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A note on generalized absolute summability factors
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Abstract. In this paper, a general theorem on |A, δ|k- summability factors of infinite series
has been proved under weaker conditions.
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1. Introduction

Rhoades and Savas [4] recently have obtained sufficient conditions for the series∑
anλn to be absolutely summable of order k by a triangular matrix.

In this paper we generalize the result of Rhoades and Savas under weaker condi-
tions for |A, δ|k, k ≥ 1, 0 ≤ δ < 1/k.

A positive sequence {bn} is said to be almost increasing if there exists an in-
creasing sequence {cn} and positive constants A and B such that Acn ≤ bn ≤ Bcn,
(see, [1]). Obviously every increasing sequence is almost increasing. However, the
converse need not be true as can be seen by taking the example, say bn = e(−1)n

n.
Let A be a lower triangular matrix, {sn} a sequence. Then

An :=
n∑

ν=0

anνsν .

A series
∑

an is said to be summable |A|k, k ≥ 1 if

∞∑
n=1

nk−1|An −An−1|k < ∞. (1)

and it is said to be summable |A, δ|k, k ≥ 1 and δ ≥ 0 if (see,[2])

∞∑
n=1

nδk+k−1|An −An−1|k < ∞. (2)
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We may associate with A two lower triangular matrices A and Â defined as
follows:

ānν =
n∑

r=ν

anr, n, ν = 0, 1, 2, . . . ,

and
ânν = ānν − ān−1,ν , n = 1, 2, 3, . . . .

With sn :=
∑n

i=0 λiai.

yn :=
n∑

i=0

anisi =
n∑

i=0

ani

i∑
ν=0

λνaν

=
n∑

ν=0

λνaν

n∑

i=ν

ani =
n∑

ν=0

ānνλνaν

and

Yn := yn − yn−1 =
n∑

ν=0

(ānν − ān−1,ν)λνaν =
n∑

ν=0

ânνλνaν . (3)

Theorem 1. Let A be a lower triangular matrix satisfying

(i) ān0 = 1, n = 0, 1, . . . ,,

(ii) an−1,ν ≥ anν for n ≥ ν + 1, and

(iii) nann ³ O(1)

(iv)
n−1∑
ν=1

aνν |ânν+1| = O
(
ann

)
,

(v)
m+1∑

n=ν+1

nδk|∆ν ânν | = O
(
νδkaνν

)
and

(vi)
m+1∑

n=ν+1

nδk|ânν+1| = O
(
νδk

)
.

If {Xn} is an almost increasing sequence such that

(vii) λmXm = O(1),

(viii)
m∑

n=1

(nXn)|∆2λn| = O(1), and

(ix)
m∑

n=1

nδkann|tn|k = O(Xm), where tn :=
1

n + 1

n∑

k=1

kak,

then the series
∑

anλn is summable |A, δ|k, k ≥ 1, 0 ≤ δ < 1/k.
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Lemma 1 (see [4]). If (Xn) is an almost increasing sequence, then under the con-
ditions of the theorem we have that

(i)
∞∑

n=1

Xn|∆λn| < ∞ and

(ii) nXn|∆λn| = O(1).

Proof. From (3) we may write

Yn =
n∑

ν=1

( ânνλν

ν

)
νaν

=
n∑

ν=1

( ânνλν

ν

)[ ν∑
r=1

rar −
ν−1∑
r=1

rar

]

=
n−1∑
ν=1

∆ν

( ânνλν

ν

) ν∑
r=1

rar +
ânnλn

n

n∑
ν=1

νaν

=
n−1∑
ν=1

(∆ν ânν)λν
ν + 1

ν
tν +

n−1∑
ν=1

ân,ν+1(∆λν)
ν + 1

ν
tν

+
n−1∑
ν=1

ân,ν+1λν+1
1
ν

tν +
(n + 1)annλntn

n

= Tn1 + Tn2 + Tn3 + Tn4, say.

To finish the proof it is sufficient, by Minkowski’s inequality, to show that

∞∑
n=1

nδk+k−1|Tnr|k < ∞, for r = 1, 2, 3, 4.

Using Hölder’s inequality and (iii),

I1 :=
m∑

n=1

nδk+k−1|Tn1|k =
m∑

n=1

nδk+k−1
∣∣∣

n−1∑
ν=1

∆ν ânνλν
ν + 1

ν
tν

∣∣∣
k

= O(1)
m+1∑
n=1

nδk+k−1
( n−1∑

ν=1

|∆ν ânν ||λν ||tν |
)k

= O(1)
m+1∑
n=1

nδk+k−1
( n−1∑

ν=1

|∆ν ânν ||λν |k|tν |k
)( n−1∑

ν=1

|∆ν ânν |
)k−1

.

Using the fact that, from (vii), {λn} is bounded, and condition (i) of Lemma 1,
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and (v)

I1 = O(1)
m+1∑
n=1

nδk(nann)k−1
n−1∑
ν=1

|λν |k|tν |k|∆ν ânν |

= O(1)
m+1∑
n=1

nδk(nann)k−1
( n−1∑

ν=1

|λν |k−1|λν ||∆ν ânν ||tν |k
)

= O(1)
m∑

ν=1

|λν ||tν |k
m+1∑

n=ν+1

nδk(nann)k−1|∆ν ânν |

= O(1)
m∑

ν=1

|λν ||tν |k
m+1∑

n=ν+1

nδk|∆ν ânν |

= O(1)
m∑

ν=1

νδk|λν |aνν |tν |k

= O(1)
m∑

ν=1

|λν |
[ ν∑

r=1

arr|tr|krδk −
ν−1∑
r=1

arr|tr|krδk
]

= O(1)
[ m−1∑

ν=1

∆(|λν |)
ν∑

r=1

arr|tr|krδk + |λm|
m∑

r=1

arr|tr|krδk
]

= O(1)
m−1∑
ν=1

|∆λν |Xν + O(1)|λm|Xm

= O(1).

Using Hölder’s inequality, (iii), and (iv),

I2 :=
m+1∑
n=2

nδk+k−1|Tn2|k =
m+1∑
n=2

nδk+k−1
∣∣∣

n−1∑
ν=1

ân,ν+1(∆λν)
ν + 1

ν
tν

∣∣∣
k

≤
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

|ân,ν+1||∆λν |ν + 1
ν

|tν |
]k

= O(1)
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

|ân,ν+1||∆λν ||tν |
]k

= O(1)
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

(ν)|∆λν ||tν |aνν |ân,ν+1|
]k

= O(1)
m+1∑
n=2

nδk+k−1
n−1∑
ν=1

(ν|∆λν |)k|tν |kaνν |ân,ν+1|
]

×
[ n−1∑

ν=1

aνν |ân,ν+1|
]k−1
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= O(1)
m+1∑
n=2

nδk(nann)k−1
n−1∑
ν=1

(ν|∆λν |)k|tν |kaνν |ân,ν+1|

= O(1)
m+1∑
n=2

nδk(nann)k−1
n−1∑
ν=1

(ν|∆λν |)k−1(ν|∆λν |)aνν |ân,ν+1||tν |k

Conclusion (ii) of Lemma 1 implies that ν|∆λν | = O(1). Therefore, using (iii),
(v) and (vi)

I2 := O(1)
m∑

ν=1

ν|∆λν |aνν |tν |k
m+1∑

n=ν+1

nδk(nann)k−1|âνν+1|

= O(1)
m∑

ν=1

ν|∆λν |aνν |tν |k
m+1∑

n=ν+1

nδk|ân,ν+1|.

Therefore,

I2 := O1)
m∑

ν=1

νδkν|∆λν |aνν |tν |k.

Using summation by parts and (ix),

I2 = O(1)
m∑

ν=1

ν|∆λν |
[ ν∑

r=1

arr|tr|krδk −
ν−1∑
r=1

arr|tr|krδk
]

= O(1)
m−1∑
ν=1

|∆(ν∆λν)|Xν + O(1).

But
∆(ν∆λν) = ν∆λν − (ν + 1)∆λν+1 = ν∆2λν −∆λν+1.

Using (viii) and property (i) from Lemma 1, and the fact that {Xn} is almost
increasing,

I2 = O(1)
m−1∑
ν=1

ν|∆2λν |Xν + O(1)
m−1∑
ν=1

|∆λν+1|Xν+1 = O(1).

Using (iii), Hölder’s inequality, (iv), summation by parts, property (i) of Lemma 1,
(vi), (vii) and (ix)

m+1∑
n=2

nδk+k−1|Tn3|k =
m+1∑
n=2

nδk+k−1
∣∣∣

n−1∑
ν=1

ân,ν+1λν+1
1
ν

tν

∣∣∣
k

≤
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

|λν+1| ân,ν+1

ν
|tν |

]k

= O(1)
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

|λν+1||ân,ν+1||tν |aνν

]k
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= O(1)
m+1∑
n=2

nδk+k−1
[ n−1∑

ν=1

|λν+1|kaνν |tν |k|ân,ν+1|
]

×
[ n−1∑

ν=1

aνν |ân,ν+1|
]k−1

= O(1)
m+1∑
n=2

nδk(nann)k−1
n−1∑
ν=1

|λν+1|k−1|λν+1|aνν |tν |k|ân,ν+1|

= O(1)
m∑

ν=1

|λν+1||tν |k
m+1∑

n=ν+1

nδk|ân,ν+1|

= O(1)
m∑

ν=1

|λν+1|aνν |tν |kνδk

= O(1)
m∑

ν=1

|λν+1|
[ ν∑

r=1

arr|tr|krδk −
ν−1∑
r=1

arr|tr|krδk
]

= O(1)
[ m−1∑

ν=1

|∆λν+1|
ν∑

r=1

arr|tr|krδk + |λm+1|
ν∑

r=1

arr|tr|krδk
]

= O(1)
m−1∑
ν=1

|∆λν+1|Xν + O(1)|λν+1|Xm

= O(1).

Finally, using (iii), summation by parts, property (i) of Lemma 1 and (vii),

m∑
n=1

nδk+k−1|Tn4|k =
m∑

n=1

nδk+k−1
∣∣∣ (n + 1)annλntn

n

∣∣∣
k

= O(1)
m∑

n=1

nδk+k−1|ann|k|λn|k|tn|k

= O(1)
m∑

n=1

nδk(nann)k−1ann|λn|k−1|λn||tn|k

= O(1)
m∑

n=1

nδkann|λn||tn|k,

as in the proof of I1.

Setting δ = 0 in the theorem yields the following corollary.

Corollary 1. Let A be a triangle satisfying conditions (i)-(iv) of Theorem 1 and let
{Xn} be an almost increasing sequence satisfying conditions (vii)-(viii). If

(ix)
∑m

n=1 ann|tn|k = O(Xm),

then the series
∑

anλn is summable |A|k, k ≥ 1.
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Corollary 2. Let {pn} be a positive sequence such that
Pn :=

∑n
k=0 pk →∞, and satisfies

(i) npn ³ O(Pn),

(ii)
m+1∑

n=ν+1

nδk| pn

PnPn−1
| = O

(νδk

Pν

)
.

If {Xn} is an almost increasing sequence such that

(iii) λmXm = O(1),

(iv)
m∑

n=1

nXn|∆2λn| = O(1), and

(v)
∞∑

n=1

nδk−1|tn|k = O(Xm),

then the series
∑

anλn is summable |N̄ , p, δ|k, k ≥ 1 for 0 ≤ δ < 1/k.

Proof. Conditions (iii) and (iv) of Corollary 2 are conditions (vii) and (viii) of
Theorem 1, respectively.

Conditions (i), (ii) and (iv) of Theorem 1 are automatically satisfied for any
weighted mean method. Condition (iii) and (ix) of Theorem 1 become conditions (i)
and (v) of Corollary 2 and conditions (v) and (vi) of Theorem 1 become condition
(ii) of Corollary 2.
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