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We present an outlook on the climate system thermodynamics. First, we construct an equivalent Carnot
engine with efficiency � and frame the Lorenz energy cycle in a macroscale thermodynamic context. Then, by
exploiting the second law, we prove that the lower bound to the entropy production is � times the integrated
absolute value of the internal entropy fluctuations. An exergetic interpretation is also proposed. Finally, the
controversial maximum entropy production principle is reinterpreted as requiring the joint optimization of heat
transport and mechanical work production. These results provide tools for climate change analysis and for
climate models’ validation.

DOI: 10.1103/PhysRevE.80.021118 PACS number�s�: 05.70.�a, 92.70.Np, 05.90.�m, 92.70.Gt

I. INTRODUCTION

The global thermodynamic properties of the climate sys-
tem have long been the subject of an intense investigation,
starting with the landmark analysis of the energy cycle of the
atmosphere �1�, which highlighted the concept of availability
by showing that only a tiny part of the potential energy of the
atmosphere can be converted to mechanical energy. Several
authors have then addressed the issue of formalizing the con-
cept of efficiency of the climate machine, driven by the tem-
perature difference between a warm and a cold thermal bath.
Often, those have been identified with the equatorial and
polar region, which feature a positive and negative radiative
balance at the top of the atmosphere, respectively. Thus, the
atmospheric and oceanic motions can be interpreted both as
the result of the mechanical work �then dissipated by viscos-
ity� produced by the engine, and as tools able to re-
equilibrate the energy balance of the climate system by tur-
bulent heat transport �2,3�. Later on, in �4� was introduced a
formally more advanced analysis of the heat �and entropy�
sources and sinks inside the climate system, thus allowing
for a rigorous definition of a Carnot engine—equivalent pic-
ture of the climate machine.

After the publication of the landmark book �5�, the ther-
modynamic analysis of nonequilibrium systems has gained
more and more momentum, and is now widespread in engi-
neering, chemistry, physics, biology, earth science, and many
other fields. Nonequilibrium systems generate entropy by ir-
reversible processes and keep a steady state by balancing the
input and output of energy and entropy with the surrounding
environment. Following the variational principle introduced
in �6� for equilibrium statistical systems and, driven by the
desire �and need� to find a guiding principle able to partially
disentangle the complexity of nonequilibrium system, schol-
ars of various disciples have conjectured the validity of the
maximum entropy production principle �MEPP�, which pro-
poses that an out-of-equilibrium nonlinear system adjusts in
such a way to maximize the production of entropy �7�. Note

that, since a recent claim of a rigorous derivation of MEPP
�8� has been rejected �9�, the full understanding of the extent
to which MEPP is valid and useful has not been attained.

A great deal of attention has been paid to the application
of nonequilibrium thermodynamics to the climate system.
Actually, some of the earlier stimulations toward the formu-
lation of MEPP have come from the climate community �10�.
In �3� a detailed theoretical presentation of the entropy pro-
duction in the climate system and some reasonable estimates
of its value are given, whereas in �11,12� a more modern
perspective, which includes also applications of the MEPP, is
provided. On a different note, the author, building upon the
framework of nonequilibrium statistical mechanics �13� and
of the response theory for nonequilibrium statistical systems
�14�, recently derived a set of universal constraints �15� use-
ful for the analysis of climatelike systems �16�.

In this paper we draw a line connecting the investigation
of the climate as a thermal engine to the analysis of its en-
tropy production, in Sec. II, we revise the concept of effi-
ciency �4� and present a more direct link to the energy cycle
�1�. In Sec. III, we exploit the second law of thermodynamics
to derive an inequality and relate an entropy production
lower bound to the integrated absolute value of the entropy
fluctuations of the system via the Carnot efficiency. This is
then used to provide an interpretation of the MEPP and to
motivate an exergetic analysis �17� of the system. In Sec. IV
we draw our conclusions.

II. THE CLIMATE SYSTEM AS A THERMAL ENGINE

Let the total energy of the � domain of the climatic sys-
tem be �3�

E��� = �
�

dV��u + � + k� , �1�

where � is the local density, e=u+�+k is the total energy
per unit mass, with u, �, and k indicating the internal �inclu-
sive of the contributions due to water phase transitions�, po-
tential and kinetic energy components, respectively. As the
climate system is a multicomponent one, the thermodynamic*v.lucarini@reading.ac.uk
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equations defining the medium are not the same everywhere
�e.g., air vs seawater�. The instantaneous balance of the en-

ergy of the system can be expressed as Ė���= Ṗ���+ K̇���,
where P represents the integrated total potential energy
�thermal+potential� and K is the total kinetic energy. The
time derivative of the total kinetic energy of the system is

K̇��� = − �
�

dV�2 + C�P,K� = − Ḋ + C�P,K� , �2�

where the first term is the opposite of the integrated dissipa-

tion Ḋ, with �2 being positive definite �by the second law of
thermodynamics�, whereas the second term describes the net
rate of conversion of potential into kinetic energy, as de-
scribed in energy cycle formalism �1�. Therefore, we can
interpret the second term as instantaneous work performed

by the system and we denote it by Ẇ=C�P ,K�. When con-
sidering the total potential energy of the system, we have

Ṗ��� = �
�

dV�Q̇ − Ẇ �3�

with Q̇=1 /���2−�� ·H� � representing the net heating due to
viscous processes and convergence of heat fluxes, which can
be split into the radiative, sensible, and latent heat compo-
nents. We obtain

Ė��� = �
�

dV�− �� · H� � = − �
��

dSn̂ · H� . �4�

If the system is at steady state the quantities E���, P���, and
K��� are stationary �in terms of statistical properties�. There-

fore, Ė���= Ṗ���= K̇���=0, where the upper bar indicates
time averaging over a long time scale. At any instant, we can
partition the domain � into two subsets, �+ and �−, such
that Q�x��0, x��+ and Q�x�	0, x��− �4�. Therefore,

Ṗ��� + Ẇ = �
�+

dV�Q̇+ + �
�−

dV�Q̇− = 
̇+ + 
̇−, �5�

where, by definition, Q̇+ and Q̇− are positive and negative

definite and the integrated quantities 
̇+ and 
̇− are positive
and negative at all times, respectively. Since dissipation is

positive definite, we obtain −K̇���+Ẇ= Ḋ= Ṗ���+Ẇ=Ẇ

=
̇++
̇−�0, with 
̇+�0 and 
̇−	0.
Using the second law of thermodynamics, we have Q

� ṡT, where ṡ is the time derivative of the entropy per unit
mass. Assuming, as usual in climate dynamics, local thermo-

dynamic equilibrium, the Clausius inequality reduces to Q̇
= ṡT. Note that local thermodynamic equilibrium does not
apply to the upper atmosphere, whose mass is, nevertheless,
negligible. We hereby neglect the contribution to entropy
variations due to mixing related to salinity fluxes in the
ocean, and those due to the mixing of the water vapor in the
atmosphere. In the first case, it has been estimated that such
contribution is negligible as the entropy production related to
salinity fluxes is three orders of magnitude smaller than what
due to thermal processes �18�. As for the second case, we

have that, locally, the magnitude of the contribution to en-
tropy production due to water vapor mixing is ����C
−E�Rd log�H�� �19�, where C and E are instantaneous con-
densation and evaporation rates, H is the relative humidity
and Rd is the dry air gas constant. Instead, the contribution
due to the term representing the convergence of latent heat
flux is ���C−E�Lv /T�, where Lv is the latent heat of vapor-
ization. The ratio between the two terms can be estimated as
�log�H�RdT /Lv�, which, using usual typical terrestrial values
H�0.7, T�250 K, results to be �log�H�RdT /Lv��0.01.
Therefore, we feel that we can safely neglect the mixing
processes in the rest of the discussion. Thus, the derivative

Ṡ��� of the total entropy of the system can be approximated
as

Ṡ��� = �
�

dV
�2 − �� · H�

T
= �

�+
dV

�Q̇+

T
+ �

�−
dV

�Q̇−

T

= �
�+

dV��ṡ+� − �
�−

dV��ṡ−� = �̇+ + �̇−, �6�

where we have exploited the fact that ṡ has always the same

sign as Q̇, so that at all times �̇+�0 and �̇−	0. If we take
long term average of the previous equation, since the system

is at steady state, we have that Ṡ���=0, so that �̇+=−�̇−.

This also implies that 2�̇+=��dV��ṡ�, so that �̇+ measures
the absolute value of the entropy fluctuations throughout the

domain. Using the mean-value theorem, we obtain that 
̇+

= �̇+
+ and 
̇−= �̇−
−, where 
+�
−� is the time and space
averaged value of the temperature where absorption �release�
of heat occurs. Since ��̇+�= ��̇−� and �
̇+�� �
̇−�, we derive
that 
+�
−, i.e., absorption typically occurs at higher tem-
perature than release of heat �3,4�. By rearranging some of
the formulas introduced in this section, we obtain that

Ḋ = Ẇ = 
̇+ + 
̇. = �̇+
+ + �̇−
− = �̇+�
+ − 
−�

=

+ − 
−


+ 
̇+ =

̇+ + 
̇−


̇+

̇+. �7�

The climate system can then be approximated as a Carnot
engine whose warm and cold heat bath are at temperature 
+

and 
−, respectively. Therefore we obtain

Ẇ = �
̇+, �8�

where �= �
+−
−� /
+= �
̇++
̇−� /
̇+ can rigorously be
defined as the equivalent Carnot efficiency � of the system.
We need to remark that the consideration of long term aver-
ages is not just a useful mathematical device, but rather pro-
vides the equivalent of ergodic averaging for the macrosys-
tem considered. As shown in �1� �and clarified in �4��, the
long term average of the work performed by the system is
equal to the long term average of the generation of available
potential energy, which can be interpreted as the portion of
the total potential energy which is available for reversible
conversion. Note that this definition of efficiency is different
from other ones proposed in the literature �see, e.g., �11�� as

VALERIO LUCARINI PHYSICAL REVIEW E 80, 021118 �2009�

021118-2



it is related to the local heating and cooling processes occur-
ring in the system. More commonly, efficiency is related to
the ratio �Hin

between the long term averages of the work
and of total energy flux Hin entering the system. We then

have � /�Hin
=
̇+ /Hin	1.

III. ENTROPY PRODUCTION

The second law of thermodynamics states that the entropy
produced inside a system having temperature T and receiving
an amount of heat �Q is larger than �Q /T �20�. In our case
we have

Ṡin��� � Ṡmin��� =	��

dV�Q̇

�
�

dV�T
 = � 
̇+ + 
̇−

�


�

�

̇+ + 
̇−

�


�


̇+ + 
̇−

�
+ + 
−�/2
=

Ẇ

�
+ + 
−�/2
, �9�

where Ṡin��� is the long term average of the entropy produc-

tion inside the system, Ṡmin��� is its minimal value, �

 is
the density-averaged temperature of the system. The approxi-
mation holds as long as we can neglect the impact of the
time cross-correlation between the total net heat balance and
the average temperature. Moreover, we assume that the
density-averaged temperature can be approximated by the

mean of the two Carnot temperatures 
+ and 
−. Ṡmin���
can thus be estimated as

Ṡmin��� �
Ẇ

�
+ + 
−�/2
=

�

�
+ + 
−�/2

̇+ =


+ − 
−

�
+ + 
−�/2

̇+


+

=
�


�
+ + 
−�/2
�̇+ = �


+

�
+ + 
−�/2
�̇+ � ��̇+, �10�

where the last approximation holds as long as typical tem-
perature differences are small with respect to the average
temperature �as usual in the case of the climate system�, or,
operatively, if �
 / �
++
−��1. Therefore, the thermody-
namic efficiency of the system sets also the scale relating the
minimal entropy production of the system—due to macro-
scopically irreversible processes—to the absolute value of
the entropy fluctuations inside the system due to microscopi-
cally reversible heating or cooling processes. Note that if the
system is isothermal and at equilibrium the internal entropy
production is zero, since the efficiency � is vanishing. This is
agreement with the fact that the system has already attained
its maximum entropy state.

In order to gain a better understanding of the entropy
production of the fluid system, we need to frame jointly the
entropy budget of the system and of its surroundings. The
change of entropy of a system can be split into internally
generated entropy plus the net entropy influx from the sur-
rounding: �S���=�Sin���+�Sex��� �5,11�. Going to in-
stantaneous changes, we have

Ṡ��� = Ṡin��� − �
��

dSn̂ ·
H�

T
, �11�

where local thermodynamic equilibrium is again assumed.

Using Eq. �6� and considering that Ṡ���=0, we obtain that
the long term average of the entropy production of the sys-
tem is

Ṡin��� = �
��

dSn̂ · �H�

T
� = �

�

dV�� · �H�

T
�

= �
�

dVH� · ��� 1

T
� + �

�

dV��2

T
� � Ṡmin��� .

�12�

The two terms correspond to the entropy production due to
down-gradient heat transport and to viscous dissipation, re-

spectively. Since Ḋ=Ẇ, the second term can be approxi-

mated by Ṡmin��� as long as �
 / �
++
−��1. Therefore,

we have Ṡin���� Ṡmin����1+�����+�1+��, where

� = �
�

dVH� · �� � 1

T
�� Ṡmin���

� �
�

dVH� · �� � 1

T
���

�

dV
�2

T
�13�

is the ratio between the contributions to entropy production
given by down-gradient heat transport and by viscous dissi-
pation, respectively. Therefore, the more efficiently the sys-
tem transports heat from high- to low-temperature regions,
the larger is the entropy production, ceteris paribus. The ce-
teris paribus condition �or lack of� is crucial for interpreting
several modeling studies on the climate system—see, e.g.,
�21,22�—showing that, by changing a diffusionlike param-
eter controlling the large scale heat transport, the entropy
production is small for very strongly and very weakly diffu-
sive systems, whereas the maximum is obtained for interme-
diate conditions. In Eqs. �12� and �13� we can see that, if heat
transport down gradient the temperature field is very strong,
the efficiency � is small because the difference between the
temperatures of the warm and the cold reservoirs is greatly
reduced �the system is almost isothermal�, whereas, if the
transport is very weak, the factor � is small. Therefore, the
controversial MEPP—see, e.g., �11,21�—cannot be naively
interpreted as equivalent to the fact that the climate system,
mostly through the instabilities of atmospheric and oceanic
flow, tends to re-equilibrate energetically the equatorial and
the polar regions �23�. In fact, MEPP requires a joint optimi-
zation of heat transport and of production of mechanical
work.

Further characterization and quantification of the irrevers-
ibility of the climatic thermodynamical processes can be ob-
tained by making use of the concept of exergy destruction �or
anergy production�, which is the decrease of energy available
for conversion into mechanical work due to entropy-
generating processes. This is a standard conceptual tool used
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in the analysis of engineered thermal system �17�. We can

define the excess exergy destruction average rate �Ėxdes���
as that deriving from excess entropy production due to
down-gradient heat transport, which is a process not leading
to any mechanical energy production. We have:

�Ėxdes��� � �

�Ṡin��� − Ṡmin����

= �

�Ṡmin��� � ��
̇+ = �Ẇ��� , �14�

so that, in this context, � results to be the ratio between the
excess exergy destruction and mechanical exergy generation
average rates.

IV. CONCLUSIONS

In this paper we have presented a succinct but thorough
investigation of the global thermodynamical properties of the
climate system, by analyzing the main implications of the
first law and of the second law of thermodynamics. Most of
the results are, actually, of more general value, but the cli-
mate system provides especially outstanding stimulations
and challenges. Following �4�, we have first clarified the no-
tion of efficiency by creating a formal analog with an equiva-
lent Carnot engine, and identifying the resulting mechanical
work with the production �and eventual dissipation� of ki-
netic energy. Along these lines, it is possible to define, by
suitable averaging procedures, two temperatures correspond-
ing to the warm and cold heat reservoir, respectively, and to
derive a Carnot-like expression for the efficiency of the cli-
matic system. Such an approach provides a simple yet ele-
gant thermodynamic macro-framework for the energy cycle
�1�.

We have then exploited the second law of thermodynam-
ics to determine a lower bound to the entropy production.,
which is approximately given by the Carnot efficiency times
the absolute value of the internal entropy fluctuations of the
system. We have then obtained that entropy production due
to heat transport from hot to cold regions is basically the
difference between the actual and the minimal entropy pro-
duction. Since the more efficiently the system transports heat
from high- to low-temperature regions, the larger is the en-
tropy production, ceteris paribus, the controversial MEPP
could naively be interpreted as optimality of climate system
in the re-equilibration of the radiative imbalance between the
equatorial and the polar regions. Instead, MEPP is shown to
be roughly equivalent to the joint optimization of heat trans-

port down gradient the temperature field and of the produc-
tion of mechanical work. This view of entropy production
clarifies some results presented in �21,22�, where it was
shown that, by tuning the large scale heat transport, the en-
tropy production is small for very strong and very weak dif-
fusive systems, having respectively a negligible efficiency
and a weak heat transport, whereas the maximum is obtained
for intermediate conditions. Finally, an exergetic point of
view, more typically adopted for the analysis of engineered
thermal systems, is proposed, leading to the result that ratio
between the entropy generation due to heat transport and the
minimal entropy generation is the same as that between ex-
cess exergy destruction and mechanical energy generation
average rates.

These results may provide useful concepts for the under-
standing of the global properties of a paradigmatic nonequi-
librium statistical system as the climatic one, and may pro-
vide crucial benchmarks for the definition of metrics and
diagnostic tool for the validation of climate models �24,25�.
In fact, since the second law of thermodynamics is as funda-
mental as the first law, it is proposed that the defined mac-
rothermodynamic parameters such as the thermodynamic ef-
ficiency, the equivalent Carnot temperatures, the entropy
production, and exergy destruction of the system should be
addressed as carefully as energy balance properties for defin-
ing the basic features of the climate system and of the out-
puts of climate models, as well as for providing rigorous
measures of climate change. Note that the present results
apply equally well for describing the thermodynamic prop-
erties of fluids enveloping general planetary systems. Ongo-
ing and foreseen investigations include the actual calculation
of the discussed thermodynamic parameters in simulations
performed with climate models under a variety of conditions,
as determined by the atmospheric composition, the land-sea
mask, and the value of the astronomical parameters. Such an
effort poses additional challenges, as commonly used nu-
merical schemes are responsible for spurious entropy pro-
duction �4,26�, so that our approach might also be useful for
devising strategies aimed at the improvement of the very
structure of climate models.
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