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1 Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb,
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Abstract. The inverse Weibull model was developed by Erto [10]. In practice, the un-
known parameters of the appropriate inverse Weibull density are not known and must be
estimated from a random sample. Estimation of its parameters has been approached in
the literature by various techniques, because a standard maximum likelihood estimate does
not exist.
To estimate the unknown parameters of the three-parameter inverse Weibull density we
will use a combination of nonparametric and parametric methods. The idea consists of
using two steps: in the first step we calculate an initial nonparametric density estimate
which needs to be as good as possible, and in the second step we apply the nonlinear least
squares method to estimate the unknown parameters. As a main result, a theorem on the
existence of the least squares estimate is obtained, as well as its generalization in the lp
norm (1 ≤ p < ∞). Some simulations are given to show that our approach is satisfactory
if the initial density is of good enough quality.

AMS subject classifications: 65D10, 62J02, 62G07, 62N05

Key words: three-parameter inverse Weibull density, least squares, least squares estimate,
existence problem, data fitting

1. Introduction

The probability density function of the random variable T having a three-parameter
inverse Weibull distribution (IWD) with location parameter α ≥ 0, scale parameter
η > 0 and shape parameter β > 0 is given by

f(t; α, β, η) =

{
β
η

(
η

t−α

)β+1 e−( η
t−α )β

t > α

0, t ≤ α.
(1)

If α = 0, the resulting distribution is called the two-parameter inverse Weibull
distribution. The inverse Weibull model was developed by Erto [10].
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darija@mathos.hr (D. Marković), jukicd@mathos.hr (D. Jukić)
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The IWD is very flexible and by an appropriate choice of the shape parameter β
the density curve can assume a wide variety of shapes (see Figure 1). The density
function is strictly increasing on (α, tm] and strictly decreasing on [tm,∞), where
tm = α + η(1 + 1/β)−1/β . This implies that the density function is unimodal with
the maximum value at tm. This is in contrast to the standard Weibull model where
the shape is either decreasing (for β ≤ 1) or unimodal (for β > 1). When β = 1, the
IWD becomes an inverse exponential distribution; when β = 2, it is identical to the
inverse Rayleigh distribution; when β = 0.5, it approximates the inverse Gamma
distribution. That is the reason why the IWD is very often used as a model in
reliability and lifetime studies (see e.g. Cohen and Whitten [6], Lawles [18], Murthy
et al. [21], Nelson [22]).
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Figure 1. Plots of the inverse Weibull density for some values of β and by assuming
α = 0 and η = 1.2

In practice, unknown parameters of the appropriate density are not known and
must be estimated from a random sample t1, . . . , tn consisting of n observations of the
random variable T . There is no unique way to perform density reconstruction and
many different methods have been proposed in literature. Density estimation meth-
ods can be categorized into parametric and nonparametric approaches. Parametric
density estimators make assumptions about the functional form of the empirical den-
sity, and the estimate is constructed by finding the best parameters for the density
function, given the data. In contrast, nonparametric estimators use the character-
istics of the data to arrive at an optimal shape without making assumptions about
a particular functional form. There are many ways to estimate the density function
nonparametrically. These include histograms, kernel estimates, nearest neighbor
estimates, and orthogonal series estimates, among others (see e.g. Silverman [25],
Tapia and Thompson [28]).

Maximum likelihood (ML) estimation is a traditional parametric method for pa-
rameter estimation since it possesses beneficial properties such as asymptotic normal-
ity and consistency. For the two-parameter inverse Weibull distribution a standard
ML estimate exists and it is unique (see e.g. Calabria and Pulcini [4]). But when
the parameter α is added to the inverse Weibull distribution, there is no standard
ML estimate over the parameter space

{
(α, β, η) ∈ R3 : α ≥ 0;β, η > 0

}
for any ob-

servation from the density function (see Jukić and Marković [13]). In the literature,
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considerable effort has been devoted to such difficulties with the maximum likelihood
approach (see e.g. Cheng and Iles [5], Smith and Naylor [27]). There are several
other statistical methods for estimating density parameters such as the method of
moments, the method of percentiles and the Bayesian method. Unfortunately, none
of these methods (excluding the Bayesian one) is appropriate for small data sets (see
e.g. Lawless [18], Murthy et al. [21], Nelson [22]). Because of that, some authors
suggest to use other methods to determine the unknown parameters (see e.g. Abbasi
et al. [1], Jukić et al. [14], Murthy et al. [21], Smith and Naylor [27, 26]).

A very popular method for parameter estimation is the least squares (LS) method.
The nonlinear weighted LS fitting problem for the three-parameter Weibull density
is considered by Marković et al. [19].

In this paper we consider the parameter estimation problem for the three-pa-
rameter inverse Weibull density function. Our approach to density estimation is a
combination of nonparametric and parametric methods. The basic idea is to start
with the initial nonparametric density estimate f̂ which needs to be as good as
possible, and then apply a nonlinear LS fit procedure to estimate the unknown
parameters α, β and η. The structure of the paper is as follows. In Section 2 we
briefly describe the LS method and present our main result (Theorem 1) which
guarantees the existence of the LS estimate for the three-parametric inverse Weibull
density. Its proof is given in Section 3. In Section 4, some simulation results are
given. They show that our approach can give a good density estimate if the initial
density is of good enough quality.

2. LS existence theorem for the three-parameter inverse
Weibull density

The least squares method required the initial nonparametric density estimates f̂
which should be as good as possible. Suppose we are given the points (ti, yi), i =
1, . . . , n, n > 3, where

0 < t1 < t2 < . . . < tn

are observations of the nonnegative inverse Weibull random variable T and yi :=
f̂(ti) are the respective density estimates.

The goal of the LS method is to choose the unknown parameters of density
function (1) such that the weighted sum of squared distances between the model
and the data is as small as possible. To be more precise, let wi > 0, i = 1, . . . , n,
be the data weights which describe the assumed relative accuracy of the data. The
unknown parameters α, β and η have to be estimated by minimizing the functional

S(α, β, η) =
n∑

i=1

wi[f(ti;α, β, η)− yi]2 (2)

on the set
P :=

{
(α, β, η) ∈ R3 : α ≥ 0, β > 0, η > 0

}
.

A point (α?, β?, η?) ∈ P such that

S(α?, β?, η?) = inf
(α,β,η)∈P

S(α, β, η)
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is called the least squares estimate (LSE), if it exists (see e.g. Bates and Watts [2],
Björck [3], Gill et al. [11], Ross [23], Seber and Wild [24]).

Numerical methods for solving the nonlinear LS problem are described in Dennis
and Schnabel [9] and Gill et al. [11]. Before starting an iterative procedure one should
ask whether a LSE exists. For nonlinear LS problems this question is difficult to
answer. As we have already mentioned, the nonlinear weighted LS fitting problem
for the three-parameter Weibull density is considered by Marković et al. [19]. Results
on the existence of the LSE for some other special classes of functions can be found
in [2, 3, 7, 8, 12, 14, 15, 17].

Now we state our main result (Theorem 1) which guarantees the existence of
the LSE for the three-parameter inverse Weibull density function. This theorem is
also applicable in a classical nonlinear regression problem with the model function
of the form (1). Its corresponding generalization in the lp norm (p ≥ 1) is given in
Remark 1.

Theorem 1. If the data (wi, ti, yi), i = 1, . . . , n, n > 3, are such that 0 < t1 <
t2 < . . . < tn and yi > 0, i = 1, . . . , n, then the LSE for the three-parametric inverse
Weibull density exists.

3. Proof of Theorem 1

Before starting the proof of Theorem 1, we need some preliminary results.

Lemma 1. Suppose we are given data (wi, ti, yi), n > 3, such that 0 < t1 < t2 <
. . . < tn and wi, yi > 0, i = 1, . . . , n. Let (wr, tr, yr) be a datum such that wry

2
r is

the greatest, i.e. wry
2
r = maxi=1,...,n wiy

2
i . Then there exists a point in P at which

functional S defined by (2) attains a value smaller than

Sr :=
n∑

i=1
i6=r

wiy
2
i .

Proof. Let us first associate with each real b ∈ (0, 1) a three-parametric inverse
Weibull density function

f(t; 0, β(b), η(b)) =

{
β(b)

t

(η(b)
t

)β(b) e−(
η(b)

t )β(b)
, t > 0

0, t ≤ 0
(3)

where

β(b) := tryr
eb

b
, η(b) := trb

1/β(b), b > 0.

This function has maximum at the point η(b)(1 + 1/β(b))−1/β(b) = tr and it is
strictly increasing on (0, tr] and strictly decreasing on [tr,∞). By a straightforward
calculation, it can be verified that

f(tr; 0, β(b), η(b)) = yr, (4)
lim
b→0

β(b) = ∞, (5)

lim
b→0

η(b) = tr. (6)
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Now we are going to show that

lim
b→0

f(t; 0, β(b), η(b)) = 0, t 6= tr. (7)

In view of (6), we obtain

lim
b→0

(η(b)
t

)
=

tr
t

.

If t > tr, then from (5) it follows readily that

lim
b→0

e−(
η(b)

t )β(b)
= 1 and lim

b→0
β(b)

(η(b)
t

)β(b)

= 0,

and therefore

lim
b→0

f(t; 0, β(b), η(b)) = lim
b→0

[β(b)
t

(η(b)
t

)β(b)
e−(

η(b)
t )β(b)

]
= 0.

If t < tr, then there exists a sufficiently great k0 ∈ N such that

e <
(η(b)

t

)k0

for every sufficiently small b > 0. Now, by using the inequality x < ex (x ≥ 0) we
obtain

β(b) < eβ(b) <
(η(b)

t

)k0β(b)

, b ≈ 0,

and therefore, for any b ≈ 0 we have

0 < f(t; 0, β(b), η(b)) =
β(b)

t

(η(b)
t

)β(b)
e−(

η(b)
t )β(b)

<
1
t

(η(b)
t

)(k0+1)β(b)
e−(

η(b)
t )β(b)

.

Since

lim
b→0

(η(b)
t

)(k0+1)β(b)
e−(

η(b)
t )β(b)

= 0,

then from the above-mentioned inequality it follows that

lim
b→0

f(t; 0, β(b), η(b)) = 0, t < tr.

Thus, we proved the desired limits (7).
Let b0 be sufficiently small, so that

0 < f(ti; 0, β(b0), η(b0)) ≤ yi,

whereby the equality holds only if ti = tr. Due to (4) and (7), such b0 exists. Then

S(0, β(b0), η(b0)) =
n∑

i=1

wi

[
f(ti; 0, β(b0), η(b0))− yi

]2
<

n∑

i=1
i6=r

wiy
2
i = Sr.

This completes the proof of the lemma.
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Proof of Theorem 1. Since functional S is nonnegative, there exists S? :=
inf(α,β,η)∈P S(α, β, η). It should be shown that there exists a point (α?, β?, η?) ∈ P,
such that S(α?, β?, η?) = S?.

Let (αk, βk, ηk) be a sequence in P, such that

S? = lim
k→∞

S(αk, βk, ηk) = lim
k→∞

n∑

i=1

wi[f(ti; αk, βk, ηk)− yi]2

= lim
k→∞

{ ∑

ti≤αk

wiy
2
i +

∑
ti>αk

wi

[βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk −yi

]2}
. (8)

The summation
∑

ti>αk

(or
∑

ti<αk

) is to be understood as follows: The sum over those

indices i ≤ n for which ti > αk (or ti < αk). If there are no such points ti, the sum
is empty; following the usual convention, we define it to be zero.

Without loss of generality, in further consideration we may assume that sequences
(αk), (βk) and (ηk) are monotone. This is possible because the sequence (αk, βk, ηk)
has a subsequence (αlk , βlk , ηlk), such that all its component sequences (αlk), (βlk)
and (ηlk) are monotone; and since limk→∞ S(αlk , βlk , ηlk) = limk→∞ S(αk, βk, ηk) =
S?.

Since each monotone sequence of real numbers converges in the extended real
number system R̄, define

α? := lim
k→∞

αk, β? := lim
k→∞

βk, η? := lim
k→∞

ηk.

Note that 0 ≤ α?, β?, η? ≤ ∞, because (αk, βk, ηk) ∈ P.
To complete the proof it is enough to show that (α?, β?, η?) ∈ P, i.e. that

0 ≤ α? < ∞ and β?, η? ∈ (0,∞). The continuity of functional S will then imply
that S? = limk→∞ S(αk, βk, ηk) = S(α?, β?, η?).

It remains to show that (α?, β?, η?) ∈ P. The proof will be done in five steps.
In step 1 we will show that α? < tn. In step 2 we will show that β? 6= 0. The proof
that η? 6= ∞ will be done in step 3. In step 4 we prove that η? 6= 0. Finally, in step
5 we show that β? 6= ∞. Before continuing with the proof, let us note that Lemma 1
implies that

S? <

n∑

i=1
i6=r

wiy
2
i =: Sr (9)

where the index r is such that wry
2
r = max

i=1,...,n
wiy

2
i .

Step 1. If α? ≥ tn, from (8) it follows that S? =
∑n

i=1 wiy
2
i > Sr, which

contradicts (9). Thus, we have proved that α? < tn.
By taking an appropriate subsequence of (αk, βk, ηk), if necessary, we may assume

that if ti < α?, then ti < αk for every k ∈ N. Similarly, if ti > α?, we may assume
that ti > αk for every k ∈ N. Due to this, now it is easy to show that from (8) it
follows that

S? ≥
∑

ti<α?

wiy
2
i + lim

k→∞

{ ∑
ti>α?

wi

[βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk −yi

]2}
. (10)
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Step 2. If β? = 0, then by using the inequality x < ex (x ≥ 0) we obtain

0 <
βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk

<
βk

ti − αk
, ti > α?,

wherefrom it follows readily that

lim
k→∞

[βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk
]

= 0, ti > α?.

Now, from (10), it follows that S? ≥ ∑
ti 6=α? wiy

2
i ≥ Sr. This contradicts (9). Thus,

we have proved that β? 6= 0.
Step 3. Let us show that η? 6= ∞. We prove this by contradiction. Suppose on

the contrary that η? = ∞. Without loss of generality, we may then assume that if
ti > α?, then e < ηk

ti−αk
for all k ∈ N. Then from the inequality x < ex (x ≥ 0) it

follows that if ti > α?, then

βk < eβk <
( ηk

ti − αk

)βk

, k ∈ N.

Thus, if ti > α?, then

0 <
βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk

=
βk

ti − αk

( ηk

ti − αk

)βk

e−(
ηk

ti−αk
)βk

<
1

ti − αk

( ηk

ti − αk

)2βk

e−(
ηk

ti−αk
)βk

. (11)

Furthermore, since limk→∞
(

ηk

ti−αk

)
= ∞ and β? 6= 0, we have limk→∞

(
ηk

ti−αk

)βk =

∞ and therefore limk→∞
(

ηk

ti−αk

)2βk e−(
ηk

ti−αk
)βk

= 0, so that from (11) it follows
that

lim
k→∞

[βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk
]

= 0, ti > α?.

Putting the above limits into (10), we immediately obtain S? ≥ ∑
ti 6=α? wiy

2
i ≥ Sr,

which contradicts (9). Hence we proved that η? 6= ∞.
So far we have shown that α? < tn, β? 6= 0 and η? 6= ∞. By using this, in the

next step we will show that η? 6= 0.
Step 4. Let us show that η? 6= 0. To see this, suppose on the contrary that η? = 0.

Then only one of the following two cases can occur: (i) η? = 0 and β? ∈ (0,∞), or
(ii) η? = 0 and β? = ∞. Now, we are going to show that functional S cannot attain
its infimum in either of these two cases, which will prove that η? 6= 0.

Case (i): η? = 0 and β? ∈ (0,∞). In this case we would have

lim
k→∞

βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk

= lim
k→∞

βk

ti − αk

( ηk

ti − αk

)βk

e−(
ηk

ti−αk
)βk

= 0, ti > α?

and hence from (10) it would follow that

S? ≥
∑

ti 6=α?

wiy
2
i ≥ Sr
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which contradicts assumption (9).
Case (ii): η? = 0 and β? = ∞. Since ηk → 0, there exists a real number q > 1

and sufficiently great k0 ∈ N such that if ti > α? and k > k0, then ηk/(ti−αk) < 1/q.
Without loss of generality, we may assume that k0 = 1. Thus, if ti > α?, then

0 <
βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk

=
βk

ti − αk

( ηk

ti − αk

)βk

e−(
ηk

ti−αk
)βk

<
1

ti − αk

( βk

qβk

)
e−(

ηk
ti−αk

)βk

. (12)

Furthermore, since

lim
k→∞

( βk

qβk

)
= 0 and lim

k→∞
e−(

ηk
ti−αk

)βk

= 1,

from (12) it follows that

lim
k→∞

[βk

ηk

( ηk

ti − αk

)βk+1
e−(

ηk
ti−αk

)βk
]

= 0, ti > α?.

Finally, from (10) we obtain S? ≥ ∑
ti 6=α? wiy

2
i ≥ Sr, which contradicts assumption

(9). This means that in this case functional S cannot attain its infimum.
Thus, we have proved that η? 6= 0.
Step 5. It remains to show that β? 6= ∞. We prove this by contradiction.

Suppose that β? = ∞.
Arguing as in case (ii) from step 4, it can be shown that

lim
k→∞

[ βk

ti − αk

( ηk

ti − αk

)βk e−(
ηk

ti−αk
)βk

]
= 0, if 0 <

η?

ti − α?
< 1. (13)

If η?

ti−α? > 1, then there exists a sufficiently great k0 ∈ N such that e <
(

ηk

ti−αk

)k0 .
Now, by using the inequality x < ex (x ≥ 0) we obtain

βk < eβk <
( ηk

ti − αk

)k0βk

, k ∈ N,

and therefore

0 <
βk

ti − αk

( ηk

ti − αk

)βk

e−(
ηk

ti−αk
)βk

<
1

ti − αk

( ηk

ti − αk

)(k0+1)βk e−(
ηk

ti−αk
)βk

. (14)

Since limk→∞
(

ηk

ti−αk

)βk = ∞, we have that limk→∞
(

ηk

ti−αk

)(k0+1)βk e−(
ηk

ti−αk
)βk

= 0
and therefore from (14) it follows that

lim
k→∞

[ βk

ti − αk

( ηk

ti − αk

)βk e−(
ηk

ti−αk
)βk

]
= 0, if

η?

ti − α?
> 1. (15)

From (10), (13) and (15) we would obtain S? ≥ ∑
ti 6=α? wiy

2
i ≥ Sr, which contradicts

(9). Thus, we have proved that β? 6= ∞ and completed the proof.
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Remark 1. Given 1 ≤ p < ∞, let

Sp(α, β, η) =
n∑

i=1

wi|f(ti; α, β, η)− yi

∣∣p.

Arguing in a similar way as in proofs of Lemma 1 and Theorem 1, it can be eas-
ily shown that there exists a point (α?

p, β
?
p , η?

p) ∈ P such that Sp(α?
p, β

?
p , η?

p) =
inf(α,β,η)∈P Sp(α, β, η). It suffices to replace the l2 norm with the lp norm. Thereby
all parts of the proof remain the same.

4. Simulation study

In this section we exemplify our method on generated data. For given parameters
we generate random data with the three-parameter inverse Weibull distribution.
To obtain density data we use symmetric and adaptive kernel estimates, common
nonparametric density estimates. After that, we estimate model parameters by the
nonlinear least squares method.

4.1. Nonparametric estimates for initial density

Symmetric kernel estimator. Firstly, we consider the symmetric kernel estimates
for a density function, i.e. a function of the form

f̂sk(t) =
1

nh

n∑

i=1

K

(
t− ti

h

)
,

where K is a kernel and h is the window width (also called the smoothing parameter
or bandwidth [25]). For a kernel K we choose normal density

K(t) =
1√
2πσ

e−
t2

2σ2 .

The bandwidth h is set to the ideal value for the inverse Weibull distribution and
the chosen kernel K in the sense of minimizing the approximate mean integrated
square error (see Silverman [25], page 40):

hopt = n−1/5

(∫
t2K(t) dt

)−2/5 (∫
K2(t) dt

)1/5 (∫
[f ′′(t)]2 dt

)−1/5

= σ−1

(
2n
√

π

∫
[f ′′(t)]2 dt

)−1/5

.

Here f(t) = f(t;α, β, η) is the inverse Weibull density given by (1). Since we choose
normal density for kernel:

K

(
t− ti

h

)
=

1√
2πσ

exp

(
−

(
t−ti

h

)2

2σ2

)
=

1√
2πσ

exp
(
− (t− ti)2

2(hσ)2

)
,
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the symmetric kernel estimates reads

f̂sk(t) =
1

nhσ
√

2π

n∑

i=1

exp
(
− (t− ti)2

2(hσ)2

)
.

To determine symmetric kernel estimates we have to define the product hoptσ instead
of hopt and σ separately. We still have to estimate a term

∫
[f ′′(t)]2 dt. For the

simulation purposes we calculate this integral for the original density function.
Adaptive kernel estimator. The adaptive kernel approach (see e.g. Silver-
man [25]) is a two-stage procedure. Instead of using constant bandwidth h, for
each point ti a different bandwidth is used.

In the first stage, a pilot estimate f̃ is used to get a rough idea of the density
and to yield a pattern of bandwidths corresponding to various observations. After
that, local bandwidth factors λi are defined by

λi =
(1

g
f̃(ti)

)−γ

,

where g =
( ∏n

i=1 f̃(ti)
)1/n is the geometric mean of numbers f̃(t1), . . . , f̃(tn) and

γ ∈ [0, 1] is the sensitivity parameter. As a pilot estimate we use a symmetric kernel
estimate f̂sk.

The adaptive kernel estimate f̂ak is given by

f̂ak(t) =
1
n

n∑

i=1

1
hλi

K

(
t− ti
hλi

)
,

where K is the normal density with variance σ2, as in the symmetric kernel approach.
The product of smoothing parameters h and σ is kept the same as in the sym-

metric kernel approach and the value for γ was obtained subjectively. (The value
γ = 0.2 was applied throughout all simulations.)

Once the nonparametric density estimate f̂sk or f̂ak was obtained, the parameters
α, β and η were estimated by solving the following LS problem:

min
(α,β,η)∈P

n∑

i=1

[f(ti; α, β, η)− yi]2,

where
yi = f̂sk(ti)

in the symmetric kernel approach or

yi = f̂ak(ti)

in the adaptive kernel approach.
Since the kernel K is strictly positive, Theorem 1 guarantees the existence of the

LSE (α̂sk, β̂sk, η̂sk) (i.e. (α̂ak, β̂ak, η̂ak)). For the nonlinear minimization we use a
package for nonlinear regression used in [20].
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4.2. Results

In this simulation study we present results based on 1000 simulations. In each
simulation the values of parameters α, β and η were fixed at α = 10, β = 2 and η =
10. Using a random number generator we generated a large number of data points
distributed according to the inverse Weibull distribution with prescribed parameters
(we compared results obtained for 500, 1000 and 2000 data points). After that,
we calculated density data using a nonparametric estimate for initial density. We
applied both symmetric and adaptive kernel estimators. Approximate density values
were calculated at each data point. Typical density data are shown in Figure 2.
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Figure 2. Typical random density data (black dots) and theoretical IW density curve
(gray line)

To such data we fitted an IW model. The fitted curve is shown in Figure 3.
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Figure 3. Typical fitted IW curve (dashed line) against random density data (black
dots) and theoretical IW density curve (gray line)
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The average of estimated parameters α̂, β̂, η̂ and
√

S/n for 1000 simulations are
given in Table 1. Here S stands for the sum of squared errors:

S = S(α̂, β̂, η̂) =
n∑

i=1

[f(ti; α̂, β̂, η̂)− yi]2,

where n is the number of data points.

Number of data points
n = 500 n = 1000 n = 2000

mean standard mean standard mean standard
deviation deviation deviation

α̂ 7.7 7.2 8.6 1.9 8.7 1.2
β̂ 2.5 1.5 2.3 0.4 2.2 0.2
η̂ 12.4 7.1 11.6 1.9 11.4 1.2√

1
nS 3.2 · 10−3 2.3 · 10−3 1.7 · 10−3

Table 1. Results of the simulation study (α = 10, β = 2, η = 10, N = 1000
simulations) for symmetric kernel initial density

We can see from Table 1 that there is a bias in parameter estimation. Bias is
decreasing with an increase in the number of data points. Still, there is a relatively
large standard deviation in parameters estimation. It is also decreasing with an
increase in the number of data points. The use of adaptive kernel initial density
somehow improves result, but not substantially (Table 2).

Number of data points
n = 500 n = 1000 n = 2000

mean standard mean standard mean standard
deviation deviation deviation

α̂ 8.4 8.5 9.4 1.8 9.5 1.1
β̂ 2.3 1.8 2.1 0.4 2.1 0.2
η̂ 11.6 8.5 10.7 1.8 10.6 1.1√

1
nS 3.8 · 10−3 2.8 · 10−3 2.0 · 10−3

Table 2. Results of the simulation study (α = 10, β = 2, η = 10, N = 1000
simulations) for adaptive kernel initial density

Checking dependency between estimated parameters, we observed a high cor-
relation; Pearson correlation coefficients were rαβ = −0.978, rαη = −0.995 and
rβη = 0.970 (for 1000 simulations and the use of symmetric kernel initial density).
Dispersion diagrams for estimated parameters are presented on Figures 4–6. This
correlation indicates that a large standard deviation in parameters estimation is not
due the inadequacy of the method but rather due to overparametrization. To check
this hypothesis we performed simulations with one parameter fixed to the original
value and other two parameters determined by minimization. The result is shown
in Figures 7 and 8. Resulting estimations are almost unbiased with a much smaller
standard deviation.
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Figure 4. Dispersion diagram for parameters α and β (500 simulations)
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Figure 5. Dispersion diagram for parameters α and η (500 simulations)
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Figure 6. Dispersion diagram for parameters β and η (500 simulations)
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Figure 7. Dispersion diagram for parameters β and η (500 simulations).
Comparison of IW model (gray) and IW model with fixed parameter α (black)
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Figure 8. Dispersion diagram for parameters α and η (500 simulations).
Comparison of IW model (gray) and IW model with fixed parameter β (black)
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