# The Euler characteristic of the symmetric product of a finite CW-complex* 

Kostadin Trenčevski ${ }^{1, \dagger}$<br>${ }^{1}$ Institute of Mathematics, Ss. Cyril and Methodius University, P. O. Box 162, 1000 Skopje, Macedonia

Received January 14, 2009; accepted September 3, 2009


#### Abstract

In this paper it is first shown that if $M$ is a 2-dimensional surface, then $M^{(m)}$ is orientable if and only if $M$ is orientable. Using the Macdonald's result [5] the Betti numbers of $M^{(m)}$ are expressed explicitely, the Euler characteristic is found and it depends only on $m$ and the Euler characteristic of $M$. Moreover, the formula for the Euler characteristic is proved alternatively also without using the Macdonalds's results. AMS subject classifications: 57N65 Key words: symmetric products of manifolds, homology, Euler characteristic, orientability


## 1. Some preliminaries about symmetric products of manifolds

Let $M$ be an arbitrary set and $m$ a positive integer. In the $m$-fold Cartesian product $M^{m}$ we define a relation $\approx$ such that

$$
\left(x_{1}, \cdots, x_{m}\right) \approx\left(y_{1}, \cdots, y_{m}\right) \Leftrightarrow
$$

there exists a permutation $\theta:\{1,2, \cdots, m\} \rightarrow\{1,2, \cdots, m\}$ such that $y_{i}=x_{\theta(i)}$, $(1 \leq i \leq m)$.

This is a relation of equivalence and the class represented by $\left(x_{1}, \cdots, x_{m}\right)$ will be denoted by $\left[x_{1}, \cdots, x_{m}\right]$ and the set $M^{m} / \approx$ will be denoted by $M^{(m)}$. The set $M^{(m)}$ is called a symmetric product of $M$. Some authors call it a permutation product of $M$.

If $M$ is a topological space, then $M^{(m)}$ is also a topological space. The space $M^{(m)}$ was introduced quite early [9], and it was studied in $[8,4,7,1,10]$, and in the Ph.D. thesis of Wagner [17]. Some recent results are obtained in [16, 2, 3, 11, 12]. If $M$ is an arbitrary connected manifold and $m>1$, then it is proved in [9] that

$$
\begin{equation*}
\pi_{1}\left(M^{(m)}\right) \cong H_{1}(M, \mathbb{Z}) \tag{1}
\end{equation*}
$$

Another important result [17] states that $\left(\mathbb{R}^{n}\right)^{(m)}$ is a manifold only for $n=2$. If $n=2$, then $\left(\mathbb{R}^{2}\right)^{(m)}=\mathbb{C}^{(m)}$ is homeomorphic to $\mathbb{C}^{m}$. Indeed, using that $\mathbb{C}$ is an algebraically closed field, it is obvious that the map $\varphi: \mathbb{C}^{(m)} \rightarrow \mathbb{C}^{m}$ defined by

$$
\varphi\left[z_{1}, \cdots, z_{m}\right]=\left(\sigma_{1}\left(z_{1}, \cdots, z_{m}\right), \sigma_{2}\left(z_{1}, \cdots, z_{m}\right), \cdots, \sigma_{m}\left(z_{1}, \cdots, z_{m}\right)\right)
$$

[^0]is a bijection, where $\sigma_{i}(1 \leq i \leq m)$ is the $i$-th symmetric function of $z_{1}, \cdots, z_{m}$, i.e.
$$
\sigma_{i}\left(z_{1}, \cdots, z_{m}\right)=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} z_{j_{1}} \cdot z_{j_{2}} \cdots z_{j_{i}}
$$

The map $\varphi$ is also a homeomorphism. If $M$ is a 1 -dimensional complex manifold, then $M^{(m)}$ is a complex manifold, too. For example, if $M$ is a 2 -sphere, i.e. a complex manifold $\mathbb{C} P^{1}$, then $M^{(m)}$ is the projective complex space $\mathbb{C} P^{m}$. Using the symmetric products it is easy to see how $M^{(m)}=\mathbb{C} P^{m}$ decomposes into disjoint cells $\mathbb{C}^{0}, \mathbb{C}^{1}, \cdots, \mathbb{C}^{m}$. Let $\xi \in M$. Then we define $\left[x_{1}, \cdots, x_{m}\right] \in M_{i}$ if exactly $i$ of the elements $x_{1}, \cdots, x_{m}$ are equal to $\xi$. Thus

$$
\begin{aligned}
M^{(m)} & =M_{0} \cup M_{1} \cup \cdots \cup M_{m}=(M \backslash \xi)^{(m)} \cup(M \backslash \xi)^{(m-1)} \cup \cdots \cup(M \backslash \xi)^{(0)} \\
& =\mathbb{C}^{(m)} \cup \mathbb{C}^{(m-1)} \cup \cdots \cup \mathbb{C}^{(0)}=\mathbb{C}^{m} \cup \mathbb{C}^{m-1} \cup \cdots \cup \mathbb{C}^{0}
\end{aligned}
$$

This theory about symmetric products has an important role in the theory of topological commutative vector valued groups $[14,15,13]$.

The Poincaré polynomial of a symmetric product of a compact polyhedron is given in [5]. If $B_{0}, B_{1}, B_{2}, \cdots$ are the Betti numbers of a space $M$, then the Poincaré polynomial of the $m$ th symmetric product of $M$ is the coefficient in front of $t^{m}$ in the power series expansion of

$$
\begin{equation*}
\frac{(1+x t)^{B_{1}}\left(1+x^{3} t\right)^{B_{3}} \cdots}{(1-t)^{B_{0}}\left(1-x^{2} t\right)^{B_{2}}\left(1-x^{4} t\right)^{B_{4}} \cdots} \tag{2}
\end{equation*}
$$

Moreover, the homology of the symmetric products has been determined completely by J.Milgram [6].

In this paper some consequences of the results of Macdonald are given and an alternative proof for the expression of the Euler characteristic of the symmetric product of $M$ is given, too.

## 2. Some conclusions about the symmetric products

First, we prove the following theorem which gives a necessary and sufficient condition for the orientability of a 2-dimensional surface.

Theorem 1. Let $M$ be a 2-dimensional manifold. The manifold $M^{(m)}$ is orientable if and only if $M$ is orientable.

Proof. If $M$ is orientable, then $M$ is a complex manifold. Thus, $M^{(m)}$ is also a complex manifold and hence $M^{(m)}$ is orientable.

Assume that $M$ is non-orientable. Then there exist a non-orientable open subset $T$ of $M$ and an open subset $U$ which is homeomorphic to $\mathbb{R}^{2}$, such that $T \cap U=\emptyset$. Then $M^{(m)}$ contains the non-orientable submanifold $T \times U^{(m-1)} \cong T \times \mathbb{R}^{2 m-2}$ with the same dimension and hence $M^{(m)}$ is not orientable.

For example, it is known that $\left(\mathbb{R} P^{2}\right)^{(m)}=\mathbb{R} P^{2 m}$, and both spaces $\mathbb{R} P^{2}$ and $\mathbb{R} P^{2 m}$ are not orientable.

Let $M$ be a finite CW complex and let us denote by

$$
B_{i}=\operatorname{dim}\left(H_{i}(M, \mathbb{Z})\right), \quad i=0,1,2, \cdots, n=\operatorname{dim} M
$$

and let us denote the Betti numbers of the CW complex $M^{(m)}$ by

$$
B_{i}^{(m)}=\operatorname{dim}\left(H_{i}\left(M^{(m)}, \mathbb{Z}\right)\right), \quad i=0,1,2, \cdots, n m .
$$

As a direct consequence of the result of Macdonald [5] we have the following two theorems.

Theorem 2. The Betti numbers $B_{i}^{(m)} \quad i=0,1,2, \cdots, n m$, are given explicitly by

$$
\begin{align*}
B_{i}^{(m)}= & (-1)^{i} \sum_{\alpha_{0}, \cdots, \alpha_{n}}\binom{\alpha_{0}-1+B_{0}}{\alpha_{0}} \cdot\binom{\alpha_{1}-1-B_{1}}{\alpha_{1}} \\
& \times\binom{\alpha_{2}-1+B_{2}}{\alpha_{2}} \cdots\binom{\alpha_{n}-1+(-1)^{n} B_{n}}{\alpha_{n}}, \tag{3}
\end{align*}
$$

where the summation over $\alpha_{0}, \cdots, \alpha_{n}$ is under the following restrictions

$$
\begin{equation*}
0 \leq \alpha_{0}, \cdots, \alpha_{n} \leq m, \alpha_{0}+\cdots+\alpha_{n}=m, \alpha_{1}+2 \alpha_{2}+\cdots+n \alpha_{n}=i . \tag{4}
\end{equation*}
$$

Proof. Using the equality

$$
\binom{\alpha-1+B}{\alpha}=(-1)^{\alpha}\binom{-B}{\alpha},
$$

for a positive integer $\alpha$ and integer $B$, we should prove that

$$
B_{i}^{(m)}=(-1)^{i+m} \sum_{\alpha_{0}, \cdots, \alpha_{n}}\binom{-B_{0}}{\alpha_{0}} \cdot\binom{B_{1}}{\alpha_{1}} \cdot\binom{-B_{2}}{\alpha_{2}} \cdots\binom{(-1)^{n+1} B_{n}}{\alpha_{n}},
$$

where the summation over $\alpha_{1}, \cdots, \alpha_{n}$ is given by (4). Since

$$
\frac{(1+x t)^{B_{1}}\left(1+x^{3} t\right)^{B_{3}} \cdots}{(1-t)^{B_{0}}\left(1-x^{2} t\right)^{B_{2}}\left(1-x^{4} t\right)^{B_{4}} \cdots}=\sum_{m=0}^{\infty} \sum_{i=0}^{m n} B_{i}^{(m)} x^{i} t^{m}
$$

it is sufficient to prove that

$$
\begin{aligned}
& (1-t)^{-B_{0}}(1+x t)^{B_{1}}\left(1-x^{2} t\right)^{-B_{2}}\left(1+x^{3} t\right)^{B_{3}}\left(1-x^{4} t\right)^{-B_{4}} \ldots \\
& \quad=\sum_{m=0}^{\infty} \sum_{i=0}^{m n} \sum_{\alpha_{0}, \cdots, \alpha_{n}}(-1)^{i+m} x^{i} t^{m} \sum_{\alpha_{0}, \cdots, \alpha_{n}}\binom{-B_{0}}{\alpha_{0}} \cdot\binom{B_{1}}{\alpha_{1}} \\
& \quad \times\binom{-B_{2}}{\alpha_{2}} \cdots\binom{(-1)^{n+1} B_{n}}{\alpha_{n}},
\end{aligned}
$$

where the summation over $\alpha_{1}, \cdots, \alpha_{n}$ is given by (4). Notice that $(-1)^{i+m}$ $=(-1)^{\alpha_{0}+\alpha_{2}+\alpha_{4}+\cdots}$. Applying the binomial formula for the powers of the lefthand side and choosing the summand $(-1)^{\alpha_{0}}\binom{-B_{0}}{\alpha_{0}} t^{\alpha_{0}}$ from $(1-t)^{-B_{0}},\binom{B_{1}}{\alpha_{1}} t^{\alpha_{1}} x^{\alpha_{1}}$ from $(1+x t)^{B_{1}},(-1)^{\alpha_{2}}\binom{-B_{2}}{\alpha_{2}} t^{\alpha_{2}} x^{2 \alpha_{2}}$ from $\left(1-x^{2} t\right)^{-B_{2}}$ and so on, and sum over $\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots$, according to (4), we obtain that the previous equality is true.

Theorem 3. Euler characteristics of $M$ and the symmetric product $M^{(m)}$ are related by

$$
\begin{equation*}
\chi\left(M^{(m)}\right)=\binom{m+\chi(M)-1}{m} . \tag{5}
\end{equation*}
$$

Proof.
$\sum_{i=0}^{n m}(-1)^{i} B_{i}^{(m)}=\sum_{i=0}^{n m} \sum_{\alpha_{0}, \cdots, \alpha_{n}}(-1)^{\alpha_{0}}\binom{-B_{0}}{\alpha_{0}}(-1)^{\alpha_{1}}\binom{B_{1}}{\alpha_{1}} \cdots(-1)^{\alpha_{n}}\binom{(-1)^{n+1} B_{n}}{\alpha_{n}}$,
where the summation over $\alpha_{0}, \cdots, \alpha_{n}$ satisfies conditions (4). Since $\alpha_{1}+2 \alpha_{2}+\cdots+$ $n \alpha_{n}=i$ and we sum over $i$, using that $\alpha_{0}+\cdots+\alpha_{n}=m$ we obtain

$$
\begin{aligned}
\chi\left(M^{(m)}\right) & =\sum_{i=0}^{n m}(-1)^{i} B_{i}^{(m)}=\sum_{\alpha_{0}+\cdots+\alpha_{n}=m}(-1)^{m}\binom{-B_{0}}{\alpha_{0}}\binom{B_{1}}{\alpha_{1}} \cdots\binom{(-1)^{n+1} B_{n}}{\alpha_{n}} \\
& =(-1)^{m}\binom{-B_{0}+B_{1}-B_{2}+\cdots+(-1)^{n+1} B_{n}}{m} \\
& =(-1)^{m}\binom{-\chi(M)}{m}=\binom{m+\chi(M)-1}{m} .
\end{aligned}
$$

Notice that Theorem 3 also follows from (2). Indeed if we put $x=-1$, then the Euler characteristic of $M^{(m)}$ is the coefficient in front of $t^{m}$. Indeed, the expression from (2) for $x=-1$ becomes

$$
\begin{aligned}
(1-t)^{-B_{0}}(1-t)^{B_{1}}(1-t)^{-B_{2}}(1-t)^{B_{3}} \cdots & =(1-t)^{-\chi(M)}=\sum_{m=0}^{\infty}(-1)^{m} t^{m}\binom{-\chi(M)}{m} \\
& =\sum_{m=0}^{\infty} t^{m}\binom{m+\chi(M)-1}{m}
\end{aligned}
$$

and hence the proof of Theorem 3 follows.
Theorem 4. If $M$ is a compact $C W$ complex such that $\chi(M)=0$, then $M^{(m)}$ cannot be decomposed into cells of type $\mathbb{C}^{i}$.

Proof. If $\chi(M)=0$, then $\chi\left(M^{(m)}\right)=0$. If $M^{(m)}$ can be decomposed into cells of type $\mathbb{C}^{i}$, then its Euler characteristic should be a positive number, which contradicts to $\chi\left(M^{(m)}\right)=0$.

Notice that if $M$ is a torus, then it is a complex manifold, but its symmetric product cannot be decomposed into complex cells $\mathbb{C}^{0}, \mathbb{C}, \mathbb{C}^{2}, \cdots$

## 3. Direct proof of the Theorem 3

In this section we present a direct proof of Theorem 3, without using the Macdonald's results.

Here Euler characteristic $\chi$ will denote the number of even dimensional cells of type $\mathbb{R}^{i}$ minus the number of odd dimensional cells of the same type where all of the cells are disjoint.
Proof. Notice that (5) is trivially satisfied for $m=1$, because $M^{(1)}=M$. So, without loss of generality, in the proof we assume that $m \geq 2$. First, let us prove formula (5) for the cells $C=\mathbb{R}^{n}$. The proof is by induction of $n$. If $n=0$, i.e. $C$ is a point, then $C^{(m)}$ is also a point, and (5) is true because $\chi(C)=\chi\left(C^{(m)}\right)=1$. Further, if $n=1$, i.e. $C=\mathbb{R}$, then according to [17], $C^{(m)}$ is homeomorphic to the half space $H^{m}$ and (5) holds because $\chi(C)=-1$ and $\chi\left(C^{(m)}\right)=0$. If $C=\mathbb{R}^{2}$, then $C^{(m)}=\mathbb{R}^{2 m}$ and (5) is true, because $\chi(C)=\chi\left(C^{(m)}\right)=1$.

Let us assume that $n \geq 3$. We should prove that $\chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)$ is equal to 0 if $n$ is an odd number and it is 1 if $n$ is an even number, for $m>1$. In all calculations we will neglect all sets whose Euler characteristic is 0 according to the inductive assumption.

Assume that $n=2 k+1$ and the statement is true for $2 k$. We consider the space $\mathbb{R}^{n}$ as a disjoint union of a hyperplane $\Sigma$ and the corresponding two open half spaces $\Sigma_{1}$ and $\Sigma_{2}$. We prove that $\chi\left(\left(\mathbb{R}^{2 k+1}\right)^{(m)}\right)=0$ by induction of $m$. Assume that it is true for $2,3, \cdots, m-1$. According to the inductive assumption, it is sufficient to consider only those cells where only one point, $m$ points or no points are chosen in $\Sigma_{1}$ (also $\Sigma_{2}$ ). But if $m$ points are chosen in $\Sigma_{1}\left(\right.$ resp. $\left.\Sigma_{2}\right)$, then in $\Sigma_{2}\left(\right.$ resp. $\left.\Sigma_{1}\right)$ there is no one chosen point. Hence there we should consider only these six cases: 1) all points are chosen from $\left.\Sigma_{1}, 2\right)$ all points are chosen from $\Sigma_{2}, 3$ ) all points are chosen from $\Sigma, 4)$ one point is chosen from $\Sigma_{1}$, one point from $\Sigma_{2}$ and the rest $m-2$ points are chosen from $\Sigma, 5$ ) one point is chosen from $\Sigma_{1}$ and the rest $m-1$ points are chosen from $\Sigma, 6$ ) one point is chosen from $\Sigma_{2}$ and the rest $m-1$ points are chosen from $\Sigma$. Using the inductive assumption for $n-1=\operatorname{dim} \Sigma$, for the Euler characteristic of $\left(\mathbb{R}^{n}\right)^{(m)}$ we obtain the equality

$$
\begin{aligned}
\chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)= & \chi\left(\Sigma_{1}^{(m)}\right)+\chi\left(\Sigma_{2}^{(m)}\right)+\chi\left(\Sigma^{(m)}\right)+\chi\left(\Sigma_{1}\right) \times \chi\left(\Sigma_{2}\right) \times \chi\left(\Sigma^{(m-2)}\right) \\
& +\chi\left(\Sigma_{1}\right) \times \chi\left(\Sigma^{(m-1)}\right)+\chi\left(\Sigma_{2}\right) \times \chi\left(\Sigma^{(m-1)}\right) \\
= & 2 \chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)+1+1-1-1
\end{aligned}
$$

and hence we obtain $\chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)=0$.
Assume that $n=2 k$ and the statement is true for $2 k-1$. We consider the space $\mathbb{R}^{n}$ as a disjoint union of a hyperplane $\Sigma$ and two open half spaces $\Sigma_{1}$ and $\Sigma_{2}$ as in the previous case. We prove that $\chi\left(\left(\mathbb{R}^{2 k}\right)^{(m)}\right)=1$ by induction of $m$. Assume that it is true for $2,3, \cdots, m-1$. According to the inductive assumption, it is sufficient to consider only those cells where one point or no points are chosen in $\Sigma$. Hence we
obtain the following equality

$$
\begin{aligned}
\chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right) & =\sum_{i=0}^{m} \chi\left(\Sigma_{1}^{(i)}\right) \cdot \chi\left(\Sigma_{2}^{(m-i)}\right)+\sum_{i=0}^{m-1} \chi\left(\Sigma_{1}^{(i)}\right) \cdot \chi\left(\Sigma_{2}^{(m-1-i)}\right) \cdot \chi(\Sigma) \\
& =2 \chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)+(m-1)+m(-1)^{2 k-1}=2 \chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)-1,
\end{aligned}
$$

and hence $\chi\left(\left(\mathbb{R}^{n}\right)^{(m)}\right)=1$.
To complete the proof it is sufficient to prove that if (5) is true for arbitrary $m$ and disjoint sets $X_{1}$ and $X_{2}$ of cells of the CW complex $M$, then formula (5) is true for $X_{1} \cup X_{2}$. Let $\chi\left(X_{1}\right)=p, \chi\left(X_{2}\right)=q$ and assume that

$$
\begin{aligned}
& \chi\left(X_{1}^{(i)}\right)=\binom{i+p-1}{i} \quad \text { for } \quad i=0,1,2, \cdots, \\
& \chi\left(X_{2}^{(i)}\right)=\binom{i+q-1}{i} \quad \text { for } \quad i=0,1,2, \cdots .
\end{aligned}
$$

Then

$$
\begin{aligned}
\chi\left(\left(X_{1} \cup X_{2}\right)^{(m)}\right) & =\chi\left[X_{1}^{(m)} \cup\left(X_{1}^{(m-1)} \times X_{2}\right) \cup\left(X_{1}^{(m-2)} \times X_{2}^{(2)}\right) \cup \cdots \cup X_{2}^{(m)}\right] \\
& =\sum_{s=0}^{m} \chi\left(X_{1}^{(s)}\right) \cdot \chi\left(X_{2}^{(m-s)}\right) \\
& =\sum_{s=0}^{m}\binom{s+p-1}{s}\binom{m-s+q-1}{m-s} \\
& =\sum_{s=0}^{m}(-1)^{s}\binom{-p}{s}(-1)^{m-s}\binom{-q}{m-s} \\
& =(-1)^{m} \sum_{s=0}^{m}\binom{-p}{s}\binom{-q}{m-s} \\
& =(-1)^{m}\binom{-p-q}{m} \\
& =\binom{m+p+q-1}{m} .
\end{aligned}
$$

## References

[1] A. Dold, Homology of symmetric products and other functions of complexes, Ann. Math. 68(1958), 54-80
[2] S. Kera, On the permutation products of manifolds, Contribution to Algebra and Geometry 42(2001), 547-555.
[3] S. Kera, One class of submanifolds of permutation products of complex manifolds, Math. Balkanica N.S. 15(2001), 275-284.
[4] S. D. Liao, On the topology of cyclic products on spheres, Tarns. Amer. Math. Soc. 77(1954), 520-551.
[5] I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Camb. Phil. Soc. 58(1962), 563-568.
[6] R. J. Milgram, The homology of symmetric products, Trans. Amer. Math. Soc. 138(1969), 251-265.
[7] H. R. Morton, Symmetric product of the circle, Proc. Camb. Phil. Soc. 62(1967), 349-352.
[8] M. Richardson, On the homology characters of symmetric products, Duke Math. J. 1(1935), 50-59.
[9] P. A. Smith, The topology of involutions, Proc. Nat. Acad. Sci. 19(1933), 612-618.
[10] R. Swan, The homology of cyclic products, Tarns. Amer. Math. Soc. 95(1960), 27-68.
[11] K. Trenčevski, Permutation products of 1-dimensional complex manifolds, Contributions - Sect. Math. Techn. Sci. XX(1999), 29-37.
[12] K. Trenčevski, On the permutation products on torus, Filomat 15(2001), 191-196.
[13] K. Trenčevski, Some examples of fully commutative vector - valued groups, Contributions - Sect. Math. Techn. Sci. IX(1988), 27-37.
[14] K. Trenčevski, D. Dimovski, Complex Commutative Vector Valued Groups, Macedonian Academy of Science and Arts, Skopje, 1992.
[15] K. Trenčevski, D. Dimovski, On the affine and projective commutative ( $m+k, m$ )groups, J. Algebra 240(2001), 338-365.
[16] K. Trenčevski, S. Kera, One conjecture concerning the permutation products on manifolds, Math. Balkanica 12(1998), 425-429.
[17] C. H. WAGNER, Symmetric, cyclic and permutation products of manifolds, Dissert. Math. (Rozravy math.) 182(1980), 3-48.


[^0]:    *This paper is supported by the Ministry of Education and Science of the Republic of Macedonia.
    ${ }^{\dagger}$ Corresponding author. Email address: kostatre@pmf.ukim.mk (K. Trenčevski)

