Some remarks on Laplacian eigenvalues and Laplacian energy of graphs

Gholam Hossein Fath-Tabar ${ }^{1}$ and Ali Reza Ashrafi ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, Iran

Received August 24, 2009; accepted April 7, 2010

Abstract

Suppose $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are Laplacian eigenvalues of a graph G. The Laplacian energy of G is defined as $L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-2 m / n\right|$. In this paper, some new bounds for the Laplacian eigenvalues and Laplacian energy of some special types of the subgraphs of K_{n} are presented. AMS subject classifications: 05C50

Key words: Laplacian eigenvalue, energy, Laplacian energy

1. Introduction and preliminaries

Let G be a graph of order n with the vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set $\mathcal{E}(G)$. The first Zagreb index $M_{1}(G)$ is defined as the sum of squares of degrees in G. It is well known that $M_{1}(G)=\sum_{e=u v \in E(G)}[d(u)+d(v)]$. The adjacency matrix $A(G)=\left[a_{i j}\right]$ of G is a square matrix of order n whose (i, j)-entry is equal to the number of edges between the vertices v_{i} and v_{j}.

In the case that G is a simple graph, the adjacency matrix $A(G)$ will be a $(0,1)$ matrix. The spectrum of G is defined as the set of eigenvalues of $A(G)$, together with their multiplicities. Let $\lambda_{1} \leq \lambda_{2} \cdots \leq \lambda_{n}$ be the eigenvalues of G. The energy of G is the sum of absolute values of eigenvalues of G. This quantity, introduced by Ivan Gutman, has noteworthy chemical applications; see $[6-9,11]$ for details.

Let $D(G)=\left[d_{i j}\right]$ be a diagonal matrix associated with the graph G, where $d_{i i}=\operatorname{deg}\left(v_{i}\right)$ and $d_{i j}=0$ if $i \neq j$. Define $L(G)=D(G)-A(G) . L(G)$ is called the Laplacian matrix of G. The Laplacian polynomial of G is the characteristic polynomial of its Laplacian matrix, $\phi(G, \mu)=\operatorname{det}\left(\mu I_{n}-L(G)\right)$. Let $\mu_{1} \leq \mu_{2} \leq$ $\cdots \leq \mu_{n}$ be the Laplacian eigenvalues of G, i. e., the roots of $\phi(G, \mu)$. It is well known that $\mu_{1}=0$ and that the multiplicity of 0 equals the number of connected components of G.

The Laplacian energy of G is a very recently defined graph invariant [10], defined as $L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-2 m / n\right|$, where n and m are the number of vertices and edges of G, respectively. $L E$ is a proper extension of the graph-energy concept. An interested reader should consult the papers $[1,2,5,16-18,20-22]$ for the main properties of the Laplacian energy of graphs.

[^0]The complement of a graph G is denoted by \bar{G}, where $e \in E(G)$ if and only if $e \notin E(\bar{G})$. Suppose G and H are two graphs with disjoint vertex and edge sets. The disjoint union of G and H is a graph T such that $V(T)=V(G) \bigcup V(H)$ and $E(T)=E(G) \bigcap E(H)$.

For the sake of completeness, we mention below some results which are important throughout the paper.
Theorem A [Polya-Szego Inequality, [15]]. Suppose a_{i} and $b_{i}, 1 \leq i \leq n$, are positive real numbers. Then

$$
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}
$$

where

$$
M_{1}=\max _{1 \leq i \leq n} a_{i}, M_{2}=\max _{1 \leq i \leq n} b_{i}, m_{1}=\min _{1 \leq i \leq n} a_{i} \text { and } m_{2}=\min _{1 \leq i \leq n} b_{i} .
$$

Theorem B [Ozeki's Inequality, [14]]. If a_{i} and $b_{i}, 1 \leq i \leq n$, are nonnegative real numbers, then

$$
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$

where M_{i} and m_{i} are defined similarly to Theorem A.
Theorem C [Mohar, [13]]. Let G be a graph and $e \in E(G)$. Then

$$
\mu_{1}(G-e) \leq \mu_{1}(G) \leq \mu_{2}(G-e) \leq \mu_{2}(G) \leq \cdots \leq \mu_{n}(G-e) \leq \mu_{n}(G)
$$

Theorem D [Biggs, [3]]. Suppose λ_{i} and $\mu_{i}, 1 \leq i \leq n$, are eigenvalues and Laplacian eigenvalues of G, respectively. Then

$$
\sum \lambda_{i}=0, \sum \lambda_{i}^{2}=2 m, \sum \mu_{i}=2 m \text { and } \sum \mu_{i}^{2}=2 m+M_{1}(G)
$$

Throughout this paper C_{n}, P_{n} and K_{n} denote the cycle, path and complete graphs on n vertices. The complete bipartite graph with a partition by m and n vertices is denoted by $K_{m, n}$. A graph G is called r-regular, if for any vertex x, $\operatorname{deg}(x)=r$. Our other notations are standard and taken mainly from [3, 4, 12].

2. The Laplacian eigenvalues of some subgraphs of complete graphs

A matching or edge-independent set of a graph G is a set of edges without common vertices in G. In this section, the Laplacian eigenvalues and Laplacian energy of some subgraphs of K_{n} are investigated.
Lemma 1. If G is a subgraph of K_{n} with $n^{\prime}<n$ vertices, then the Laplacian eigenvalues of $K_{n}-\mathcal{E}(G)$ are as follows:

$$
0, n-\mu_{1}(G), \cdots, n-\mu_{n^{\prime}}(G), \underbrace{n, \cdots, n}_{n-n^{\prime}-1 \text { times }}
$$

Proof. Suppose $G_{n}^{\prime}=G \cup\left\{V\left(K_{n}\right)-V(G)\right\}$. Then $K_{n}-\mathcal{E}(G)=\overline{G_{n}^{\prime}}$ and by [4, 2.6], $\phi\left(\bar{G}_{n}^{\prime}, x\right)=(-1)^{n} \frac{x}{x-n} \phi\left(G_{n}^{\prime}, n-x\right)$. We now apply [4, 2.4] to prove $\phi\left(G_{n}^{\prime}, x\right)=$ $\phi(G, x) x^{n-n^{\prime}}$. Therefore,

$$
\phi\left(\bar{G}_{n}^{\prime}, x\right)=(-1)^{n} \frac{x}{x-n} \phi(G, n-x)(n-x)^{n-n^{\prime}}=(-1)^{n} x \phi(G, n-x)(n-x)^{n-n^{\prime}-1}
$$

and a direct calculation implies the theorem.
Corollary 1. Suppose $E_{i} \subseteq \mathcal{E}\left(K_{n}\right)$ is a matching with i elements. Then the Laplacian eigenvalues of $K_{n}-E_{i}$ are as follows:

$$
0, \underbrace{n-2, \cdots, n-2}_{i \text { times }}, \underbrace{n, \cdots, n}_{n-i-1 \text { times }}
$$

Proof. The complement of $K_{n}-E_{i}$ consists of i copies of K_{2} and $n-2 i$ copies of K_{1}. Thus its spectrum is $0(n-i$ times $)$ and 2 (i times). So the result follows from the Lemma 1 and [4, 2.6].
Corollary 2. If $G_{2 s}$ is a Cocktail-Party graph with $2 s$ vertices, then the Laplacian eigenvalues of $G_{2 s}$ are $0, \underbrace{2 s-2, \cdots, 2 s-2}_{s \text { times }}, \underbrace{2 s, \cdots, 2 s}_{s-1 \text { times }}$.
Corollary 3. $L E\left(K_{n}-E_{i}\right)=2(n-i-1)-(4 i / n)(i+1)$.
Lemma 2. The Laplacian eigenvalues of $K_{n, n}-e$ are computed as follows:

$$
0, \frac{3 n-2-\sqrt{n^{2}+4 n-4}}{2}, \underbrace{n, \cdots, n}_{n-3 \text { times }}, \frac{3 n-2+\sqrt{n^{2}+4 n-4}}{2} .
$$

Therefore, $L E\left(K_{n, n}-e\right)=n+2-4 / n+\sqrt{n^{2}+4 n-4}$.
Proof. We know that

$$
0, \underbrace{n, n, \cdots, n}_{n-2 \text { times }}, 2 n
$$

are the Laplacian eigenvalues of $K_{n, n}$ [3]. By Theorem C, the Laplacian eigenvalues of $K_{n, n}-e$ satisfy the following inequalities:

$$
0=\mu_{1} \leq \mu_{2} \leq \mu_{3}=n=\cdots=\mu_{2 n-1} \leq \mu_{2 n}
$$

Since

$$
\sum \mu_{i}=2 m, \sum_{1 \backslash 2} \mu_{i}^{2}=2 m+M_{1}(G), \mu_{2}+\mu_{2 n}=3 n-2 \text { and } \mu_{2}^{2}+\mu_{2 n}^{2}=5 n^{2}-4 n
$$ $\mu_{2} \mu_{2 n}=2(n-1)^{2}$. This concludes that

$$
\mu_{2}=\frac{3 n-2-\sqrt{n^{2}+4 n-4}}{2} \text { and } \mu_{2 n}=\frac{3 n-2+\sqrt{n^{2}+4 n-4}}{2}
$$

For the second part, we notice that $L E\left(K_{n, n}-e\right)=\sum_{i=1}^{2 n}\left|\mu_{i}-n+1 / n\right|=n+2-$ $4 / n+\sqrt{n^{2}+4 n-4}$, proving the result.

Theorem 1. Suppose G is a graph. Then $|L E(G-e)-L E(G)|<4$ and 4 is the best possible bound.

Proof. Define $\mu_{i}^{\prime}=\mu_{i}(G-e)$. By Theorem C, $\mu_{i}-\mu_{i}^{\prime} \geq 0$ and $\sum_{i=1}^{n}\left[\mu_{i}-\mu_{i}^{\prime}\right]=2$. So, there exists $i, 1 \leq i \leq n$, such that $\mu_{i}>\mu_{i}^{\prime}$. This implies that

$$
\sum_{i=1}^{n}\left|\mu_{i}-\mu_{i}^{\prime}-\frac{2}{n}\right|<\sum_{i=1}^{n}\left[\left|\mu_{i}-\mu_{i}^{\prime}\right|+\frac{2}{n}\right]
$$

and we have:

$$
\begin{aligned}
|L E(G-e)-L E(G)| & =\left|\sum_{i=1}^{n}\right| \mu_{i}-2 \frac{m}{n}\left|-\left|\mu_{i}^{\prime}-2 \frac{m-1}{n}\right|\right| \\
& =\left|\sum_{i=1}^{n}\left[\left|\mu_{i}-2 \frac{m}{n}\right|-\left|\mu_{i}^{\prime}-2 \frac{m-1}{n}\right|\right]\right| \\
& \leq \sum_{i=1}^{n}| | \mu_{i}-2 \frac{m}{n}\left|-\left|\mu_{i}^{\prime}-2 \frac{m-1}{n}\right|\right| \\
& \leq \sum_{i=1}^{n}\left|\mu_{i}-\mu_{i}^{\prime}-\frac{2}{n}\right| \\
& <\sum_{i=1}^{n}\left[\left|\mu_{i}-\mu_{i}^{\prime}\right|+\frac{2}{n}\right] \\
& =\sum_{i=1}^{n}\left[\mu_{i}-\mu_{i}^{\prime}+\frac{2}{n}\right]=4 .
\end{aligned}
$$

To complete the argument we construct a sequence $\left\{G_{n}\right\}_{n \geq 2}$ of graphs such that $\left|L E\left(G_{n}-e\right)-L E\left(G_{n}\right)\right| \longrightarrow 4$. Define $G_{n}=\bar{K}_{n}+e$. Then $L E\left(G_{n}\right)=4-\frac{4}{n}$ and $L E\left(G_{n}-e\right)=0$ and so $\left|L E\left(G_{n}-e\right)-L E\left(G_{n}\right)\right|=4-\frac{4}{n} \longrightarrow 4$. This completes the argument.

3. Bounds on the Laplacian eigenvalues and the Laplacian energy of graphs

In this section, a variety of upper and lower bounds for the Laplacian eigenvalues of a graph G and its Laplacian energy are presented. At first, we apply Ozeki's theorem to obtain a simple inequality on the energy of graphs. By Theorem B,

$$
E(G) \geq \sqrt{2 m n-\frac{n^{2}}{4}\left(a_{n}-a_{1}\right)^{2}}
$$

where a_{1} and a_{n} are minimum and maximum values of the set $\left\{\left|\lambda_{i}\right| \mid 1 \leq i \leq n\right\}$.
Theorem 2. Suppose zero is not an eigenvalue of G. Then

$$
E(G) \geq \frac{2 \sqrt{2 m n} \sqrt{a_{1} a_{n}}}{a_{1}+a_{n}}
$$

where a_{1} and a_{n} are minimum and maximum of the absolute value of $\lambda_{i}^{\prime} s$. In particular, if G is k-regular, then

$$
L E(G)=E(G) \geq \frac{2 n k \sqrt{2 a_{1}}}{a_{1}+k}
$$

Proof. Suppose $\lambda_{i}, 1 \leq i \leq n$, are the eigenvalues of G. We also assume that $a_{i}=\left|\lambda_{i}\right|$, where $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{i}=1,1 \leq i \leq n$. Apply Theorem A to show that

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \sum_{i=1}^{n} 1^{2} \leq \frac{1}{4}\left(\sqrt{\frac{\left|\lambda_{n}\right|}{\left|\lambda_{1}\right|}}+\sqrt{\frac{\left|\lambda_{1}\right|}{\left|\lambda_{n}\right|}}\right)^{2}\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|\right)^{2} .
$$

Therefore, by $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=2 m$ and a simple calculation,

$$
E(G) \geq \frac{2 \sqrt{2 m n} \sqrt{a_{1} a_{n}}}{a_{1}+a_{n}}
$$

To prove the second part, it is enough to notice that $a_{n}=k$ and $2 m=n k$ for k-regular graphs.

Theorem 3. Let G be a connected graph with the smallest and largest positive Laplacian eigenvalues μ_{2} and μ_{n}, respectively. Then

$$
\sqrt{\mu_{n} / \mu_{2}}+\sqrt{\mu_{2} / \mu_{n}} \geq(\sqrt{n-1} / m) \sqrt{2 m+M_{1}(G)} .
$$

In particular, if G is an $n-$ vertex tree, then $\sqrt{\mu_{n} / \mu_{2}}+\sqrt{\mu_{2} / \mu_{n}} \geq \sqrt{(6 n-8) /(n-1)}$.
Proof. Suppose $a_{i}=1$ and $b_{i}=\mu_{i}, 2 \leq i \leq n$. Apply Theorem B to show that,

$$
\sum_{i=2}^{n} 1^{2} \sum_{i=2}^{n} \mu_{i}^{2} \leq \frac{1}{4}\left(\sqrt{\frac{\mu_{n}}{\mu_{2}}}+\sqrt{\frac{\mu_{2}}{\mu_{n}}}\right)^{2}\left(\sum_{i=2}^{n} \mu_{i}\right)^{2} .
$$

Since

$$
\sum_{i=2}^{n} \mu_{i}^{2}=2 m+M_{1}(G), \quad \sqrt{\mu_{n} / \mu_{2}}+\sqrt{\mu_{2} / \mu_{n}} \geq(\sqrt{n-1} / m) \sqrt{2 m+M_{1}(G)}
$$

When G is a tree with at least three vertices, $d(u)+d(v) \geq 3$ and so $M_{1}(G) \geq 3(n-1)$, as desired.

Corollary 4. With notation of Theorem 3, $\mu_{n} / \mu_{2}+\mu_{2} / \mu_{n} \geq \frac{n-1}{m}\left(2+\frac{4 m}{n}\right)-2$. In particular, when G is an n-vertex tree, $\mu_{n} / \mu_{2}+\mu_{2} / \mu_{n} \geq 4-\frac{4}{n}$.

Theorem 4. Suppose G is a graph without isolated vertices. Then

$$
\mu_{n}-\mu_{2} \geq \frac{4}{(n-1)^{2}}\left[(n-1)\left(2 m+M_{1}(G)\right)-4 m^{2}\right]
$$

Proof. Suppose $a_{i}=1$ and $b_{i}=\mu_{i}, 2 \leq i \leq n$. Apply Theorem B to show that

$$
(n-1) \sum_{i=2}^{n} \mu_{i}^{2}-\left(\sum_{i=2}^{n} \mu_{i}\right)^{2} \leq \frac{(n-1)^{2}}{4}\left(\mu_{n}-\mu_{2}\right)^{2}
$$

Since

$$
\sum_{i=2}^{n} \mu_{i}^{2}=2 m+M_{1}(G), \quad \mu_{n}-\mu_{2} \geq \frac{4}{(n-1)^{2}}\left[(n-1)\left(2 m+M_{1}(G)\right)-4 m^{2}\right]
$$

which proves the theorem.

We now prove some new bounds for the energy and Laplacian energy of graphs.

Theorem 5. Suppose G is a graph. Then

$$
\begin{align*}
& \sqrt[2(n-1)]{4 m^{2}}\left[L E(G)-\frac{2 m}{n}\right] \\
& \quad \geq \sqrt{\sqrt[n-1]{4 m^{2}}\left[M_{1}+2 m-(n+1) \frac{4 m^{2}}{n^{2}}\right]+2\binom{n-1}{2} \sqrt[n-1]{n^{2} \phi\left(G, \frac{2 m}{n}\right)^{2}}} \tag{1}
\end{align*}
$$

with equality if and only if G is an empty graph. In particular, if G is a non-empty graph, then

$$
\begin{equation*}
L E(G)>\frac{2 m}{n}+\sqrt{2 m-\frac{4 m^{2}}{n^{2}}+2\binom{n-1}{2} \sqrt[n-1]{\frac{n^{2}}{4 m^{2}} \phi\left(G, \frac{2 m}{n}\right)^{2}}} \tag{2}
\end{equation*}
$$

Moreover, if T is an n-vertex tree, $n \geq 3$, then

$$
\begin{align*}
\operatorname{LE}(T)> & \frac{2(n-1)}{n} \\
& +\sqrt{M_{1}(T)+(n-1)\left(6-\frac{4}{n^{2}}\right)+\frac{(n-1)(n-2)}{n} \sqrt[n-1]{\frac{n}{4(n-1)^{2}}}} \tag{3}
\end{align*}
$$

Proof. By a well-known theorem of algebraic graph theory, $\mu_{1}=0$ and so,

$$
\begin{equation*}
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|=\frac{2 m}{n}+\sum_{i=2}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \tag{4}
\end{equation*}
$$

If $x=\sum_{i=2}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|$, then by the arithmetic-geometric mean inequality,

$$
\begin{align*}
x^{2} & =\sum_{i=2}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|^{2}+2 \sum_{i \neq j, i, j=2,3, \cdots n}\left|\mu_{i}-\frac{2 m}{n}\right|\left|\mu_{j}-\frac{2 m}{n}\right| \\
& =M_{1}+2 m-\frac{4 m^{2}}{n}-\frac{4 m^{2}}{n^{2}}+2 \sum_{i \neq j, i, j=2,3, \cdots n}\left|\mu_{i}-\frac{2 m}{n} \| \mu_{j}-\frac{2 m}{n}\right| \\
& \geq M_{1}+2 m-\frac{4 m^{2}}{n}-\frac{4 m^{2}}{n^{2}}+2\binom{n-1}{2}\left(\Pi_{i=2}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|^{2(n-2)}\right)^{1 /(n-1)(n-2)} \\
& =M_{1}+2 m-\frac{4 m^{2}}{n}-\frac{4 m^{2}}{n^{2}}+2\binom{n-1}{2}\left(\Pi_{i=2}^{n}\left(\mu_{i}-\frac{2 m}{n}\right)\right)^{2 /(n-1)} \\
& =M_{1}+2 m-(n+1) \frac{4 m^{2}}{n^{2}}+2\binom{n-1}{2} \sqrt[n-1]{\frac{n^{2}}{4 m^{2}} \phi\left(G, \frac{2 m}{n}\right)^{2}} \tag{5}
\end{align*}
$$

Equation (1) is a direct consequence of (4) and (5) with equality if and only if $\left|\mu_{i}-2 m / n\right|\left|\mu_{j}-2 m / n\right|=\left|\mu_{r}-2 m / n\right|\left|\mu_{s}-2 m / n\right|, 2 \leq i, j \leq n, 2 \leq r, s \leq n$. We claim that these equalities hold if and only if $\mu_{2}=\mu_{3}=\cdots=\mu_{n}=2 m / n$. To prove this, we assume that one of μ_{i} is equal to $2 m / n$.

Then by a simple calculation, $\mu_{2}=\mu_{3}=\cdots=\mu_{n}=2 m / n$. Otherwise, $\mu_{i} \neq$ $2 m / n, 2 \leq i \leq n$. If $\mu_{i}, \mu_{j} \geq 2 m / n$ or $\mu_{i}, \mu_{j} \leq 2 m / n$, then $\mu_{i}=\mu_{j}$. Otherwise, $\mu_{i}+\mu_{j}=4 m / n$. Thus Laplacian eigenvalues of G are

$$
0, \underbrace{\mu_{1}, \cdots, \mu_{1}}_{k_{1} \text { times }}, \underbrace{\mu_{2}, \cdots, \mu_{2}}_{k_{2} \text { times }},
$$

where $k_{1}+k_{2}=n-1$ and $\mu_{1}+\mu_{2}=4 m / n$. Since $\sum_{i=1}^{n} \mu_{i}=2 m, k_{1} \mu_{1}+k_{2} \mu_{2}=2 m$. Thus

$$
\mu_{1}=\frac{2 m}{n}\left(\frac{2 k_{1}-n+2}{2 k_{1}-n+1}\right)=\frac{2 m}{n}\left(\frac{k_{1}-k_{2}+3}{k_{1}-k_{2}+2}\right) .
$$

Since $\left(k_{1}-k_{2}+3\right) /\left(k_{1}-k_{2}+2\right)>1, \mu_{1}>2 m / n$, a contradiction. Thus, in Equation (1) equality holds if and only if $\mu_{2}=\mu_{3}=\cdots=\mu_{n}=2 \mathrm{~m} / n$ if and only if G is an empty graph.

It is a well-known fact that $M_{1} \geq \frac{4 m^{2}}{n}$. Equation (2) is now derived from Equation (1) by this inequality.

To prove (3), suppose $\phi\left(G, \frac{2 m}{n}\right)=0$. Thus $2 m / n$ is a Laplacian eigenvalue and so it is an algebraic integer. So, by a well-known result in algebraic number theory $\frac{2 m}{n}$ is an integer. But for tree $\frac{2 m}{n}=\frac{2(n-1)}{n}$, a contradiction. Thus $\phi\left(G, \frac{2 m}{n}\right) \neq 0$. Suppose $\phi(G, x)=x^{n}+b_{n-1} x^{n-1}+\cdots+{ }^{n} b_{1} x$. Then

$$
\phi\left(G, \frac{2 m}{n}\right)=\left(\frac{2 m}{n}\right)^{n}+b_{n-1}\left(\frac{2 m}{n}\right)^{n-1}+\cdots+b_{1} \frac{2 m}{n} \neq 0 .
$$

This implies that $n^{n}\left|\phi\left(G, \frac{2 m}{n}\right)\right|$ is an integer and so $\left|\phi\left(G, \frac{2 m}{n}\right)\right| \geq \frac{1}{n^{n}}$. This completes the third part of the theorem.

Suppose G is an n-vertex tree. Since $\sqrt[n]{n} \longrightarrow 1$ and for any positive constant c, $\sqrt[n]{c} \longrightarrow 1$, one can see that for large n,

$$
L E(G) \geq \frac{2(n-1)}{n}+\sqrt{\frac{(n-1)\left(n^{2}+4\right)}{n^{2}}+\frac{(n-1)(n-2)}{2 n}} .
$$

Corollary 5. If $\frac{2 m}{n} \notin Z$, then

$$
L E(G) \geq \frac{2 m}{n}+\sqrt{M_{1}+2 m-(n+1) \frac{4 m^{2}}{n^{2}}+\frac{(n-1)(n-2)}{n} \sqrt[n-1]{\frac{n}{4 m^{2}}}}
$$

In particular, for large n, the Laplacian energy of G is greater than or equal to

$$
\frac{2 m}{n}+\sqrt{2 m-\frac{4 m^{2}}{n^{2}}+\frac{(n-1)(n-2)}{2 n}}
$$

Proof. Apply part (2) of Theorem 5 and this fact that $\left|\phi\left(G, \frac{2 m}{n}\right)\right| \geq \frac{1}{n^{n}}$.
Corollary 6. If G is tree, then

$$
L E(G) \geq \frac{2(n-1)}{n}+\sqrt{M_{1}+\frac{2(n-1)\left(2-n^{2}\right)}{n^{2}}+\frac{(n-1)(n-2)}{n} \sqrt[n-1]{\frac{n}{4(n-1)^{2}}}}
$$

Acknowledgement

We are greatly indebted to the referees for their critical suggestions that led us to correct our main result.

References

[1] N. M. M. de Abreu, C. T. M. Vinagre, A. S. Bonifacio, I. Gutman, The Laplacian Energy of Some Laplacian Integral Graphs, MATCH Commun. Math. Comput. Chem. 60(2008), 447-460.
[2] T. Aleksić, Upper bounds for Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60(2008), 435-439.
[3] N. L. Biggs, Algebraic graph theory, Cambridge University Press, Cambridge, 1974.
[4] D. M. Cvetković, M. Doob, H. Sachs, Spectra of graph theory and applications, Academic Press, New York, 1979.
[5] G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman, Note on Laplacian energy of graphs, Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.) 137(2008), 1-10.
[6] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theoret. Chim. Acta 45(1977), 79-87.
[7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz. 103(1978), 1-22.
[8] I. Gutman, The energy of a graph: Old and new results, in: Algebraic Combinatorics and Applications, (A. Betten, A. Kohnert, R. Laue and A. Wassermann, Eds.), Springer, 2001, 196-211.
[9] I. Gutman, X. Li, J. Zhang, Graph energy, in: Analysis of Complex Networks. From Biology to Linguistics, (M. Dehmer and F.Emmert-Streib, Eds.), Wiley, 2009, 145174.
[10] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414(2006), 29-37.
[11] B. J. McClelland, Properties of the latent roots of a matrix: the estimation of π electron energies, J. Chem. Phys. 54(1971), 640-643.
[12] D. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[13] B. Монar, The Laplacian spectrum of graphs, in: Graph Theory, Combinatorics, and Applications, (Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk, Eds.), Wiley, 1991, 871-898.
[14] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ. 5(1968), 199-203, in Japanese.
[15] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, Theory of Functions, Springer, Berlin, 1972.
[16] S. Radenković, I. Gutman, Total-electron energy and Laplacian energy: How far the analogy goes?, J. Serb. Chem. Soc. 72(2007), 1343-1350.
[17] M. Robbiano, R. Jiménez, Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 62(2009), 537-552.
[18] H. Wang, H. Hua, Note on Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 59(2008), 373-380.
[19] Y. S. Yoon, J. K. Kim, A relationship between bounds on the sum of squares of degrees of a graph, J. Appl. Math. \& Comput. 21(2006), 233-238.
[20] B. Zhou, I. Gutman, T. Aleksić, A Note on Laplacian Energy of Graphs, MATCH Commun. Math. Comput. Chem. 60(2008), 441-446.
[21] B. Zhou, I. Gutman, On Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 57(2007), 211-220.
[22] B. Zhou, New upper bounds for Laplacian energy, MATCH Commun. Math. Comput. Chem. 62 (2009), 553-560.

[^0]: *Corresponding author. Email addresses: fathtabar@kashanu.ac.ir (G. H. Fath-Tabar), ashrafi@kashanu.ac.ir (A. R. Ashrafi)

