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Abstract: The analytical models of Teixeira et al. (2004) and Teixeira and Miranda (2004), where the gravity wave 

drag exerted by a sheared stratified flow on axisymmetric or 2D mountains is calculated, are extended here to 

mountains with an elliptical horizontal cross section. For the simple situations considered in this study, the 

normalized drag depends on only two parameters: the Richardson number at the surface, Ri, and the horizontal aspect 

ratio of the mountain. For a wind that varies linearly with height, the drag always decreases as Ri decreases, albeit at 

different rates depending on the aspect ratio. For a wind that rotates with height at a constant rate maintaining its 

magnitude, the drag generally increases as Ri decreases, but if the mountain is sufficiently elongated in the surface 

streamwise direction, this dependence changes sign. It is also shown that flow stagnation at the surface is strongly 

affected by variations of the windspeed with height, but weakly affected by variations of wind direction. 
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1. INTRODUCTION 

 

 As the stably stratified tropospheric air flows over orography, internal gravity waves are generated. 

These waves are associated with a pressure distribution that causes a drag force of the flow on the 

orography. This, in turn, causes a reaction force on the atmosphere. Since the waves that generate the bulk 

of the drag have horizontal scales of order 10km, the drag must in general be parameterized in large-scale 

numerical models. For that purpose, it is useful to understand the dependence of the drag on the various 

physical parameters associated with the atmospheric flow and with the orography. 

 Existing drag parameterization schemes are based on drag expressions derived for constant 

atmospheric properties (windspeed and Brunt-Väisälä frequency, see Lott and Miller 1997). Nevertheless, 

in general the wind varies with height, and numerical studies have shown that this variation has an 

important impact on the drag (Grubiši  and Smolarkiewicz 1997). Analytical studies addressing the 

problem of gravity waves have in general been limited to considering, at most, linear wind profiles, 

because these are the cases where an analytical solution for the waves is straightforward. However, more 

recently, Teixeira et al. (2004) have treated more general wind profiles by using the WKB approximation 

to solve the Taylor-Goldstein equation. They found that it is essential to extend the WKB solution up to 

second order in the small perturbation parameter in order for the wind variation with height to have any 

impact on the drag. Teixeira et al. (2004) assumed an axisymmetric mountain, and subsequently Teixeira 

and Miranda (2004) treated the case of a 2D ridge. 

 The present study aims to extend the model of Teixeira et al. (2004) to a mountain that is anisotropic, 

but not 2D. More exactly, following Phillips (1984) a mountain whose horizontal cross section is 

elliptical, is considered here. Drag expressions are derived for this case, and the consequences of the wind 

variation with height for flow stagnation at the surface are also explored using the same linear framework. 

   

 

2. THEORETICAL MODEL 

 

 Steady, hydrostatic, statically stable flow over an isolated mountain is considered. If the equations of 

motion are linearized with respect to the perturbations induced by the mountain, combined in order to 
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eliminate all variables except the vertical velocity perturbation, w, and if w is expressed as a Fourier 

integral, then it satisfies 
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where  is the Fourier transform of w, N is the Brunt-Väisälä frequency, (U,V) is the unperturbed wind, 

(k

ŵ

1,k2) is the horizontal wavenumber of the internal gravity waves and the primes denote differentiation 

with respect to z. Following Teixeira et al. (2004), this equation may be solved using the WKB 

approximation. The appropriate solution is 
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where the vertical wavenumber  m=m0+ m1+
2m2 has been expanded up to second order in a power series 

of a small parameter . When (2) is introduced into (1), algebraic equations are obtained for m0, m1 and 

m2. Additionally, the boundary conditions that the flow has to follow the orography at the surface, 

 ˆ)0(ˆ
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(where ˆ  is the Fourier transform of the surface elevation), and that the wave energy must radiate upward 

(the radiation boundary condition) must be imposed on the solution (2). This last condition determines the 

sign of m0.  

 Since the solution is then totally specified, it remains to calculate the pressure perturbation, and the 

gravity wave drag, given the form of the terrain elevation. Here it will be assumed that the mountain that 

generates the waves has an elliptical cross section with the main axes aligned in the x and y directions. 

When each component of the drag (Dx, Dy) is normalized by its value in the absence of shear (D0x, D0y), it 

can be expressed as: 
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where (U0,V0) is unperturbed wind at the surface, and  and  are dimensionless coefficients dependent 

on the horizontal aspect ratio of the mountain =a/b (a and b are, respectively, the half-widths of the 

mountain in the x and y directions).  

 Figure 1 shows the variation of the coefficients  and  with , for  between 0 and 1. For symmetry 

reasons, (1/ )= ( ), so Fig. 1(a) also represents the variation of (1/ ) and Fig. 1(b) the variation of  

(1/ ) for  between 1 and . As can be seen, for =1 (axisymmetric mountain), = =0.75. In this case, 

(4)-(5) reproduce exactly Eqs. (50)-(51) of Teixeira et al. (2004). When =0 (which corresponds to a 2D 

ridge aligned in the y direction) =1 and =0. In that case (4)-(5) reduce to Eq. (13) of Teixeira and 

Miranda (2004). 
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Figure 1. (a) Coefficient  as a function of the mountain horizontal aspect ratio , 

 (b) same for coefficient . 
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3. RESULTS 

 

3.1. Gravity wave drag 

 

 In order to test the drag expressions (4)-(5), two simple flows will be considered next: a backward 

linear wind profile, and a wind that rotates with height maintaining its magnitude. Both profiles have 

constant Richardson number, Ri, and both lead, for sufficiently high Ri, to total absorption of the waves at 

the critical levels, therefore enabling an isolation of the dynamics directly connected with the wind 

variation with height. The first wind profile may be expressed as 

 , V ,       (6) zcUU 10 zcV 20

where c1 and c2 are negative constants. The corresponding drag, which may be derived from (4)-(5) for 

this particular case is: 
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respectively, for a wind along x (V , 00 02c ) and for a wind along y ( 00U , ) (the other 

component of the drag, in each case, is zero by symmetry). Figure 2 presents the normalized drag as a 

function of Ri for 

01c

5.0 , in which case =0.864 and =0.614. Equation (7) is shown as the straight 

lines in Fig. 2(a). Also shown as the other curves is the exact linear drag, which results from an extension 

of the analytical model of Grubiši  and Smolarkiewicz (1997). The symbols represent results from 

numerical simulations. In Fig. 2(b), similar results are shown for a wind at a 45 degree angle to both the x 

and the y directions (U  and ). In this case, the drag has two components, which are 00 V 21 cc
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respectively. 
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Figure 2. Normalized drag as a function of Ri-1 for the flow (6) and =0.5. Solid line: Dx/D0x, from exact 

linear theory; dashed line: Dy/D0y, from exact linear theory; dotted line: Dx/D0x from WKB theory; dash-

dotted line: Dy/D0y from WKB theory; solid squares: Dx/D0x from numerical simulations; circles: Dy/D0y 

from numerical simulations. (a) wind along x and wind along y, (b) wind at a 45 degree angle to x and y. 

 

 The agreement of the exact linear theory with the numerical simulations (which used very nearly 

linear and hydrostatic conditions) is quite good. The agreement with the WKB model is a little worse, but 

the trends are clearly correct (the exact linear theory tends asymptotically to the WKB model for Ri>>1). 

While in Fig. 2(a) it can be seen that the dependence of the drag with Ri along the smaller axis of the 

mountain is stronger than along the larger axis, in Fig. 2(b) it is visible that, for an oblique wind, the 

dependence of the drag on Ri is stronger along the larger axis and weaker along the smaller axis. This, 

perhaps unexpected, result is connected with the opposite dependence on  and  that exists between (7) 

and (8), and is due to the contribution of the terms involving products of U 0  and V  in (4)-(5). 0

 When a wind that rotates with height is considered, the wind profile has the form 

 , V430 cos czcUU 430 sin czcU ,      (9) 
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where c3 and c4 are constants. It is assumed here that the wind turns anti-clockwise with height (c3>0). 

When the surface wind is either along x (c4=0) or along y (c4= /2), from (4)-(5) the drag is given, 

respectively, by 
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Since  and  vary between 0 and 1, this means that it is possible for the dependence of the drag on Ri to 

reverse sign. However, in practice, this only happens for very elongated mountains ( 36/1 ).  

 

3.2. Flow stagnation 

 

 Using the same linear framework as previously, and in line with the study of Smith (1989), it is 

possible to estimate the critical dimensionless mountain height Nh0/U0 (where h0 is the dimensional 

mountain height) for which flow stagnation at the surface first occurs. Smith (1989) focused on flow 

stagnation aloft, and dismissed the importance of shear on stagnation at the surface. However, Fig. 3, 

which displays the critical Nh0/U0 for the flow (6) (Fig. 3(a)) and for the flow (9) (Fig. 3(b)) shows that 

the variation of the windspeed with height, and in particular the sign of this variation, has a strong impact 

on flow stagnation. On the other hand, the variation of the wind direction with height seems to have an 

almost insignificant impact. 
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Figure 3. Critical Nh0/U0 for flow stagnation at the surface, as a function of the mountain aspect ratio  

for different Ri. Solid line: Ri= ; dashed line: Ri=64; dotted line: Ri=16; dash-dotted line: Ri=4; dash-

dot-dotted line: Ri=1. (a) Wind profile (6). Lower curves: forward shear, upper curves: backward shear. 

(b) wind profile (9). 

 

 

4. CONCLUSION 
 

 The present analytical model of gravity wave drag is an extension of previously developed models to 

elliptical mountains, which are an important building block for representing anisotropic (realistic) 

orography. For the simplest flows, the normalized drag is found to depend on Ri, as in the previous 

studies, but also on the aspect ratio of the orography. It displays some unexpected behaviour, as when it 

varies more with Ri in the direction perpendicular to the mountain when the wind is along that direction 

than when it is parallel, but has the opposite dependence when the wind is oblique to the mountain. Or 

when, for a wind that rotates with height maintaining its magnitude, the drag (which generally increases 

as Ri decreases) changes the sign of this variation when the mountain is sufficiently elongated in the 

surface streamwise direction. 

 The present results also suggest that forward shear particularly favours flow stagnation at the surface, 

while backward shear inhibits this phenomenon, and wind turning with height has almost no effect on it. 

 Of course, all these results must be viewed with caution, since it is known that flows with critical 

levels are especially sensitive to nonlinear effects (even if these are small). However, the present study 

enables an isolation of intrinsically linear processes, which may be useful in fundamentally understanding 

the drag, and may help to improve its parameterization in numerical models. 
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