stress 
and other adverse effects of pollutants (1). Fish are often 
not directly exposed to Cd, because they are often at 
the top of aquatic food chains (2).

Cadmium is a heavy metal; about 18,800 t were 
produced worldwide for nickel-Cd batteries, pigments, 

chemical stabilizers, metal coatings and alloys in 2009 
alone (3). The oxidative potential of Cd in animals is 
well-known; it depletes glutathione (GSH) and 
induces or inhibits antioxidant enzymes and lipid 
peroxidation (4-6).

A useful protection against its oxidative effects 
could be supplementation with antioxidants. N-
acetylcysteine (IUPAC name: (R)-2-acetamido-3-
sulfanylpropanoic acid; CAS number: 696-91-1; 
NAC) has widely been used to protect against the toxic 
effects of a number of chemicals. It is a free-radical 
scavenger, a precursor of GSH, and it can form stable 
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water-soluble complexes with mercury and other 
metals (7).

Alpha-lipoic acid (thioctic acid; IUPAC name: 
(R)-5-(1,2-dithiolan-3-yl) pentanoic acid; CAS 
number: 1200-22-2; LA) is a disulphide compound 
and a natural coenzyme of pyruvate dehydrogenase 
and α-ketoglutarate dehydrogenase. Lipoic acid and 
its reduced form dihydrolipoic acid are present in all 
kinds of microbial and eukaryotic cells and act as 
antioxidants not only through free-radical quenching, 
but also indirectly through recycling other cellular 
antioxidants (8). Its potential as a chelating agent 
against heavy metal poisoning was also evaluated by 
some laboratories (9, 10).

Taurine (IUPAC name: 2-aminoethanesulfonic 
acid; CAS number: 107-35-7; TAU), a semi-essential 
amino acid, is known to have antioxidant, membrane-
stabilising properties, as it inhibits lipid peroxides 
(11). Contradictory data were reported for the kidney 
of a teleost Clarias batrachus and mice treated with 
TAU. It lowered Cd content in the fi sh and mice, but 
lipid peroxidation decreased only in mice (12, 13).

Curcumin [diferuoyl methane, IUPAC name: 
(1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione; CAS number: 458-37-7; CUR] 
from the rhizomes of turmeric (Curcuma longa L.) is 
a phenolic and natural yellow pigment. Its biological 
activity has been studied by many. Daniel et al. (14) 
reported that CUR chelated Cd and lead in solutions 
and decreased lipid peroxidation induced by these 
metals in rat brain homogenate. Curcumin possesses 
antioxidative and anti-infl ammatory properties, and 
Eybl et al. (15, 16) associated it with a drop in Cd 
content in vivo in rats and mice.

The muscle tissue was chosen in this study because 
of its usage as food supply by humans as well as high 
levels of oxygen consumption which results in higher 
concentrations of ROS compared to other tissues (17). 
The goal of the present study was to investigate the 
effect of antioxidant compounds NAC, LA, CUR and 
TAU on oxidative damage induced by Cd by whether 
their antioxidant and/or Cd-decreasing potential in the 
muscle of carp (Cyprinus carpio L.) used as a model 
organism.

MATERIALS AND METHODS

Young carps (C. carpio) [mean weight: (54.39±
3.11) g; mean length: (16.02±0.47) cm] were obtained 

from the State Hydraulic Works fi sh culture pools 
(Adana, Turkey) and transferred to our laboratory. The 
animals were placed in glass tanks for a month before 
the experiments to get acclimatised to laboratory 
conditions. The experimental tanks were fi lled with 
120 L of dechlorinated and gently aerated tap water 
with the following physicochemical properties: total 
hardness (318.60±4.74) mg L-1 CaCO3; pH (8.65±0.04), 
dissolved oxygen (7.49±0.09) mg L-1 and temperature 
(22.6±0.6) °C. Light and dark cycles exchanged every 
12 h. The fi sh were fed with commercial food pellets 
(Camli Feed Co., Izmir, Turkey) once a day, receiving 
about 2 % of their body weight per meal.

The experiments followed the American Public 
Health Association (APHA) standard methods (18). 
The fi sh were divided into seven experimental tanks; 
each tank accommodating four fi sh. All experimental 
chemicals were given in a single intraperitoneal (i.p.) 
dose injected after anaesthetising the fi sh with ice-
containing water because of the interference of 
chemical anaesthetics with GSH metabolism (19). All 
experimental doses were determined with pre-
experimental results according to the effects of 
chemicals on lipid peroxidation.

Curcumin was dissolved in ethyl oleate (14), while 
CdCl2, NAC, LA, and TAU were dissolved in saline 
(0.59 % NaCl for freshwater fi sh). Antioxidants NAC, 
LA, TAU, and CUR were injected immediately after 
Cd. The fi sh then were returned into experimental 
tanks for 96 h and experimental water was not changed 
during experiments.

Experimental design

Fish in the control group received 150 μL of saline. 
Oleate control fi sh received 150 μL of ethyl oleate. 
Fish in the Cd group received 5 mg kg-1 Cd alone. Fish 
in the Cd+NAC group received 50 mg kg-1 NAC 
immediately after receiving 5 mg kg-1 Cd. Fish in the 
Cd+LA group received 50 mg kg-1 LA immediately 
after receiving 5 mg kg-1 Cd. Fish in the Cd+TAU 
group received 50 mg kg-1 TAU immediately after 
receiving 5 mg kg-1 Cd. The last Cd+CUR group of 
fish received 50 mg kg-1 CUR immediately after 
receiving 5 mg kg-1 Cd.

No fi sh died during the experiments. Ninety-six 
hours after injection the fi sh were removed from the 
tanks and killed by decapitation. Their muscle tissue 
was dissected out on an ice-cold plate, washed with 
saline, blotted dry, weighed, and stored at -80 °C until 
analysis.
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A part of muscle tissue from each fi sh was washed 
with saline and analysed for Cd using the method of 
Muramoto (20). Oven-dried muscle samples were 
digested in a mixture of nitric and perchloric acid (2:1). 
Cadmium was analysed with a Perkin-Elmer 5300 DV 
ICP-OES spectrometer (USA). The instrument was 
calibrated and the standard curve prepared using 
custom standards supplied by Inorganic Ventures Inc. 
(USA), with a detection limit of 0.02 mg L-1.

Muscle tissues were homogenised in a teflon 
homogeniser (Daihan, WiseStir, HS30E, Korea) with 
0.25 mol L-1 sucrose (Fluka, Switzerland) containing 
a 50 mmol L-1, pH 7.4 phosphate buffer. Homogenates 
were centrifuged at 9500 x g (Hettich Universal 320R, 
Germany). The whole homogenisation process was 
carried out at 4 °C. Supernatants were used to 
determine tGSH, oxidised glutathione (GSSG), 
thiobarbituric acid reactive substances (TBARS), 
protein content, and SOD, CAT, GPx, and GR 
activities.

The activity of SOD was measured using the 
method described by McCord and Fridovich (21). The 
inhibition of iodo-p-nitro tetrazolium violet reduction 
by superoxide anion radical (O2

-) generated by 
xanthine-xanthine oxidase was monitored at 505 nm 
(Shimadzu UV-Mini 1208, Japan) for 3 min at 37 °C. 
A standard graphic formed by RANSOD kit (Randox 
Laboratories Ltd., UK) was used to evaluate enzyme 
activity.

Catalase activity was determined according to 
Beutler (22) as decrease in absorbance of 10 mmol
L-1 H2O2 at 37 °C for 2.5 min. (ε=0.71 L mol-1 cm-1) 
in Tris-HCl buffer (pH 8.0). The reaction was initiated 
by adding 20 μL of the sample. The rate of degradation 
of H2O2 by CAT was measured spectrophotometrically 
at 230 nm.

Glutathione peroxidase-specific activity was 
analysed by monitoring the consumption of NADPH 
by GR at 340 nm at 37 °C. For substrate we used t-
butylhydroperoxide (Sigma-Aldrich, USA) (22). The 
reaction medium contained 0.1 mol L-1 GSH, 10 units 
of GR, 2 mmol L-1 NADPH, and 7 mmol L-1 of t-
butylhydroperoxide.

Glutathione disulphide reductase-specifi c activity 
was assayed by monitoring oxidation of NADPH with 
GSSG at 37 °C and at 340 nm (23). The reaction 
medium included 100 mmol L-1 phosphate buffer (pH 
8), 0.12 mmol L-1 NADPH, and 1 mmol L-1 GSSG.

Before tGSH and GSSG analysis, homogenates 
were mixed with 10 % sulphosalicylic acid (Sigma-
Aldrich, USA) at a ratio of 1:0.5 (v:v), further 

homogenised, and then centrifuged at 9500 x g for 5 
min to precipitate the proteins. Total glutathione 
content in the resulting supernatant was analysed 
according to Anderson (24). The reaction medium 
contained 143 mmol L-1 sodium-potassium buffer 
(containing 6.3 mmol L-1 EDTA, pH 7.5), 0.3 mmol
L-1 NADPH, 6 mmol L-1 DTNB, and 50 units of GR. 
The total volume was adjusted to 1 mL with distilled 
water. Absorbance was monitored at 412 nm at 30 °C 
and converted to concentration using the standard 
curve prepared with GSH. Oxidised glutathione 
content was measured after trapping the reduced 
fraction with 2-vinylpyridine (25). The derivatised 
samples were analysed using the same method used 
for tGSH. Glutathione concentrations were expressed 
as micromoles of GSH equivalents per miligrame of 
protein. GSH was calculated by subtracting GSSG 
levels from tGSH levels (tGSH=GSH+2xGSSG). The 
GSH/GSSG ratio was calculated using the following 
formula (26):

Muscle tissue TBARS as a marker of lipid 
peroxidation was determined according to Ohkawa et 
al. (27). Homogenates were treated with thiobarbituric 
acid (TBA) (Sigma-Aldrich, USA) at pH 3.4 and 95 °C 
for 30 min, and the absorbance of developing pink 
colour was measured at 532 nm. The reaction mixture 
contained 8.1 % of SDS, 20 % of acetic acid, pH 3.4, 
0.8 % of TBA, and a mixture of n-butanol and pyridine 
(14:1). The concentration of TBARS was determined 
using the standard curve prepared with 1,1’,3,3’ 
tetramethoxypropan.

Protein concentration was measured using a Folin-
phenol reagent according to Lowry et al. (28). 
Absorbance was measured at 750 nm and converted 
to concentration using bovine serum albumin as a 
standard.

All parameters were expressed as mean ± standard 
error (SE). Equality of variances was tested with 
Levene’s test. Statistical differences between the 
treated and control groups were determined with the 
analysis of variance (ANOVA), using SPSS 17.0 
statistical package. For homogenous subsets we used 
Duncan’s multiple comparison test and for non-
homogeneous subsets Tamhane’s T2 test. The level of 
significance was set at 5 %. Pearson correlation 
analysis was used to determine whether a decrease in 
Cd level was related to other studied parameters.
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RESULTS

Muscle Cd levels

Ninety-six hours after treatment we observed a 
signifi cant accumulation of Cd in carp muscle (Table 
1). All antioxidants lowered its tissue content (P<0.05) 
in the following order (from most effective to least): 
LA=NAC>TAU=CUR. Lipoic acid and NAC lowered 
the Cd content by more than 65 %, and TAU and CUR 
by 40 %.

Effects of antioxidants on antioxidant enzyme 
activities

All tested antioxidants and Cd alone stimulated 
SOD activity in the muscle tissue, but the increase 
was signifi cant only in the Cd+LA and Cd+CUR 
groups (Table 2). Cadmium treatment lowered CAT 
activity by more than 60 %. Antioxidants had no effect 

on Cd-lowered CAT activity. Curcumin increased GPx 
activity by 20 % compared to the oleate control group. 
Cadmium did not change GR activity.

Effects of antioxidants on GSH redox status

Neither Cd treatment nor co-treatment with 
antioxidants affected muscle GSH redox status (Table 
3). An exception is TAU, which increased tGSH by 
more than 60 % compared to fi sh treated with Cd 
alone. This increase was related to TAU lowering the 
Cd level, r2=-0.708, P<0.05 (Figure 1).

Effects of antioxidants on lipid peroxidation

Treatment with Cd alone increased TBARS content 
in carp muscle, but not signifi cantly (Table 4). Lipid 
peroxidation dropped 60 % with LA and NAC 
compared to the Cd group and correlated with a 
decrease in Cd accumulation caused by LA and NAC 
co-treatments (r2=0.840, P<0.01 and r2=0.762, P<0.05, 
respectively) (Figure 2). No antioxidative effect was 
observed in the Cd+CUR group, while other 
compounds were effective in the following order: 
LA=NAC>TAU.

Neither Cd nor any of the antioxidants signifi cantly 
changed tissue protein content (Table 4).

DISCUSSION

This study has shown that co-treatment with 
antioxidants, LA and NAC in particular, plays an 
important role in preventing Cd2+ accumulation and 
its oxidative effects in carp muscle tissue. Lipoic acid 

Table 1  Carp muscle accumulation of cadmium (Cd) 96 h after 
i.p. injection of 5 mg kg-1 Cd and 50 mg kg-1 of 
antioxidant

Groups Cd / μg g-1 d.w.
Control <d.l.
Cd 0.48±0.05a

Cd+TAU 0.25±0.03b

Cd+LA 0.15±0.03b

Cd+CUR 0.28±0.03b

Cd+NAC 0.15±0.03b

N = 4 fi sh per group
d.w. – dry weight
TAU – taurine, LA – α-lipoic acid, CUR – curcumin, NAC 
– N-acetylcysteine; given immediately after Cd injection
a signifi cantly different from control (P<0.05)
b signifi cantly different from the Cd group (P<0.05)
d.l. = detection limit (0.02 mg L-1)

Table 2 Carp muscle antioxidant enzyme activities 96 h after i.p. injection of 5 mg kg-1 Cd and 50 mg kg-1 of antioxidant

Groups ENZYME ACTIVITIES / U mg-1 protein
SOD CAT GPx GR

Control 2.51±0.57 90.22±16.09 0.78±0.07 0.029±0.004

Oleate control 3.56±0.48 80.87±11.45 0.76±0.02 0.020±0.001

Cd 8.01±1.07 27.73±3.54a 0.80±0.03 0.030±0.004

Cd+TAU 10.02±1.60 45.67±5.01a 0.75±0.02 0.028±0.004

Cd+LA 9.89±0.61a 48.70±7.86a 0.76±0.02 0.036±0.003

Cd+CUR 11.73±0.42a 30.96±9.01a 0.90±0.01a 0.035±0.004

Cd+NAC 10.58±2.71 24.95±1.73a 0.57±0.07 0.027±0.001

N = 4 fi sh per group
SOD – superoxide dismutase, CAT – catalase, GPx – glutathione peroxidase, GR – glutathione disulfi de reductase
TAU – taurine, LA – α-lipoic acid, CUR – curcumin, NAC – N-acetylcysteine; given immediately after Cd injection
a signifi cantly different from corresponding control group (the control for Cd+CUR was the oleate group) (P<0.05)
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was more effective than TAU and CUR. It is a potent 
chelator, especially of divalent redox-active metal ions 
such as Cu2+, Zn2+, and Pb2+ (29). In contrast, an acute 
toxicity study (30) showed that LA injected with Cd 

had no effect on Cd accumulation in mice liver, kidney, 
brain, and testes. In our study, NAC co-injection 
decreased Cd content in the muscle, which confi rms 
the fi ndings of Tandon et al. (31) for the liver, kidney 
and blood tissues of female rats. They have proposed 
that Cd detoxifi cation may require a sulphur and an 
oxygen atom, which LA and NAC can provide. As far 
as we know, we are the first to report about the 
detoxifying effects of LA and NAC in a metal-treated 
teleost, and further in vivo metal-ligand interaction 
studies with fi sh species are needed to understand this 
interaction.

In several acute and sub-acute treatment studies, 
TAU acted as a Cd detoxifi er in the blood, liver, and 
kidney tissues of mice (12, 32, 33). It possesses one 
amino (-NH2) and one sulphonate (-SO3H) group, 
which may be responsible for its detoxifying action. 

Table 4  Carp muscle TBARS and protein content 96 h after 
i.p. injection of 5 mg kg-1 Cd and 50 mg kg-1 of 
antioxidant

Groups
TBARS /
nmol mg-1 

protein

Protein /
mg mL-1 

homogenate
Control 25.50±2.50 0.19±0.01
Oleate control 23.30±2.21 0.17±0.01
Cd 39.89±10.55 0.19±0.02
Cd+TAU 28.98±3.30 0.17±0.03
Cd+LA 15.82±1.50b 0.24±0.02
Cd+CUR 40.40±7.95 0.19±0.03
Cd+NAC 15.85±4.03b 0.24±0.02

N = 4 specimens per group
TBARS – thiobarbituric acid reactive substances
TAU – taurine, LA – α-lipoic acid, CUR – curcumin, 
NAC – N-acetylcysteine; given immediately after Cd 
injection
bsignifi cantly different from Cd group (P<0.05)

Table 3 Carp muscle GSH redox status 96 h after i.p. injection of 5 mg kg-1 Cd and 50 mg kg-1 of antioxidant

Glutathione / μmol mg-1 protein
Groups tGSH GSH GSSG GSH/GSSG
Control 11.74±1.40 8.90±1.01 1.61±0.09 11.66±0.62
Oleate control 8.96±1.30 7.51±1.11 1.86±0.05 10.33±0.37
Cd 8.56±0.68 7.25±0.65 1.27±0.02 11.82±0.72
Cd+TAU 14.34±1.50b 8.19±1.18 2.27±0.15 11.00±0.30
Cd+LA 8.03±1.11 6.78±1.04 1.38±0.09 12.70±0.37
Cd+CUR 8.15±1.52 6.71±1.37 2.15±0.25 11.36±0.38
Cd+NAC 9.61±0.88 7.15±0.86 1.01±0.09 11.13±0.95

N = 4 fi sh per group
GSH – glutathione; tGSH – total glutathione, GSSG – oxidised glutathione
TAU – taurine, LA – α-lipoic acid, CUR – curcumin, NAC – N-acetylcysteine; given immediately after Cd injection
bsignifi cantly different from the Cd group (P<0.05)

Figure 1  Relationship between cadmium (Cd) accumulation 
and total glutathione (tGSH) content in the muscle 
of carp treated with Cd+TAU.

  TAU – taurine; given i.p. (50 mg kg-1) immediately 
after Cd injection

 d.w. – dry weight

Figure 2  Relationship between cadmium (Cd) accumulation 
and lipid peroxidation levels in carp treated with 
Cd+LA and Cd+NAC, respectively

  TBARS – thiobarbituric acid reactive substances
  LA – α-lipoic acid, NAC – N-acetylcysteine were given 

i.p. (50 mg kg-1) immediately after Cd injection
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Similar to our fi ndings, TAU exhibited lowered sub-
chronic Cd accumulation in the liver and kidney of 
Clarias batrachus (13).

Curcumin owes its chelating property to the β-
diketone moiety (34, 35). Infra-red spectral analysis 
has shown that CUR with its hydroxyl groups and 
β-diketone moiety binds directly or indirectly to toxic 
metals, including Cd, through strong metal-ligand 
interactions (14). In contrast to our results, however, 
acute CUR pre-treatment by gastric gavage had no 
effect on acute Cd accumulation in the liver, kidney, 
brain, and testes of mice and rats (15, 16). We too 
found that liver Cd was not affected by CUR co-
treatment in carp 96 h after i.p. injection (unpublished 
data). We are the fi rst to report about decreasing 
effi ciency of CUR co-treatment in muscle tissue of a 
teleost and we thought that this effect may be owed 
to tissue-specifi c action.

Superoxide dismutase, CAT, and GPx enzymes 
provide first-line cell defence against toxic ROS 
action. In our study, SOD activity in carp muscle 
revealed higher Cd-induced O2

- production. According 
to Kono and Fridovich (36) excessive O2

- accumulation 
inhibits CAT activity and SOD prevents this inhibition 
but does not reverse it in vitro. They reported that this 
synergism may be important in vivo, but we could not 
confi rm it. In another study, sub-chronic Cd treatment 
induced SOD and decreased CAT activity in rat kidney 
and the authors have suggested that Cd can reduce 
enzyme activities which have a Fe ion in their active 
sites such as CAT by decreasing liver and kidney Fe 
levels (37). In a study by Kumar et al. (13) Cd exposure 
increased SOD and CAT activity in the liver and 
kidney of C. batrachus, while TAU had no effect on 
SOD activity. Bludovská et al. (30) reported that LA 
altered Cd-induced CAT inhibition in the liver of mice. 
In contrast, CUR did not affect liver CAT activity 
lowered by Cd treatment in mice (16), but improved 
SOD and CAT activities in the liver of sodium arsenite-
exposed rats in another study by El-Demerdash et al. 
(38). The authors concluded that the protective role 
of antioxidants against Cd-induced oxidative stress is 
not necessarily associated with antioxidant enzyme 
activities.

Eybl et al. (39) found that neither Cd nor Cd+CUR 
treatments affected liver GPx activity in mice. In our 
study, CUR may have caused H2O2 accumulation in 
carp muscle, refl ected by higher SOD and lower CAT 
activity, which in turn may have increased GPx 
activity. In another study (40), curcumin caused a 

sudden rise in ROS levels in mice L929 fi broblast 
cells, and this effect was blocked by antioxidants NAC 
and GSH. Induced GPx activity could also be related 
to higher lipid peroxide levels in Cd+CUR group. A 
more detailed investigation should be able to answer 
if ROS accumulation in Cd-exposed teleost species is 
related to CUR.

Thiol-based intracellular antioxidant system is 
considered to be the second line of cellular defence 
against ROS-mediated oxidative damage (33). It is 
well-known that cellular GSH redox status is affected 
by Cd action (41, 42). This, however, is questioned 
by the results of our and other studies in which Cd had 
no effect on cellular GSH redox status (43, 44). 
Thijssen et al. (44) reported that the treatment of mice 
with 100 mg L-1 Cd had no effect liver and kidney 
GSH and GSSG levels, and that cellular redox status 
was protected by elevated metallothionein levels, 
which are important in Cd detoxification. Non-
enzymatic reaction between GSH and O2

- radical is 
well-known (45). The rise in tGSH levels in the TAU 
co-treated group in our study may also be an adaptive 
response to O2

- elevation, refl ected by SOD activity. 
As there was no change in GSH and GSSG level, we 
believe that SOD activity is more important in 
protecting the cell against Cd-induced ROS effect than 
GSH.

In our study, GR did not vary signifi cantly across 
groups, most probably because it is usually activated 
by a disturbance in the GSH/GSSG ratio (which 
refl ects cellular thiol redox status), and this ratio was 
not disturbed.

Kumar et al. (13) have reported that Cd catalyses 
oxidation of biomolecules and that its destructive 
effects on cell components could be weakened by 
antioxidants. While studies disagree whether 
exogenous antioxidants can lower lipid peroxidation 
and Cd levels at the same time, the action of LA and 
NAC, as the most effective antioxidants in our study, 
was related to lowering Cd levels, and not as much to 
stimulating antioxidant enzyme activity. Müller and 
Menzel (9) reported that LA complexes with intra- and 
extracellular Cd in isolated rat hepatocytes protected 
rat liver cells from Cd-induced membrane destruction. 
While in the study by Buldovská et al. (30) LA did 
lower Cd-induced lipid peroxidation to control levels 
in mice liver, it did not change tissue Cd content. 
Neither did NAC, in the study by Jones et al. (45), 
change tissue Cd contents or improve enzymatic and 
non-enzymatic antioxidant levels in the kidney of 
Cd-treated rats; it decreased renal Cd toxicity by 
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decreasing Cd-induced lipid peroxidation (46). In our 
study and the study by Kumar et al. (13), TAU lowered 
both lipid peroxidation and Cd tissue content. 
Curcumin, however, was not effective against lipid 
peroxidation; its pro-oxidant properties have also been 
confi rmed by Thayyullathil et al. (40).

CONCLUSION

To sum up, the antioxidants used in this study seem 
not only to counter the oxidative effects of Cd, but 
also to reduce its tissue content. The most effi cient 
against Cd toxicity are LA and NAC, followed by 
TAU, and CUR. We have also observed that their 
protective role is not necessarily associated with 
antioxidant enzymes, but rather to their own 
activity.
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Sažetak

ANTIOKSIDATIVNI UČINCI N-ACETILCISTEINA, LIPOIČNE KISELINE, TAURINA I KURKUMINA 
U MIŠIĆNOM TKIVU ŠARANA (CYPRINUS CARPIO L.) TRETIRANIH KADMIJEM

Cilj istraživanja bio je utvrditi mogu li N-acetilcistein (NAC), α-lipoična kiselina (LA), taurin (TAU) i 
kurkumin (CUR) svojim antioksidativnim djelovanjem smanjiti razinu oksidativnog stresa u mišićnom 
tkivu šarana (Cyprinus carpio L.) akutno otrovanih kadmijem. Uzorci mišićnog tkiva skupljeni su 96 h 
nakon što su ribama intraperitonealno injicirani kadmij (5 mg kg-1) i ispitivani antioksidansi (50 mg kg-1). 
Primjenom spektrofotometrijskih metoda izmjereni su redoks status glutationa, razine lipidne peroksidacije 
te aktivnosti enzima superoksid dismutaze (SOD), katalaze (CAT), glutation peroksidaze (GPx) i glutation 
disulfi d reduktaze (GR). Maseni udio kadmija u mišićnom tkivu izmjeren je s pomoću metode induktivno 
spregnute plazme – optičke emisijske spektrometrije (ICP-OES).
Ispitivani spojevi smanjili su nakupljanje kadmija u tkivu šarana sljedećim redoslijedom: 
LA=NAC>TAU=CUR. Tretman šarana kadmijem izazvao je porast aktivnosti SOD, ali se aktivnost CAT 
smanjila bez obzira na primjenu antioksidativnih spojeva. Dodatak CUR pojačao je aktivnost GPx. Dodatak 
TAU povećao je razinu ukupnoga glutationa te smanjio nakupljanje kadmija. Svi spojevi osim CUR smanjili 
su razinu lipidne peroksidacije te pretpostavljamo da su LA i NAC pridonijeli detoksifi kaciji kadmija. 
Rezultati istraživanja upućuju na to da testirani spojevi, osim CUR, imaju antioksidativni učinak. 

KLJUČNE RIJEČI: akumulacija, antioksidansi, mišićno tkivo, oksidativni stres, riba
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