A note on generalized absolute summability factors

Ekrem Savaş ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Istambul Ticaret University, Üküdar 36472, Istambul, Turkey

Received April 22, 2009; accepted November 15, 2009

Abstract. In this paper, a general theorem on $|A, \delta|_{k}$ - summability factors of infinite series has been proved under weaker conditions.
AMS subject classifications: 40F05, 40D25
Key words: absolute summability, summability factors, almost increasing sequence

1. Introduction

Rhoades and Savas [4] recently have obtained sufficient conditions for the series $\sum a_{n} \lambda_{n}$ to be absolutely summable of order k by a triangular matrix.

In this paper we generalize the result of Rhoades and Savas under weaker conditions for $|A, \delta|_{k}, k \geq 1,0 \leq \delta<1 / k$.

A positive sequence $\left\{b_{n}\right\}$ is said to be almost increasing if there exists an increasing sequence $\left\{c_{n}\right\}$ and positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$, (see, [1]). Obviously every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_{n}=e^{(-1)^{n}} n$.

Let A be a lower triangular matrix, $\left\{s_{n}\right\}$ a sequence. Then

$$
A_{n}:=\sum_{\nu=0}^{n} a_{n \nu} s_{\nu}
$$

A series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geq 1$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty \tag{1}
\end{equation*}
$$

and it is said to be summable $|A, \delta|_{k}, k \geq 1$ and $\delta \geq 0$ if (see,[2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|A_{n}-A_{n-1}\right|^{k}<\infty \tag{2}
\end{equation*}
$$

[^0]We may associate with A two lower triangular matrices \bar{A} and \hat{A} defined as follows:

$$
\bar{a}_{n \nu}=\sum_{r=\nu}^{n} a_{n r}, \quad n, \nu=0,1,2, \ldots,
$$

and

$$
\hat{a}_{n \nu}=\bar{a}_{n \nu}-\bar{a}_{n-1, \nu}, \quad n=1,2,3, \ldots
$$

With $s_{n}:=\sum_{i=0}^{n} \lambda_{i} a_{i}$.

$$
\begin{aligned}
y_{n} & :=\sum_{i=0}^{n} a_{n i} s_{i}=\sum_{i=0}^{n} a_{n i} \sum_{\nu=0}^{i} \lambda_{\nu} a_{\nu} \\
& =\sum_{\nu=0}^{n} \lambda_{\nu} a_{\nu} \sum_{i=\nu}^{n} a_{n i}=\sum_{\nu=0}^{n} \bar{a}_{n \nu} \lambda_{\nu} a_{\nu}
\end{aligned}
$$

and

$$
\begin{equation*}
Y_{n}:=y_{n}-y_{n-1}=\sum_{\nu=0}^{n}\left(\bar{a}_{n \nu}-\bar{a}_{n-1, \nu}\right) \lambda_{\nu} a_{\nu}=\sum_{\nu=0}^{n} \hat{a}_{n \nu} \lambda_{\nu} a_{\nu} . \tag{3}
\end{equation*}
$$

Theorem 1. Let A be a lower triangular matrix satisfying
(i) $\bar{a}_{n 0}=1, n=0,1, \ldots$,
(ii) $a_{n-1, \nu} \geq a_{n \nu}$ for $n \geq \nu+1$, and
(iii) $n a_{n n} \asymp O(1)$
(iv) $\sum_{\nu=1}^{n-1} a_{\nu \nu}\left|\hat{a}_{n \nu+1}\right|=O\left(a_{n n}\right)$,
(v) $\sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|=O\left(\nu^{\delta k} a_{\nu \nu}\right) \quad$ and
(vi) $\sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\hat{a}_{n \nu+1}\right|=O\left(\nu^{\delta k}\right)$.

If $\left\{X_{n}\right\}$ is an almost increasing sequence such that
(vii) $\lambda_{m} X_{m}=O(1)$,
(viii) $\sum_{n=1}^{m}\left(n X_{n}\right)\left|\Delta^{2} \lambda_{n}\right|=O(1)$, and
(ix) $\sum_{n=1}^{m} n^{\delta k} a_{n n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$, where $t_{n}:=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k}$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1,0 \leq \delta<1 / k$.

Lemma 1 (see [4]). If $\left(X_{n}\right)$ is an almost increasing sequence, then under the conditions of the theorem we have that
(i) $\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \quad$ and
(ii) $n X_{n}\left|\Delta \lambda_{n}\right|=O(1)$.

Proof. From (3) we may write

$$
\begin{aligned}
Y_{n}= & \sum_{\nu=1}^{n}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right) \nu a_{\nu} \\
= & \sum_{\nu=1}^{n}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right)\left[\sum_{r=1}^{\nu} r a_{r}-\sum_{r=1}^{\nu-1} r a_{r}\right] \\
= & \sum_{\nu=1}^{n-1} \Delta_{\nu}\left(\frac{\hat{a}_{n \nu} \lambda_{\nu}}{\nu}\right) \sum_{r=1}^{\nu} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{\nu=1}^{n} \nu a_{\nu} \\
= & \sum_{\nu=1}^{n-1}\left(\Delta_{\nu} \hat{a}_{n \nu}\right) \lambda_{\nu} \frac{\nu+1}{\nu} t_{\nu}+\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1}\left(\Delta \lambda_{\nu}\right) \frac{\nu+1}{\nu} t_{\nu} \\
& +\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \lambda_{\nu+1} \frac{1}{\nu} t_{\nu}+\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n} \\
= & T_{n 1}+T_{n 2}+T_{n 3}+T_{n 4}, \quad \text { say. }
\end{aligned}
$$

To finish the proof it is sufficient, by Minkowski's inequality, to show that

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|T_{n r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

Using Hölder's inequality and (iii),

$$
\begin{aligned}
I_{1} & :=\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 1}\right|^{k}=\sum_{n=1}^{m} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \Delta_{\nu} \hat{a}_{n \nu} \lambda_{\nu} \frac{\nu+1}{\nu} t_{\nu}\right|^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|\lambda_{\nu}\right|\left|t_{\nu}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k+k-1}\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}\right)\left(\sum_{\nu=1}^{n-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\right)^{k-1}
\end{aligned}
$$

Using the fact that, from (vii), $\left\{\lambda_{n}\right\}$ is bounded, and condition (i) of Lemma 1,
and (v)

$$
\begin{aligned}
I_{1} & =O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left|\lambda_{\nu}\right|^{k}\left|t_{\nu}\right|^{k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right| \\
& =O(1) \sum_{n=1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left(\sum_{\nu=1}^{n-1}\left|\lambda_{\nu}\right|^{k-1}\left|\lambda_{\nu}\right|\left|\Delta_{\nu} \hat{a}_{n \nu}\right|\left|t_{\nu}\right|^{k}\right) \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right|\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left|\Delta_{\nu} \hat{a}_{n \nu}\right| \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right|\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\Delta_{\nu} \hat{a}_{n \nu}\right| \\
& =O(1) \sum_{\nu=1}^{m} \nu^{\delta k}\left|\lambda_{\nu}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right|\left[\sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{r=1}^{\nu-1} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1)\left[\sum_{\nu=1}^{m-1} \Delta\left(\left|\lambda_{\nu}\right|\right) \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}+\left|\lambda_{m}\right| \sum_{r=1}^{m} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right| X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1)
\end{aligned}
$$

Using Hölder's inequality, (iii), and (iv),

$$
\begin{aligned}
I_{2}:= & \sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1}\left(\Delta \lambda_{\nu}\right) \frac{\nu+1}{\nu} t_{\nu}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\hat{a}_{n, \nu+1}\right|\left|\Delta \lambda_{\nu}\right| \frac{\nu+1}{\nu}\left|t_{\nu}\right|\right]^{k} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\hat{a}_{n, \nu+1}\right|\left|\Delta \lambda_{\nu}\right|\left|t_{\nu}\right|\right]^{k} \\
= & O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}(\nu)\left|\Delta \lambda_{\nu}\right|\left|t_{\nu}\right| a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\right]^{k} \\
= & \left.O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1} \sum_{\nu=1}^{n-1}\left(\nu\left|\Delta \lambda_{\nu}\right|\right)^{k}\left|t_{\nu}\right|^{k} a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\right] \\
& \times\left[\sum_{\nu=1}^{n-1} a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\right]^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left(\nu\left|\Delta \lambda_{\nu}\right|\right)^{k}\left|t_{\nu}\right|^{k} a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right| \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left(\nu\left|\Delta \lambda_{\nu}\right|\right)^{k-1}\left(\nu\left|\Delta \lambda_{\nu}\right|\right) a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\left|t_{\nu}\right|^{k}
\end{aligned}
$$

Conclusion (ii) of Lemma 1 implies that $\nu\left|\Delta \lambda_{\nu}\right|=O(1)$. Therefore, using (iii), (v) and (vi)

$$
\begin{aligned}
I_{2} & :=O(1) \sum_{\nu=1}^{m} \nu\left|\Delta \lambda_{\nu}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1}\left|\hat{a}_{\nu \nu+1}\right| \\
& =O(1) \sum_{\nu=1}^{m} \nu\left|\Delta \lambda_{\nu}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\hat{a}_{n, \nu+1}\right| .
\end{aligned}
$$

Therefore,

$$
\left.I_{2}:=O 1\right) \sum_{\nu=1}^{m} \nu^{\delta k} \nu\left|\Delta \lambda_{\nu}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k}
$$

Using summation by parts and (ix),

$$
\begin{aligned}
I_{2} & =O(1) \sum_{\nu=1}^{m} \nu\left|\Delta \lambda_{\nu}\right|\left[\sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{r=1}^{\nu-1} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \Delta \lambda_{\nu}\right)\right| X_{\nu}+O(1)
\end{aligned}
$$

But

$$
\Delta\left(\nu \Delta \lambda_{\nu}\right)=\nu \Delta \lambda_{\nu}-(\nu+1) \Delta \lambda_{\nu+1}=\nu \Delta^{2} \lambda_{\nu}-\Delta \lambda_{\nu+1}
$$

Using (viii) and property (i) from Lemma 1, and the fact that $\left\{X_{n}\right\}$ is almost increasing,

$$
I_{2}=O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta^{2} \lambda_{\nu}\right| X_{\nu}+O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu+1}\right| X_{\nu+1}=O(1)
$$

Using (iii), Hölder's inequality, (iv), summation by parts, property (i) of Lemma 1, (vi), (vii) and (ix)

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 3}\right|^{k} & =\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{\nu=1}^{n-1} \hat{a}_{n, \nu+1} \lambda_{\nu+1} \frac{1}{\nu} t_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right| \frac{\hat{a}_{n, \nu+1}}{\nu}\left|t_{\nu}\right|\right]^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|\left|\hat{a}_{n, \nu+1}\right|\left|t_{\nu}\right| a_{\nu \nu}\right]^{k}
\end{aligned}
$$

$$
\begin{aligned}
&= O(1) \sum_{n=2}^{m+1} n^{\delta k+k-1}\left[\sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|^{k} a_{\nu \nu}\left|t_{\nu}\right|^{k}\left|\hat{a}_{n, \nu+1}\right|\right] \\
& \times\left[\sum_{\nu=1}^{n-1} a_{\nu \nu}\left|\hat{a}_{n, \nu+1}\right|\right]^{k-1} \\
&= O(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{\nu=1}^{n-1}\left|\lambda_{\nu+1}\right|^{k-1}\left|\lambda_{\nu+1}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k}\left|\hat{a}_{n, \nu+1}\right| \\
&= O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu+1}\right|\left|t_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\hat{a}_{n, \nu+1}\right| \\
&= O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu+1}\right| a_{\nu \nu}\left|t_{\nu}\right|^{k} \nu^{\delta k} \\
&= O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu+1}\right|\left[\sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}-\sum_{r=1}^{\nu-1} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
&= O(1)\left[\sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu+1}\right| \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}+\left|\lambda_{m+1}\right| \sum_{r=1}^{\nu} a_{r r}\left|t_{r}\right|^{k} r^{\delta k}\right] \\
&= O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu+1}\right| X_{\nu}+O(1)\left|\lambda_{\nu+1}\right| X_{m} \\
&=O(1) .
\end{aligned}
$$

Finally, using (iii), summation by parts, property (i) of Lemma 1 and (vii),

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 4}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k+k-1}\left|\frac{(n+1) a_{n n} \lambda_{n} t_{n}}{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k+k-1}\left|a_{n n}\right|^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k}\left(n a_{n n}\right)^{k-1} a_{n n}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k} a_{n n}\left|\lambda_{n}\right|\left|t_{n}\right|^{k}
\end{aligned}
$$

as in the proof of I_{1}.
Setting $\delta=0$ in the theorem yields the following corollary.
Corollary 1. Let A be a triangle satisfying conditions (i)-(iv) of Theorem 1 and let $\left\{X_{n}\right\}$ be an almost increasing sequence satisfying conditions (vii)-(viii). If
(ix) $\sum_{n=1}^{m} a_{n n}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|A|_{k}, k \geq 1$.

Corollary 2. Let $\left\{p_{n}\right\}$ be a positive sequence such that $P_{n}:=\sum_{k=0}^{n} p_{k} \rightarrow \infty$, and satisfies
(i) $n p_{n} \asymp O\left(P_{n}\right)$,
(ii) $\sum_{n=\nu+1}^{m+1} n^{\delta k}\left|\frac{p_{n}}{P_{n} P_{n-1}}\right|=O\left(\frac{\nu^{\delta k}}{P_{\nu}}\right)$.

If $\left\{X_{n}\right\}$ is an almost increasing sequence such that
(iii) $\lambda_{m} X_{m}=O(1)$,
(iv) $\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1), \quad$ and
(v) $\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}\right|^{k}=O\left(X_{m}\right)$,
then the series $\sum a_{n} \lambda_{n}$ is summable $|\bar{N}, p, \delta|_{k}, k \geq 1$ for $0 \leq \delta<1 / k$.
Proof. Conditions (iii) and (iv) of Corollary 2 are conditions (vii) and (viii) of Theorem 1, respectively.

Conditions (i), (ii) and (iv) of Theorem 1 are automatically satisfied for any weighted mean method. Condition (iii) and (ix) of Theorem 1 become conditions (i) and (v) of Corollary 2 and conditions (v) and (vi) of Theorem 1 become condition (ii) of Corollary 2.

Acknowledgement

The author wishes to thank the referees for their careful reading of the manuscript and their helpful suggestions.

References

[1] S. Alijančıć, D. Arendelović, O-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S) 36(1977), 5-22.
[2] T. M. Fleet, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 3(1957), 113-141.
[3] B. E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Math. Anal. Appl. 118(1993), 71-75.
[4] B. E. Rhoades, E. Savaş, A note on absolute summability factors, Periodica Math. Hung. 51(2005), 53-60.
[5] B. E. Rhoades, E. Savas, On $|A|_{k}$ summability factors, Acta Math. Hung. 112(2006), 15-23.

[^0]: *Corresponding author. Email address: ekremsavas@yahoo.com (E. Savaş)
 http://www.mathos.hr/mc
 © 2010 Department of Mathematics, University of Osijek

