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Abstract. The famous de Boor conjecture states that the condition of the polynomial
B-spline collocation matrix at the knot averages is bounded independently of the knot
sequence, i.e., it depends only on the spline degree.
For highly nonuniform knot meshes, like geometric meshes, the conjecture is known to
be false. As an effort towards finding an answer for uniform meshes, we investigate the
spectral condition number of cardinal B-spline collocation matrices. Numerical testing
strongly suggests that the conjecture is true for cardinal B-splines.
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1. Introduction

We consider a classical Lagrange function interpolation problem in the following
“discrete” setting. Let τ1, . . . , τν be a given set of mutually distinct interpolation
nodes, and let f1, . . . , fν be a given set of “basis” functions.

For any given function g we seek a linear combination of the basis functions that
interpolates g at all interpolation nodes,

ν∑

j=1

yjfj(τi) = g(τi), i = 1, . . . , ν.

The coefficients yj can be computed by solving the linear system

Ay = g,
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where A is the so-called collocation matrix containing the values of the basis func-
tions at the interpolation nodes

aij = fj(τi).

If the basis functions are linearly independent on {τ1, . . . , τν}, the matrix A is non-
singular, and the interpolation problem has a unique solution for all functions g.

The sensitivity of the solution is then determined by the condition number κp(A)
of the collocation matrix

κp(A) = ‖A‖p‖A−1‖p, (1)

where ‖ ‖p denotes a standard operator p-norm, with 1 ≤ p ≤ ∞.
The polynomial B-splines of a fixed degree d are frequently used as the basis

functions in practice. Such a basis is uniquely determined by a given multiset of
knots that defines the local smoothness of the basis functions. The corresponding
collocation matrix is always totally nonnegative (see [6, 16]), regardless of the choice
of the interpolation nodes.

A particular choice of nodes is of special interest, both in theory and in practice,
for shape preserving approximation. When the nodes are located at the so-called
Greville sites, i.e., at the knot averages, the interpolant has the variation diminishing
property. Moreover, for a low order B-spline interpolation, it can be shown that
κ∞(A) is bounded independently of the knot sequence [6].

On these grounds, in 1975, Carl de Boor [5] conjectured that the interpolation
by B-splines of degree d at knot averages is bounded by a function that depends
only on d, regardless of the knots themselves. In our terms, the conjecture says that
κ∞(A) or, equivalently, ‖A−1‖∞ is bounded by a function of d only. The conjecture
was disproved by Rong–Qing Jia [11] in 1988. He proved that, for geometric meshes,
the condition number κ∞(A) is not bounded independently of the knot sequence,
for degrees d ≥ 19.

Therefore, it is a natural question whether there exists any class of meshes for
which de Boor’s conjecture is valid. Since geometric meshes are highly nonuniform,
the most likely candidates for the validity are uniform meshes.

Here we discuss the problem of interpolation at knot averages by B-splines with
equidistant simple knots. The corresponding B-splines are symmetric on the support,
and have the highest possible smoothness. It is easy to see that the condition of this
interpolation does not depend on the knot spacing h, and we can take h = 1. So,
just for simplicity, we shall consider only the cardinal B-splines, i.e., B-splines with
simple knots placed at successive integers. It should be stressed that the only free
parameters in this problem are the degree d of the B-splines and the size ν of the
interpolation problem. Our aim is to prove that the condition of A can be bounded
independently of its order.

The corresponding collocation matrices A are symmetric, positive definite, and
most importantly, Töplitz. But, it is not easy to compute the elements of A−1, or
even reasonably sharp estimates of their magnitudes. So, the natural choice of norm
in (1) is the spectral norm

κ2(A) =
σmax(A)
σmin(A)

, (2)
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where σmax(A), and σmin(A) denote the largest and the smallest singular value of
A, respectively.

For low spline degrees d ≤ 6, the collocation matrices are also strictly diagonally
dominant, and it is easy to bound κ2(A) by a constant. Consequently, de Boor’s
conjecture is valid for d ≤ 6.

For higher degrees, the condition number can be estimated by embedding the
Töplitz matrix A into circulant matrices of higher orders. The main advantage
of this technique, developed by Davis [4] and Arbenz [2], lies in the fact that the
eigenvalues of a circulant matrix are easily computable. The final bounds for κ2(A)
are obtained by using the Cauchy interlace theorem for singular values (see [10] for
details), to bound both singular values in (2).

The paper is organized as follows. In Section 2 we briefly review some basic
properties of cardinal B-splines. The proof of de Boor’s conjecture for low degree
(d ≤ 6) cardinal B-splines is given in Section 3. In Section 4 we describe the
embedding technique and derive the estimates for κ2(A).

Despite all efforts, we are unable to prove de Boor’s conjecture in this, quite
probably, the easiest case. The final section contains the results of numerical test-
ing that strongly support the validity of the conjecture, as well as some additional
conjectures based on these test results.

2. Properties of cardinal splines

Let xi = x0 + ih, for i = 0, . . . , n, be a sequence of simple uniformly spaced knots.
This sequence determines a unique sequence of normalized B-splines Nd

0 , . . . , Nd
n−d−1

of degree d, such that the spline Nd
i is non-trivial only on the interval 〈xi, xi+d+1〉.

Each of these B-splines can be obtained by translation and scaling from the basic
B-spline Qd with knots i = 0, . . . , d + 1,

Qd(x) =
1

(d + 1)!

d+1∑

i=0

(−1)i

(
d + 1

i

)
(x− i)d

+. (3)

Here, (x− i)d
+ denotes the truncated powers (x− i)d

+ = (x− i)d(x− i)0+, for d > 0,
while

(x− i)0+ =

{
0, x < i,
1, x ≥ i.

The normalized version of the basic spline is defined as

Nd(x) = (d + 1)Qd(x). (4)

From (3) and (4), we obtain the normalized B-spline basis {Nd
i }:

Nd
i (x) = Nd

(
x− xi

h

)
.

If the interpolation nodes τi are located at the knot averages, i.e.,

x∗i =
xi+1 + · · ·+ xi+d

d
= xi + h

d + 1
2

, i = 0, . . . , n− d− 1, (5)
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then
xi < x∗i < xi+d+1,

and the Schönberg–Whitney theorem [6] guarantees that the collocation matrix is
nonsingular. Moreover, this matrix is totally nonnegative [12], i.e., all of its minors
are nonnegative. Due to symmetry of B-splines on uniform meshes, the colloca-
tion matrices are also symmetric and Töplitz. So, we can conclude that B-spline
collocation matrix is Töplitz, symmetric and positive definite.

It is easy to show that the elements of the collocation matrix do not depend on
the step-size h of the uniform mesh, so we take the simplest one with h = 1 and
xi = i. Such B-splines are called cardinal. The interpolation nodes (5) are integers
for odd degrees, while for even degrees, the interpolation nodes are in the middle of
the two neighbouring knots of the cardinal B-spline.
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Figure 1. The first four cardinal splines Nd
i of degree d = 3 and 4, respectively. Big

black dots denote the spline values at the knot averages

The normalized basic cardinal spline Nd suffices to determine all basis function
values at the interpolation nodes

Nd
i (x∗j ) = Nd(x∗j−i).

The general de Boor–Cox reccurence relation [6], written in terms of the degree
of a spline is:

Nd(x) =
xNd−1(x) + (d + 1− x)Nd−1(x− 1)

d
. (6)

Note that the elements of a collocation matrix are rational, because the interpolation
nodes are rational, and the de Boor–Cox recurrence formula (6) involves only basic
arithmetic operations on rational coefficients. These elements are therefore exactly
computable in (arbitrary precise) rational arithmetic.

3. Low degree cardinal B-splines

Let tdi = Nd(x∗i ) denote the values of cardinal B-splines at knot averages (see (5)).
Then, the cardinal B-spline collocation matrix A with interpolation nodes x∗i is a
banded symmetric Töplitz matrix of order n− d, to be denoted by

T d
n =




td0 · · · tdr 0
...

. . . . . .

tdr
. . . tdr

. . . . . .
...

0 tdr · · · td0




, r =
⌊

d

2

⌋
. (7)
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The matrix T d
n is represented by its first row, usually called the symbol,

t = (td0, . . . , t
d
r , 0, . . . , 0), t ∈ Rn−d.

It is useful to note that each B-spline of degree d > 0 is a unimodal function, i.e.,
it has only one local maximum on the support. In the case of cardinal B-splines, we
have already concluded that the splines are symmetric, and therefore the maximum
value of Nd is attained at the middle of the support, for x = (d+1)/2. The maximum
value is

Nd

(
d + 1

2

)
= Nd(x∗0) = td0.

Furthermore, unimodality implies that the values of the spline Nd are decreasing in
the interval [(d + 1)/2, d + 1], so

td0 > td1 > · · · > tdr . (8)

To estimate the condition number of a cardinal B-spline we need to bound both
the minimal and the maximal singular value of T d

n . For a symmetric and positive
definite matrix, the singular values are eigenvalues. Therefore, the bounds for the
eigenvalues of T d

n are sought for. From the Geršgorin bound for the eigenvalues, and
the partition of unity of the B-spline basis, we obtain an upper bound for λmax(T d

n)

λmax(T d
n) ≤ td0 + 2(td1 + · · ·+ tdr) = 1. (9)

Similarly, we also obtain a lower bound for λmin(T d
n),

λmin(T d
n) ≥ td0 − 2(td1 + · · ·+ tdr) = 2td0 − 1, (10)

which is sensible only if T d
n is strictly diagonally dominant. Strict diagonal domi-

nance is achieved only for B-spline degrees d = 1, . . . , 6 (easily verifiable by a com-
puter). The corresponding Geršgorin bounds are presented in Table 1. This directly
proves de Boor’s conjecture for low order B-splines.

n\d 2 3 4 5 6

64 1.998136 2.994873 4.785918 7.466648 11.727897
128 1.999541 2.998757 4.796641 7.492176 11.785901
256 1.999886 2.999694 4.799180 7.498105 11.799106
512 1.999971 2.999924 4.799797 7.499534 11.802256
1024 1.999993 2.999981 4.799950 7.499884 11.803026
2048 1.999998 2.999995 4.799987 7.499971 11.803216

GB(d) 2 3 96
19 ≈ 5.052632 10 5760

127 ≈ 45.354331

Table 1. Comparison of the actual condition numbers κ2(T d
n), for d = 2, . . . , 6,

n = 64, . . . , 2048, and the bounds GB(d) for κ2(T d
n), obtained by the Geršgorin

circle theorem
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Note that in the case of tridiagonal Töplitz matrices, i.e. for d = 2, 3, and, thus,
r = 1 in (7), the exact eigenvalues are also known (see Böttcher–Grudsky [3])

λk(T d
n) = td0 + 2td1 cos

πk

n− d + 1
, d = 2, 3, k = 1, . . . , n− d.

The largest and the smallest eigenvalue can then be uniformly bounded by

λmax(T d
n) = td0 + 2td1 cos

π

n− d + 1
< td0 + 2td1,

λmin(T d
n) = td0 − 2td1 cos

π

n− d + 1
> td0 − 2td1 > 0.

These uniform bounds are somewhat better than those obtained by the Geršgorin
circles.

4. Embeddings of Töplitz matrices into circulants

When the degree of a cardinal B-spline is at least 7, the eigenvalue bounds for Töplitz
matrices can be computed by circulant embeddings. First, we shall introduce the
smallest possible circulant embedding and give its properties. Then we shall present
some other known embeddings, with positive semidefinite circulants.

To obtain a bound for λmin(T d
n), the collocation matrix T d

n is to be embedded
into a circulant

Cd
m =




tdr · · · td1
. . .

...
tdr

T d
n

tdr
...

. . .
td1 tdr

tdr tdr · · · td1 td0
. . .

...
...

. . . . . . . . . . . . td1
td1 · · · tdr tdr · · · td1 td0




, m = n− d + r. (11)

It is obviously a Töplitz matrix with the following symbol

t = (td0, . . . , t
d
r , 0, . . . , 0, tdr , . . . , t

d
1), t ∈ Rn−d+r.

This circulant Cd
m is called a periodization of T d

n by Böttcher and Grudsky [3].
The bounds (9)–(10) for the eigenvalues of T d

n are also valid for Cd
m. Moreover,

Cd
m is doubly stochastic, always having λmax(Cd

m) = 1 as its largest eigenvalue.
Interestingly enough, the upper bound (9) is attained here (the Geršgorin bounds
are rarely so sharp).
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The symmetry of T d
n immediately implies the symmetry of Cd

m, and we can
conclude that the eigenvalues of Cd

m are real, but not necessarily positive. For
symmetric matrices, the singular values are, up to a sign, equal to the eigenvalues, so

σi(Cd
m) = |λi(Cd

m)|. (12)

If the eigenvalues of the circulant Cd
m are known, the spectrum of embedded T d

n can
be bounded by the Cauchy interlace theorem for singular values, applied to Cd

m.

Theorem 1 (Cauchy interlace theorem). Let C ∈ Cm×n be given, and let C` denote
a submatrix of C obtained by deleting a total of ` rows and/or ` columns of C. Then

σk(C) ≥ σk(C`) ≥ σk+`(C), k = 1, . . . , min{m,n},
where we set σj(C) ≡ 0 if j > min{m,n}.

The proof can be found, for example, in [10, p. 149].
If we delete the last r rows and columns of Cd

m, we obtain T d
n . The Cauchy

interlace theorem will then give useful bounds for σmin(T d
n) = λmin(T d

n), provided
that Cd

m is nonsingular. Moreover, if we delete more than r last rows and columns
of Cd

m, we obtain bounds for Töplitz matrices T d
k , of order k − d, for k ≤ n,

κ2(T d
k ) =

σmax(T d
k )

σmin(T d
k )

≤ σmax(Cd
m)

σmin(Cd
m)

=
1

minj |λj(Cd
m)| . (13)

Now we need to calculate the smallest singular value of Cd
m, and show that it is

non-zero.
The eigendecomposition of a circulant matrix is well-known (see [4, 2]). A circu-

lant C of order m, defined by the symbol (c0, . . . , cm−1), can be written as

C =
m−1∑

j=0

cjΠj ,

where

Π =




0 1
. . . . . .. . . 1

1 0


 .

The spectral decomposition of Π is Π = FΩF ∗, where

Ω = diag(1, ω, ω2, . . . , ωm−1), ω =
2πi

m
, i =

√−1,

while
Fj,k =

1√
m

ωkj , 0 ≤ k, j ≤ m− 1.

Hence, C can be decomposed as

C = FΛF ∗, Λ = diag(λ0, . . . , λm−1) =
m−1∑

j=0

cjΩj .
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The eigenvalues of a real symmetric circulant C are real and given by

λk(C) = c0 +
m−1∑

j=1

cj cos
2πkj

m
, k = 0, . . . , m− 1. (14)

They can also be viewed as the discrete Fourier transform (DFT) of the symbol
(c0, . . . , cm−1).

For real and symmetric C, i.e., when ck = cm−k, for k = 1, . . . , m− 1, from (14)
it also follows that

λk(C) = c0 +
m−1∑

j=1

cj cos
2πkj

m
= c0 +

m−1∑

j=1

cm−j cos
2πk(m− j)

m
= λm−k(C).

So, all the eigenvalues, except λ0(C), and possibly λm
2
(C), for even m, are multiple.

Therefore, the eigenvalues of the circulant Cd
m from (11) are

λk(Cd
m) = td0 + 2

r∑

j=1

tdj cos
2πkj

m
, k = 0, . . . , m− 1. (15)

For prime orders m, the nonsingularity of Cd
m is a consequence of the following

theorem from [9].

Theorem 2 (Geller, Kra, Popescu and Simanca). Let m be a prime number. As-
sume that the circulant C of order m has entries in Q. Then detC = 0 if and only
if

λ0 =
m−1∑

j=0

ci = 0,

or all the symbol entries ci are equal.

If m is prime, then we must have det Cd
m 6= 0, since (8) implies that ci’s are not

equal, and from (15) we get

λ0 = c0 + 2
r∑

j=1

cj = 1 6= 0.

Theorem 2 suggests how to get the nonsingular embedding of T d
n . First, T d

n should
be embedded into the Töplitz matrix T d

p , of order p − d, where p ≥ n is chosen so
that m = p−d+ r is a prime number. Then, T d

p is embedded into the circulant Cd
m.

The other possibility is to embed T d
n into the smallest circulant matrix Cd

m, as
in (11), and calculate its eigenvalues from (15), hoping that Cd

m is nonsingular. In
this case, extensive numerical testing suggests that Cd

m is always positive definite,
but we have not been able to prove it.

There are also several other possible embeddings that guarantee the positive
semidefiniteness of the circulant matrix C.
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The first one, constructed by Dembo, Mallows and Shepp in [7], ensures that
the positive definite Töplitz matrix T of order n can be embedded in the positive
semidefinite circulant C of order m, where

m ≥ 2
(

n + κ2(T )
n2

√
6

)
. (16)

A few years later, Newsam and Dietrich [14] reduced the size of embedding to

m ≥ 2

√
6n2 + κ2(T )

3 · 211/2 n5/2

55/2
. (17)

Note that among all positive semidefinite matrices C of order greater than or equal
to m, we can choose one of prime order. This embedding will be positive definite
according to Theorem 2. It is obvious that embeddings (16)–(17) are bounded by a
function of the condition number of T , i.e., the quantity we are trying to bound.

Ferreira in [8] embeds a Töplitz matrix T of order n, defined by the symbol
t = (t0, . . . , tr, 0, . . . , 0) ∈ Rn, into the circulant C of order m = 2n,

C =
[
T S
S T

]
, (18)

where the symbol of the Töplitz matrix S is s = (0, . . . , 0, tr, . . . , t1) ∈ Rn.
If we take T = T d

n from (7), the only difference between embeddings (11) and
(18) is in exactly n − d − r zero diagonals, added as the first diagonals of S. A
sufficient condition for positive semidefiniteness of C is given by the next result.

Theorem 3 (Ferreira). Let C be defined as in (18), and let bT = [t0, . . . , tn−1],
cT = [tn−1, . . . , t1]. If T is positive definite, and |bT T−1c| < 1, then C is positive
semidefinite.

Once again, there is no obvious efficient way to verify whether the condition
|bT T−1c| < 1 is fullfiled or not.

5. Conjecture about the minimal eigenvalues

Extensive numerical testing has been conducted by using Mathematica 7 from Wol-
fram Research for symbolic, arbitrary-precision rational, and machine-precision float-
ing-point computations. Whenever feasible, full accuracy was maintained. Owing
mostly to the elegance and the accuracy of these results, an insight into and the
following conjecture about the spectral properties of the collocation matrices and
the corresponding periodizations were obtained.

Conjecture 1 (The smallest eigenvalue of a circulant). The circulant Cd
m from

(11) is always positive definite, and the index µ of its smallest eigenvalue λµ(Cd
m) is

always the integer nearest to m/2, i.e.,

λµ(Cd
m) =





λm±1
2

(Cd
m) = td0 + 2

r∑

j=1

(−1)jtdj cos
πj

m
, m odd,

λm
2
(Cd

m) = td0 + 2
r∑

j=1

(−1)jtdj , m even.
(19)
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Figure 2 illustrates both cases of Conjecture 1.
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i
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0.8

1.0
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Figure 2. The eigenvalues (black dots) λk(Cd
m) for spline of degree d = 7 with

n = 23, 24, respectively. The associated circulants have order m = n− 7 + 3, i.e.,
19 and 20. Note that for m = 20 there is only one minimal eigenvalue, while for

m = 19 we have two minimal eigenvalues

For even m, λµ(Cd
m) (and, therefore, κ2(Cd

m)) depends solely on d, i.e., the order
m of a circulant is irrelevant here. Moreover, for m odd and even alike, the limiting
value of λµ(Cd

m) is the same:

λd
∞ := lim

m→∞
λµ(Cd

m) = td0 + 2
r∑

j=1

(−1)jtdj . (20)

Hence, the notation λd
∞ is justified, since that value is determined uniquely by the

degree d of the chosen cardinal splines. This is consistent with de Boor’s conjecture.
Equations (19) and (20) provide us with efficiently and exactly computable esti-

mates of the spectral condition numbers of large collocation matrices T d
n . As demon-

strated in Figure 3 and Table 2, the smallest eigenvalues of the collocation matrices
converge rapidly and monotonically to the smallest eigenvalues of the corresponding
circulant periodizations Cd

m, as well as to the limiting value (20).

320 512 704 896 1088 1280 1472 1664 1856 2048
n

45.67

45.68

45.69

45.70

45.71

45.72

Κ2

Figure 3. Spectral condition numbers of Töplitz matrices T 9
n (lower, brighter line),

and the circulant periodizations C9
m (solid black line). The constant function

denotes 1/λ9
∞
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It is worth noting that the spectral bounds obtained in such a way for lower
degrees (d = 2, . . . , 6) of cardinal B-splines are quite sharper than those established
by the Geršgorin circle theorem (cf. Table 1 and Table 2), at no additional cost.

n\d T 2
n C2

m T 5
n C5

m T 6
n C6

m

64 1.998137 1.998758 7.466648 7.472749 11.72790 11.74214
128 1.999541 1.999694 7.492176 7.493492 11.78590 11.78866
256 1.999886 1.999924 7.498105 7.498410 11.79911 11.79971
512 1.999971 1.999981 7.499534 7.499607 11.80226 11.80240
1024 1.999993 1.999995 7.499884 7.499902 11.80303 11.80306
2048 1.999998 1.999999 7.499971 7.499975 11.80322 11.80322
1/λd

∞ 2.000000 7.500000 11.80328

n\d T 9
n C9

m T 21
n C21

m T 30
n C30

m

64 45.04067 45.17179 9012.21 9543.49 371000.6 502472.1
128 45.57648 45.59721 10100.96 10150.47 569223.5 579852.3
256 45.69092 45.69486 10273.67 10279.58 594976.6 596037.0
512 45.71737 45.71822 10308.14 10309.00 599497.1 599628.0
1024 45.72373 45.72393 10315.86 10316.01 600450.4 600469.5
2048 45.72529 45.72534 10317.69 10317.72 600669.7 600673.0
1/λd

∞ 45.72581 10318.28 600739.5

Table 2. Comparison of the spectral condition numbers κ2(T d
n) and κ2(Cd

m), for
d = 2, 5, 6, 9, 21, 30, n = 64, . . . , 2048, m = n− d + r, and 1/λd

∞

Since tdj are rational numbers, (20) is useful for the exact computation of λd
∞.

But, in floating-point arithmetic, the direct computation of λd
∞ from (20) is numer-

ically unstable, as it certainly leads to severe cancellation.
It can be easily shown from (3) or (6) that the smallest non-zero value of the

cardinal B-spline of degree d at an interpolation node is:

tdr =





Nd(1) = 1
d! , for odd d,

Nd
(

1
2

)
= 1

2d·d!
, for even d.

Moreover, all other values tdj in (20) and, consequently, λd
∞ are integer multiples

of tdr . With that in mind, yet another, somewhat surprising conjecture emerged
from the test results:

λd
∞ =





tdr · Td = 1
d!Td, d odd,

tdr · 2dEd = 1
d!Ed, d even,

(21)

where, as in [13], Tn are the tangent numbers, and En are the Euler numbers, defined
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by the Taylor expansions of tan t and sec t, respectively,

tan t =
∞∑

n=0

Tn
tn

n!
, sec t =

∞∑
n=0

En
tn

n!
.

These numbers are also related to the sequences A000182 (the tangent or “zag”
numbers), A000364 (the Euler or “zig” numbers) and A002436, from [17].

If true, (21) would be of significant practical merit, for there exist very stable
and elegant algorithms for calculation of Tn and En by Knuth and Buckholtz [13].
So, it deserved an effort to find the proof.

A unifying framework for handling both cases is provided by the Euler polyno-
mials En(x), defined by the following exponential generating function (see [1, 23.1.1,
p. 804])

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, (22)

which is valid for |t| < π.
First, note that T2k = E2k+1 = 0, for all k ≥ 0. The remaining nontrivial values

can be expressed in terms of special values of Euler polynomials. For the tangent
numbers, we have

T2k+1 = (−1)k22k+1E2k+1(1), k ≥ 0. (23)

This follows easily, by comparing the Taylor expansion of 1 + tanh t

1 + tanh t =
2e2t

e2t + 1
= 1 +

∞∑

k=0

(−1)kT2k+1
t2k+1

(2k + 1)!

and (22), with x = 1 and 2t, instead of t. Similarly, by comparing the Taylor
expansion of sech t

sech t =
2et

e2t + 1
=

∞∑

k=0

(−1)kE2k
t2k

(2k)!

and (22), with x = 1/2 and 2t, instead of t, we get

E2k = (−1)k22kE2k

(
1
2

)
, k ≥ 0. (24)

The following identities will also be needed in the proof of (21).

Lemma 1. Let d ≥ 0 be a non-negative integer. Then

d+1∑

`=0

(−1)`

(
d + 1

`

)
En(`) = 0, (25)

d+1∑

`=0

(−1)`

(
d + 1

`

)
En(` + 1) = 0, (26)

for all n = 0, . . . , d.
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Proof. Consider the function gd defined by

gd(t) :=
2(1− et)d+1

et + 1
=

d+1∑

`=0

(−1)`

(
d + 1

`

)
2e`t

et + 1
.

From (22) with x = `, the Taylor expansion of gd can be written as

gd(t) =
∞∑

n=0

[
d+1∑

`=0

(−1)`

(
d + 1

`

)
En(`)

]
tn

n!
,

so

Dngd(t)
∣∣
t=0

=
d+1∑

`=0

(−1)`

(
d + 1

`

)
En(`), n ≥ 0.

On the other hand, the Leibniz rule gives

Dngd(t) =
n∑

m=0

(
n

m

)
Dm

[
(1− et)d+1

]
Dn−m

[
2

et + 1

]
.

If n ≤ d, then Dm
[
(1− et)d+1

]
is always divisible by (1− et). Hence,

Dngd(t)
∣∣
t=0

= 0, n = 0, . . . , d,

which proves the first identity (25).
The second one follows similarly, by considering

hd(t) := gd(t)− gd+1(t) =
2et(1− et)d+1

et + 1
=

d+1∑

`=0

(−1)`

(
d + 1

`

)
2e(`+1)t

et + 1
.

The Taylor expansion of hd is then given by

hd(t) =
∞∑

n=0

[
d+1∑

`=0

(−1)`

(
d + 1

`

)
En(` + 1)

]
tn

n!
.

If n ≤ d, from the first part of the proof, it follows immediately that

Dnhd(t)
∣∣
t=0

= Dngd(t)
∣∣
t=0

−Dngd+1(t)
∣∣
t=0

= 0,

which proves (26).

Finally, we are ready to prove the conjecture (21).

Theorem 4 (Relation to integer sequences). The following holds for all cardinal
B-spline degrees d ≥ 0

λd
∞ =

1
d!
·
{

Td, d odd,
Ed, d even.
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Proof. To simplify the notation, let Ld := d! λd
∞. Due to the symmetry of interpo-

lation nodes, the sum in (20) can be written as

λd
∞ =

r∑

j=−r

(−1)jtdj , tdj = Nd

(
j +

d + 1
2

)
, j = −r, . . . , r,

where r = bd/2c. From (3) and (4), it follows that

tdj =
1
d!

d+1∑

`=0

(−1)`

(
d + 1

`

) (
j +

d + 1
2

− `

)d

+

.

Then

Ld =
r∑

j=−r

(−1)j
d+1∑

`=0

(−1)`

(
d + 1

`

) (
j − ` +

d + 1
2

)d

+

. (27)

Let d be odd, d = 2k + 1, with k ≥ 0. Then r = k and (d + 1)/2 = k + 1, so (27)
becomes

L2k+1 =
k∑

j=−k

(−1)j
2k+2∑

`=0

(−1)`

(
2k + 2

`

)
(j − ` + k + 1)2k+1

+ .

From the definition of truncated powers with positive exponents, the second sum
contains only the terms with j − ` + k + 1 > 0, i.e., for l ≤ j + k. By changing the
order of summation, we get

L2k+1 =
2k∑

`=0

(−1)`

(
2k + 2

`

) k∑

j=`−k

(−1)j (j − ` + k + 1)2k+1
.

Then we shift j by k − ` + 1, so that j starts at 1, to obtain

L2k+1 = (−1)k
2k∑

`=0

(−1)`

(
2k + 2

`

) 2k+1−`∑

j=1

(−1)(2k+1−`)−jj2k+1.

The second sum can be simplified as (see [1, 23.1.4, p. 804])

2k+1−`∑

j=1

(−1)(2k+1−`)−jj2k+1 =
1
2

(
E2k+1(2k + 2− `) + (−1)2k+2−`E2k+1(1)

)
.

Hence

L2k+1 =
(−1)k

2

[
2k∑

`=0

(−1)`

(
2k + 2

`

)
E2k+1(2k + 2− `) + E2k+1(1)

2k∑

`=0

(
2k + 2

`

)]
.

By reversing the summation, from (25) with d = 2k+1 and n = d, we conclude that

2k∑

`=0

(−1)`

(
2k + 2

`

)
E2k+1(2k + 2− `) =

2k+2∑

`=2

(−1)`

(
2k + 2

`

)
E2k+1(`)

= −
1∑

`=0

(−1)`

(
2k + 2

`

)
E2k+1(`).
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Since E2k+1(0) = −E2k+1(1), by using (23), we have

L2k+1 =
(−1)k

2
E2k+1(1)

2k+2∑

`=0

(
2k + 2

`

)
= (−1)k22k+1E2k+1(1) = T2k+1.

This proves the claim for odd values of d.
Let d be even, d = 2k, with k ≥ 0. For d = 0, it is obvious that L0 = t00 = 1 = E0,

so we may assume that k > 0. Then r = k and (d+1)/2 = k +1/2, so (27) becomes

L2k =
k∑

j=−k

(−1)j
2k+1∑

`=0

(−1)`

(
2k + 1

`

)(
j − ` + k +

1
2

)2k

+

.

The second sum contains only the terms with j − ` + k + 1/2 > 0, i.e., for l ≤ j + k.
By exactly the same transformation as before, we arrive at

L2k = (−1)k
2k∑

`=0

(−1)`

(
2k + 1

`

) 2k+1−`∑

j=1

(−1)(2k+1−`)−j

(
j − 1

2

)2k

.

Now we expand the last factor in terms of powers of j. Then L2k can be written as

L2k = (−1)k
2k∑

n=0

(
2k

n

)(
−1

2

)2k−n

S2k,n, (28)

with

S2k,n =
2k∑

`=0

(−1)`

(
2k + 1

`

) 2k+1−`∑

j=1

(−1)(2k+1−`)−jjn, n = 0, . . . , 2k.

Like before, the second sum can be simplified as

2k+1−`∑

j=1

(−1)(2k+1−`)−jjn =
1
2

(
En(2k + 2− `) + (−1)2k+2−`En(1)

)
,

which gives

S2k,n =
1
2

[
2k∑

`=0

(−1)`

(
2k + 1

`

)
En(2k + 2− `) + En(1)

2k∑

`=0

(
2k + 1

`

)]
.

By reversing the summation, from (26) with d = 2k, for n = 0, . . . , d, we see that

2k∑

`=0

(−1)`

(
2k + 1

`

)
En(2k + 2− `) = −

2k+1∑

`=1

(−1)`

(
2k + 1

`

)
En(` + 1) = En(1).

Therefore,

S2k,n =
1
2
En(1)

2k+1∑

`=0

(
2k + 1

`

)
= 22kEn(1).
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From (28) we obtain

L2k = (−1)k22k
2k∑

n=0

(
2k

n

)
En(1)

(
−1

2

)2k−n

.

Finally, by using [1, 23.1.7, p. 804])

2k∑
n=0

(
2k

n

)
En(1)

(
−1

2

)2k−n

= E2k

(
1
2

)
.

Together with (24), this gives

L2k = (−1)k22kE2k

(
1
2

)
= E2k.

This completes the proof for even values of d.

The proof of Theorem 4 also follows by using exponential splines (see [15]).
We would like to conclude with an observation that, to the best of our knowl-

edge, scarcely any result could be found about sufficient conditions for the non-
negativeness of the DFT in terms of its coefficients, apart from the classical result
of Young and Kolmogorov (cited in Zygmund [18, page 109]):

Theorem 5. For a convex sequence (an, n ∈ N), where lim
n→∞

an = 0, the sum

1
2
a0 +

∞∑
n=1

an cos nx

converges (save for x = 0), and is non-negative.

Here, a sequence is convex if ∆2an ≥ 0 for all n, with ∆an = an − an+1.
Convexity is not fulfilled in the case of cardinal B-spline coefficients, since there

is always one inflection point on each slope of the spline. And yet, our numerical
experiments strongly suggest that the class of series with a positive DFT is worth
investigating further, for the theoretical and practical reasons alike.
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