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Abstract: A linear model of gravity waves generated by stratified airflow over mountains is developed. The model 

provides simple, closed-form formulas for the surface drag in a situation where conditions for wave resonance exist. 

The wind is constant near the surface and decreases linearly above. The drag normalized by its value in the absence 

of shear is found to depend on two parameters: the height of the interface where the shear is discontinuous and the 

Richardson number, Ri, in the region above. This drag attains maxima when the height of the interface induces 

constructive interference between the upward and downward propagating reflected waves, and minima when there is 

destructive interference. The amplitude of the drag modulation becomes larger for lower Ri. It is also shown that, for 

Ri<2.25, the locations where wave breaking is first predicted to occur in flow over a 2D ridge become displaced 

horizontally and vertically by an amount depending on Ri. 
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1. INTRODUCTION 

 

 Among the phenomena occurring in orographically generated gravity waves in the atmosphere, the 

problem of high-drag states is one of the most widely studied. This is presumably because the globally 

integrated pressure drag exerted by mountains on the atmosphere receives a large contribution from these 

situations. Since the drag must be parameterized in large-scale numerical models, studying the 

mechanisms behind this phenomenon is a problem of obvious practical, as well as fundamental, 

importance. 

 The most influential theories that attempt to explain high-drag states are those of Clark & Peltier 

(1984) and of Smith (1985). Clark & Peltier propose that the drag enhancement results from the reflection 

of gravity waves at environmental or self-generated critical levels. This reflection itself may be 

understood in the framework of linear resonance, leading to a spacing between consecutive high-drag 

states, in terms of the critical level height, of half the vertical wavelength of the gravity waves. Smith, on 

the other hand, proposes a totally nonlinear explanation, where the drag enhancement results from 

hydraulic behaviour of the flow, leading to a spacing of one vertical wavelength between consecutive 

critical level heights producing high-drag states.   

 Numerical simulations confirm that high-drag states are indeed strongly nonlinear, and that the best 

predictions result from the theory of Smith (1985). However, the recent study of Wang and Lin (1999) 

has suggested that some insights into this problem may be obtained using linear theory. They found that, 

in the linear regime, the key height determining the maximum surface response of the flow is, not the 

critical level, but the height where the shear has a discontinuity, in their idealized wind profile. However, 

Wang and Lin focused only on the velocity perturbations, and did not calculate the drag. This study (see 

also Teixeira et al. 2005) aims to calculate the drag in resonant situations using linear theory, in order to 

understand how linear processes may initiate high-drag states. 

 Linear theory is also used to show that, in the same situations, the critical conditions for wave 

breaking in flow over a 2D ridge may be different from those widely accepted (see also Teixeira and 

Miranda 2005). 
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2. THEORETICAL MODEL 

 

The atmosphere is assumed to be stably stratified, with Brunt-Väisälä frequency N, in stationary motion 

and in hydrostatic equilibrium. If the equations of fluid mechanics are linearized with respect to the 

perturbations induced by flow over an isolated mountain, and combined, the hydrostatic Taylor-Goldstein 

equation results: 
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where  is the Fourier transform of the vertical velocity perturbation, (U,V) is the unperturbed wind 

velocity, (k

ŵ

1,k2) is the horizontal wavenumber vector of the gravity waves and the primes denote 

differentiation with respect to z. 

 The simplest wind profile capable of generating gravity wave resonance is considered: 
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This profile, which near the surface is constant, with windspeed U0, and above z=z1 decreases linearly, 

reaching a critical level at z=zc, induces wave reflection at z=z1 and wave absorption at z=zc, making the 

divergence of the windspeed towards infinity above z=zc essentially irrelevant for the behaviour of the 

gravity waves and of the drag near the surface. 

 Equation (1) must be solved subject to two boundary conditions: that the flow follows the topography 

at the surface, 

 ˆ)0(ˆ
10

kiUzw ,       (3) 

where ˆ  is the Fourier transform of the surface elevation, and that the wave energy radiates upward in the 

region  

z>z1 (this is known as the radiation boundary condition). Once  is determined in the whole domain 

following this procedure, the Fourier transform of the pressure perturbation may be calculated and, given 

the form the terrain elevation, the pressure drag on the mountain may be calculated. 

ŵ

 When the drag is normalized by its value in the absence of shear, D0, the final result in the case of 

flow over an axisymmetric mountain is 
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while in the case of flow over a 2D ridge, the normalized drag is given by 
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where  is the Richardson number in the shear layer (z>z2
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 These expressions show that the normalized drag only depends on two parameters: a dimensionless 

height formed with z1, namely Nz1/ U0, and Ri. They will be compared with numerical simulations next. 

 

 

3. RESULTS 

 

3.1. Gravity wave drag 

 

 Figure 1 shows the variation of the normalized drag with the dimensionless height of the shear layer 

from (4) and (5) and from simulations of non-hydrostatic, nonlinear, mesoscale numerical models, albeit 

run for approximately linear and hydrostatic conditions. The agreement is quite good. For flow over a 2D 

ridge, the drag oscillates periodically, with a dimensionless period of 1, which when expressed in terms of 

z1 corresponds to U0/N, or half the vertical wavelength of the gravity waves. Drag maxima occur at 

Nz1/ U0=0.25+n, where n is an integer, while drag minima occur at Nz1/ U0=0.75+n. In flow over an 

axisymmetric mountain, the drag also oscillates with Nz1/ U0, but this oscillation is only approximately 

periodic. Its amplitude decreases as Nz1/ U0 increases, due to wave dispersion. 
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Figure 1. Normalized drag as a function of Nz1/ U0 from (4) and (5) (lines) and from numerical 

simulations (symbols). Solid line and squares: Ri=2, dotted line and diamonds: Ri=1, dashed line and 

circles: Ri=0.5. (a) 2D mountain ridge, (b) axisymmetric mountain 

 

For both types of mountain, the amplitude of the drag modulation increases as Ri decreases. The observed 

behaviour is, in certain aspects, reminiscent of high-drag states, as observed in numerical simulations (e.g. 

Bacmeister and Pierrehumbert 1988, Miranda and Valente 1997), with the difference that the key height 

is z1 instead of that generally assumed: zc. The spacing of the drag maxima is also half of that observed in 

nonlinear numerical simulations of flow over a 2D ridge. 

 

3.2. Flow structure 

 

 The behaviour of the drag is better understood when the flow structure is analysed. Figure 2 shows the 

streamwise velocity perturbation (shaded contours) and the isentropes (lines of constant total potential 

temperature, which may be regarded as streamlines since the flow is adiabatic) for flow over a 2D ridge. 

A high-drag state, corresponding to the third maximum of Fig. 1(a) and a low-drag state, corresponding to 

the third minimum, are illustrated.  
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Figure 2.  Normalized streamwise velocity perturbation (shaded contours) and isentropes (thick lines, 

with a spacing of 1K), from linear theory. (a) Nz1/ U0=2.25 and Ri=0.5, (b) Nz1/ U0=2.75 and Ri=0.5 

 

 It may be seen that the extrema of the streamwise velocity perturbation are much more intense in a 

high-drag situation than in a low-drag situation. These extrema also possess two-lobes, one upstream and 

another downstream of the mountain. This reinforces the asymmetry of the flow relative to the mountain, 

and is associated with an enhancement of the drag (in fact, in the constant-wind layer, the normalized 

streamwise velocity perturbation and the normalized pressure perturbation have the same value, but 

opposite signs). In Fig. 2(b), on the other hand, the flow perturbations are less intense and less 

asymmetric, which corresponds to lower drag. These differences are also reflected in the slope of the 
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streamlines above the mountain, which is much gentler in Fig. 2(b) than in Fig. 2(a). The appearance of 

the flow field in both cases is caused by reflection of the gravity waves at z=z1. Fig 2(a) corresponds to 

constructive interference between waves whose energy propagates upward and waves whose energy 

propagates downward. Fig 2(b) corresponds to destructive interference. 

 

3.3. Wave breaking 

    

 Although the use of a linear model to predict wave breaking (or equivalently, flow stagnation) is 

questionable, because this is a highly nonlinear phenomenon by definition, the study of Smith (1989) has 

shown that this approach may have some qualitative value.  

 From the same linear framework as used previously, it is possible, for flow over a 2D ridge, to derive 

analytical expressions for the locations where flow stagnation first occurs. Figure 3 presents these results 

for the case of drag maxima (the situation most favourable for flow stagnation). For Ri 2.25, linear theory 

predicts that flow stagnation occurs exactly above the ridge top and at a dimensionless height 

Nz/ U0=1.5, a well-known result. However, as Ri decreases to 0.25, the location where flow stagnation 

first occurs moves downstream and downward towards x/a=1 and Nz/ U0=1. This result is relevant for 

the problem of high-drag states, since flow stagnation generates critical levels, which appear to be 

important in nonlinear conditions. 
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Figure 3. Normalized position of the lowest flow stagnation zone as a function of  Ri. (a) horizontal, (b) vertical 

 

 

4. CONCLUSION 

 

 The present study uses a linear model to address the problems of drag enhancement and flow 

stagnation in resonant gravity waves generated by stratified airflow over orography. The model suggests, 

in agreement with Wang and Lin (1999), that the key height determining the occurrence of high or low 

drag is that where the shear in the wind profile is discontinuous. It also suggests that the amplitude of the 

drag modulation increases as the Richardson number in the shear layer decreases. Preliminary nonlinear 

results (not shown) indicate that the dependence of the drag on Ri weakens considerably, and that the drag 

starts to behave quite differently in flow over a 2D ridge. While the linear predictions for the location of 

the drag maxima (see Fig. 2(b)) are still reasonably good in nonlinear flow over an axisymmetric 

mountain, in nonlinear flow over a 2D ridge these predictions (see Fig. 2(a)) are not adequate. The second 

drag maximum disappears and the remaining maxima are shifted towards higher Nz1/ U0 by a 

considerable amount. In that situation, only the theory of Smith (1985) provides adequate predictions. The 

reason why linear theory works better for axisymmetric (or generally 3D) mountains may be because 

wave dispersion enables the flow to remain closer to linear in this situation.  

 Since the theory of Smith has the critical level as a key height, its ability to predict nonlinear 2D flow 

suggests that, as the flow becomes more nonlinear, the key height governing the dynamics of high-drag 

states changes from z1 to zc. It would be interesting to understand how this transition occurs, but that is 

outside the scope of the present study. 

 For mountains of sufficiently high amplitude, wave breaking (or flow stagnation) happens, which 

leads to self-generated critical levels. The present study suggests that the locations where flow stagnation 
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first occurs depend on Ri, which may have implications for the interpretation of high-drag states in highly 

nonlinear conditions. 
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