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Abstract 
We bridge the properties of the regular square and honeycomb Voronoi tessellations of the plane to those of the 

Poisson-Voronoi case, thus analyzing in a common framework symmetry-break processes and the approach to 

uniformly random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations 

generated by points whose regular positions is perturbed through a Gaussian noise whose adimensional strength is 

controlled by the parameter α. We analyze the number of sides, the area, and the perimeter of the Voronoi cells. For 

α>0,  hexagons constitute the most common class of cells, and 2-parameter gamma distributions provide an efficient 

description of statistical properties of the analyzed geometrical characteristics. The symmetry break induced by the 

introduction of noise destroys the square tessellation, which is structurally unstable, whereas the honeycomb hexagonal 

tessellation is very stable and all Voronoi cells are hexagon for small but finite noise with α<0.1. Several statistical 

signatures of the symmetry break are evidenced. Already for a moderate amount of Gaussian noise (α>0.5), memory of 

the specific initial unperturbed state is lost, because the statistical properties of the two perturbed regular tessellations 

are indistinguishable. When α>2, results converge to those of  Poisson-Voronoi tessellations. The geometrical 

properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law 

for perimeters is confirmed to be not valid and a square root dependence on n, which allows an easy link to the Lewis 

law for areas, is established. Finally, the ensemble mean of the cells area and perimeter restricted to the hexagonal cells 

coincides with the full ensemble mean; this might imply that the number of sides acts as a thermodynamic state variable 

fluctuating about n=6, and this reinforces the idea that hexagons, beyond their ubiquitous numerical prominence, can be 

taken as generic polygons in 2D Voronoi tessellations. 
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Introduction 
Given a discrete set of points X in an Euclidean N-dimensional space, we have that for almost any 

point a of such a space there is one specific point x∈X which is closest to a. Some point x may be 

equally distant from two or more points of X. If X contains only two points, x1 and x2, then the set of 

all points with the same distance from x1 and x2 is a hyperplane, which has codimension 1. The 

hyperplane bisects perpendicularly the segment from x1 and x2. In general, the set of all points 

closer to a point xi∈ X than to any other point xj≠ xi, xj∈ X is the interior of a convex (N-1)-polytope 

usually called the Voronoi cell for xi. The set of the (N-1)-polytopes Πi, each corresponding to, and 

containing, one point xi∈X, is the Voronoi tessellation corresponding to X, and provides a 

partitioning of the considered N-dimensional space (Voronoi 1907, 1908). As well known, the 

Delaunay triangulation (Delaunay 1934) gives the dual graph of the Voronoi tessellation (Okabe et 

al. 2000). Voronoi cells can be defined also for non-Euclidean metric spaces, but in the general case 

the existence of a Voronoi tessellation is not guaranteed.  

Since the Voronoi tessellation creates a one-to-one optimal - in the sense of minimum 

distance - correspondence between a point and a polytope, 2D and 3D Voronoi tessellations have 

been considered for a long time for applications in several research areas, such as 

telecommunications (Sortais et al., 2007), biology (Finney 1975), astronomy (Icke 1996), forestry 

(Barrett 1997) atomic physics (Goede et al. 1997), metallurgy (Weaire et al., 1986), polymer 

science (Dotera 1999), materials science (Bennett et al., 1986). In solid-state physics, the Voronoi 

cells of the single component of a crystal are known as Wigner-Seitz unit cells (Ashcroft and 

Mermin 1976). In a geophysical context, Voronoi tessellations have been widely used to analyze 

spatially distributed observational or model output data (Tsai et al. 2004); in particular, they are a 

formidable tool for performing arbitrary space integration of sparse data, without adopting the 

typical procedure of adding spurious information, as in the case of linear or splines interpolations, 

etc. (Lucarini et al. 2007). Actually, in this regard that Thiessen and Alter, with the purpose of 

computing river basin water balances from irregular and sparse rain observations, discovered 

independently for the 2D case the tessellation introduced by Voronoi just few years earlier 

(Thiessen and Alter 1911). Moreover, recently a connection has been established between the 

Rayleigh-Bènard convective cells and Voronoi cells, with the hot spots (strongest upward motion of 

hot fluid) of the former basically coinciding with the points generating the Voronoi cells, and the 

locations of downward motion of cooled fluid coinciding with the sides of the Voronoi cells 

(Rapaport 2006).  



The quest for achieving low computational cost for actually evaluating the Voronoi 

tessellation of a given discrete set of points X is ongoing and involves an extensive research 

performed within various scientific communities (Bowyer 1981; Watson 1981; Tanemura et al. 

1983; Barber et al. 1996; Han and Bray 2006). The theoretical investigation of the statistical 

properties of general N-dimensional Voronoi tessellations, which has a great importance in 

applications, has proved to be a rather hard task, so that direct numerical simulation is the most 

extensively adopted investigative approach. For a review of the theory and applications of Voronoi 

tessellations, see Aurenhammer (1991) and Okabe et al. (2000). 

A great deal of theoretical and computational work has focused on a more specific and 

tractable problem, that of studying the statistical properties of the geometric characteristics of 

Poisson-Voronoi tessellations. These are Voronoi tessellations obtained for a random set of points X 

generated as output of a homogeneous Poisson point process. This problem has a great relevance at 

practical level because it corresponds, e.g., to studying crystal aggregates with random nucleation 

sites and uniform growth rates. Exact results concerning  the mean statistical properties of the 

interface area, inner area, number of vertices, etc. of the Voronoi cells have been obtained for 2+ 

dimensional Euclidean spaces (Meijering 1953; Christ et al., 1982; Drouffe and Itzykson 1984; 

Finch 2003; Calka 2003). Recently, some important results have been obtained for the 2D case 

(Hilhorst 2006). Several computational studies, performed considering a quite wide range of 

number of 2D and 3D Voronoi cells, have found results that basically agree with the theoretical 

findings, and, moreover, have shown that both 2-parameter (Kumar et al. 1992) and 3-parameter 

(Hinde and Miles 1980) gamma distributions fit up to a high degree of accuracy the empirical pdfs 

of the number of vertices, of the perimeter and of the area of the cells. Very extensive and more 

recent calculations  have basically confirmed these results (Tanemura 2003). In spite of several 

attempts, the ab-initio derivation of the pdf of the geometrical properties of Poisson-Voronoi 

tessellations have not been yet obtained, except in asymptotic regimes (Hilhorst 2005). In the last 

years, various studies have focused on the geometrical properties of Voronoi tessellations resulting 

from non strictly Poissonian random processes. In particular, given the obvious applicative value 

(as for packaging problems), a great deal of emphasis has been put on tessellations resulting from 

points which are randomly distributed in the space but which also cannot be closer than a given 

distance δ - a sort of hard-core nuclei hypothesis (Zhu et al. 2001; Senthil Kumar and Kumaran 

2005). Whereas the δ=0 corresponds to the Poisson-Voronoi case, it is observed that by increasing δ 

the degree of randomness of the tessellation is decreased  - the pdfs of the statistical properties of 

the geometrical characteristics become more and more peaked -  until at a certain critical value of δ 

a regular tessellation, which in the 2D case is the hexagonal honeycomb, is obtained. In any case, it 



is found that the gamma distributions provide excellent fits for a very large range of values of  δ 

(Zhu et al. 2001). 

In this paper we want to explore a somewhat different problem of parametric dependence of 

the Voronoi tessellation statistics. We start from two regular polygonal tessellations of the plane, 

the honeycomb hexagonal tessellation and the square tessellations. They are obtained by setting the 

points xi as vertices of regular triangles and squares, respectively. Using an ensemble-based 

approach, we study the break-up of the symmetry of the two systems and quantitatively evaluate 

how the statistical properties of the geometrical characteristics of the resulting 2D Voronoi cells 

change when we perturb with a space-homogeneous Gaussian noise of increasing intensity the 

positions of the points xi. Our paper is organized as follows. In section 2 we describe the 

methodology of work and the set of numerical experiments performed, In section 3 we show our 

results. In section 4 we present our conclusions and perspectives for future work. 

Data and Methods 

Scaling Properties of Voronoi tessellations 

Let’s first consider a homogeneous Poisson point process Ψ generating as output a random set of 

points X in such a way that the expectation value for the number of points xi belonging, without loss 

of generality, to a square region Γ is 2
00 Rρρ =Γ , where 0ρ  is the intensity of the process, Γ  is 

the measure of Γ and R is the side of the square, whereas the fluctuations are of the order of  

R00 ρρ =Γ . If 10 >>Γρ , we are in the thermodynamic limit and the number of Voronoi cells 

Ci inside Γ is Γ≈ 0ρVN ; in other terms the contributions due to the cells crossing the boundary of  

Γ are negligible. Keeping 0ρ  fixed and considering larger values of R, the approximation further 

improves, and similarly occurs when keeping R fixed and increasing 0ρ . In this limit, theoretical 

results suggest that the expectation value – where the statistics is computed over the VN  cells and 

over an ensemble of random processes – of number of sides of the Voronoi cells inside Γ is 

( ) 6=Vnμ , of the area of the Voronoi cell is ( ) 01 ρμ =
V

A , and of the perimeter of a Voronoi 

cell ( ) 04 ρμ =
V

P . For clarity’s sake, we specify that the expression ( )Yμ  ( ( )Yσ ) refers to the 

mean value (standard deviation) of the variable Y over the VN  cells for the single realization of the 

random process, the expression E  ( [ ]Eδ ), instead, indicates the ensemble mean (standard 

deviation) of the random variable E. Therefore, the ensemble mean statistical properties of the 



Poisson-Voronoi tessellation are intensive, in the sense that they depend only on the average density 

of points (and basically of Voronoi cells) and not on the shape (in spite of our initial assumption) or 

size of Γ, once a sufficiently large number of points is considered. Moreover, we also have that the 

ensemble mean of the standard deviation scales with respect to 0ρ  as the mean value, so that for 

each quantity Y  we have that ( ) ( )YY μσ  does not depend on 0ρ . It is then clear that in this case 

it is possible to restrict the analysis, e.g., to the square [ ] [ ]1,01,01 ×=Γ . 

If the random point process Φ generates a periodic distribution of the points xi in the plane 

with discrete translational symmetry generated by the lattice vectors 1vr  and 2vr , we expect that, if 

21 , vvR rr
>> , the expectation value of  the number of xi’s belonging to a square region Γ can also be 

expressed as 2
00 Rρρ =Γ , independently of the position of Γ in the plane, where 0ρ  is the coarse-

grained intensity of the process. Considering that the geometrical procedure leading to the 

construction of the Voronoi tessellation is a local and a self-similar one, and no long-distance 

interactions are considered. the ensemble mean statistical properties of the Voronoi tessellation do 

not depend on the size and position of Γ. Also in this more general case, if 10 >>ρ  and 

21 ,1 vv rr
>> , it is then possible to restrict the analysis, e.g., to the square [ ] [ ]1,01,01 ×=Γ  in the 

Cartesian plane. If, after having generated the Voronoi tessellation, we perform a linear λ-rescaling 

of the coordinates such that [ ] [ ]1,01,01 ×=Γ  transforms into [ ] [ ]λλλ ,0,0 ×=Γ , we have that the 

measure of any 1D (2D) object grows by  factor of λ  ( 2λ ), and 2
00 λρρ → , whereas the number 

of sides of each cell is not altered. This procedure is equivalent, when ensemble means are 

considered, to refrain from any rescaling of the coordinates and dividing instead 0ρ  by the factor 

2λ , because the size of the region Γ is not relevant. Therefore, we deduce that in the 

thermodynamics regime for all random processes Φ with the above mentioned characteristics, 

( ) ( ) ( )0
0, ρσμ ∝nn , ( ) ( ) 01, ρσμ ∝nA , and ( ) ( ) 01, ρσμ ∝PP . Therefore, by 

multiplying the ensemble mean estimators of the mean and standard deviation of the area 

(perimeter) of the Voronoi cells times 0ρ  ( 0ρ ), we obtain universal functions.   

Simulations 

As a starting point, we consider two regular tessellations of the plane. If we consider a regular 

square gridding of the points xi with sides 2121 , vvvvl rrrr
⊥== , the Voronoi cell Πi corresponding to 

xi is given by the square centered in xi with the same side length and orientation as the xi grid. If 



2101 vvlQ
rr

=== ρ , we will have 0ρ  points – and 0ρ  corresponding square Voronoi cells - in 

[ ] [ ]1,01,01 ×=Γ . Similarly, a regular hexagonal honeycomb tessellation featuring 0ρ  points and 

approximately 0ρ  corresponding square Voronoi cells in [ ] [ ]1,01,01 ×=Γ  is obtained by using a 

gridding of points set as regular triangles with sides 210 32 vvlH
rr

=== ρ . 

 For each of the two regular griddings, we then introduce a symmetry-breaking 2D-

homogeneous ε-Gaussian noise, which randomizes the position of each of the points xi about its 

deterministic position with a spatial variance 2ε . We express  0
2222 ρααε == Ql , thus expressing 

the mean squared displacement as a fraction 2α  of the inverse of the density of points, which is the 

natural squared length scale. Note that in all cases, when ensembles are considered, the distribution 

of the xi is still periodic. 

For each of the two regular griddings, we then perform our statistical analyses by 

considering M = 1000 members of the ensemble of Voronoi tessellations generated for each value 

of α ranging from 0 to 5 with step 0.01. The actual simulations are performed by using, within a 

customized routine, the MATLAB7.0® function voronoin.m, which implements the algorithm 

introduced by Barber et al. (1996), to a set of points xi having density 100000 =ρ . Tessellation has 

been performed starting from points xi belonging to the square 

[ ] [ ] [ ] [ ]1,01,02.1,2.02.1,2.0 1 ×=Γ⊃−×− , but only the cells belonging to 1Γ  have been considered for 

evaluating the statistical properties, in order to basically avoid 0ρ  depletion in the case of large 

values of α due to one-step Brownian diffusion of the points nearby the boundaries.  

By definition, if α = 0 we are in the deterministic case. We study how the statistical 

properties of n, P, and A of the Voronoi cells change with α, covering the whole range going from 

the symmetry break, occurring when α becomes positive, up to the progressively more and more 

uniform distribution of xi, obtained when α is large with respect to 1 and the distributions of nearby 

points xi overlap more and more significantly. The distributions of n, P, and A are fitted using a 2-

parameter gamma distribution with the MATLAB7.0® function gammafit.m, which implements a 

maximum likelihood method. 

Results 
We expect that the exploration of the parametric range from 0=α  to 5=α  should allow us to join 

on the two extreme situations of perfectly deterministic, regular tessellation, to the tessellation 

resulting from a set of points X generated with a Poisson point process.  



In the deterministic 0=α  case, it is easy to deduce the properties of the Voronoi cells from 

basic Euclidean geometry. For square tessellation, we have ( ) ( ) 4
00
==

== αα
μμ nn , 

( ) ( ) 0
2

00
4104 ρμμ

αα
=×== −

==
PP , and ( ) ( ) 0

4
00

1104 ρμμ
αα

=×== −
==

AA , where the α -

dependence of the statistical properties is indicated. For honeycomb tessellation, we have  

( ) ( ) 6
00
==

== αα
μμ nn , ( ) ( ) ( )0

2
00

32410324 ρμμ
αα

=×== −
==

PP , and 

( ) ( ) 0
4

00
1104 ρμμ

αα
=×== −

==
AA . Of course, in both cases, given the regular pattern in space, 

all cells are alike, and given the deterministic nature of the tessellation, there are no fluctuations 

within the ensemble.  

Number of sides of the cells 

In the case of the regular square tessellation, the introduction of a minimal amount of symmetry-

breaking noise acts as singular perturbation for the statistics of ( )
α

μ n  and ( )
α

σ n , since ( )
α

μ n  

and ( )
α

σ n  are discontinuous in 0=α . We have that ( ) ( ) +==
=≠=

00
64

αα
μμ nn  and 

( ) ( ) +==
≈≠=

00
93.00

αα
σσ nn , where with += 0α  we indicate the right limit to 0 with respect 

to the parameter α. Similarly, the ensemble fluctuations ( )[ ]
α

μδ n  and ( )[ ]
α

σδ n  are discontinuous 

functions in 0=α , since they reach a finite value > 0 as soon as the noise is switched on. This 

proves that such a tessellation is structurally unstable. Note that the simulations have been 

performed considering a very high resolution on the parameter α for 0≈α . Considering larger 

values of α, we have that ( )
α

σ n  is basically constant up to 35.0≈α , where its value begins to 

quickly increase before reaching the asymptotic value ( ) 33.1≈
α

σ n  for 2>α , which essentially 

coincides with what obtained in the Poisson-Voronoi case. The function ( )
α

μ n  is, instead, 

remarkably constant within few permils around the value of 6 for 0>α , which shows that this 

value is not specific to the Poisson-Voronoi case, but rather depending upon the topology of the 

plane. In Fig. 1 we plot the functions ( )
α

μ n  and ( )
α

σ n , whereas the half-width of the error 

bars are twice the corresponding values of ( )[ ]
α

μδ n  and ( )[ ]
α

σδ n . The Poisson-Voronoi values are 

indicated for reference. 

Except for the singular case 0=α , for all 0>α  the distribution of the number of sides of 

the cells obey up to a very high degree of precision a 2-parameter gamma distribution: 

 



( ) [ ]
( )k
xxNkxf k

k
V Γ

−
= −

θ
θθ exp,; 1    (1), 

 

where ( )kΓ  is the usual gamma function and 0ρ≈VN  is, by definition, the normalization factor. 

We have, in the case of unbiased estimators (as in this case), that ( ) ( ) ( )
ααα

θμ nnkn =  and 

( ) ( ) ( )
ααα

θσ nnkn 2= . We observe that both functions ( )
α

nk  and ( )
α

θ n  (not shown) are 

basically constant for 35.00 << α , then for larger values of α ( )
α

nk  increases and  ( )
α

θ n  

decreases in such a way that their product is constant, because 

( ) ( ) ( ) ( ) ( )
ααααα

θθμ nnknnkn ≈= ,  and for  2>α  the two functions become closer and 

closer to their asymptotic values, which agrees remarkably well with what obtained for the Poisson-

Voronoi case. These results suggest that, topologically speaking, the route to randomness from the 

square regular tessellation to the Poisson-Voronoi case goes through a transition involving a stable 

– with respect to the complete statistics of the number of sides - pattern of cells, which persists for 

the finite range 35.00 << α . In this range, hexagons dominate and their fraction is constant, 

whereas for larger values of  α , the fraction of hexagon declines but is still dominant.  

When considering the regular hexagon honeycomb tessellation, the impact of introducing 

noise in the position of the points xi is quite different from the previous case. Results are also shown 

in Fig. 1. The first observation is that an infinitesimal noise does not effect at all the tessellation, in 

the sense that all cells remain hexagons. Moreover, even finite-size noise basically does not distort 

cells in such a way that figures other than hexagons are created. We have not observed non n=6 

cells for up to 12.0≈α  in any member of the ensemble. This has been confirmed also considering 

larger densities (e.g. 10000000 =ρ ). It is more precise, though, to frame the structural stability of 

the hexagon tessellation in probabilistic terms: the creation of a non-hexagons is very unlikely for 

the considered range. Since the Gaussian noise induces for each point xi a distribution with – an 

unrealistic- non-compact support, in principle it is possible to have outliers that, at local level, can 

distort heavily the tessellation. 

For 12.0>α , ( )
α

σ n  is positive and increases monotonically with α ; this implies that the 

fraction of hexagons decreases monotonically with α . For 5.0>α  the value of ( )
α

σ n  is not 

distinguishable from that obtained in the previous case of perturbed square tessellation. Similarly to 

the previous case, for all values of α  we have that ( ) 6≈
α

μ n  within few permils; such constraint 

is confirmed to be very strong and quite general. For 12.0>α , the empirical distribution of the 



number of sides of the cells can be modelled quite efficiently with 2-parameter gamma 

distributions. We have that ( )
α

nk  decreases with α , whereas the converse is true for ( )
α

θ n ; 

obviously, the estimates of the two parameters are in statistical agreement with what obtained in the 

square tessellation for 5.0>α . This implies that from a statistical point of view, the variable 

number of edges loses memory of its unperturbed state already for a rather low amount of Gaussian 

noise, well before becoming undistinguishable from the fully random Poisson case.  

Area and Perimeter of the cells 

For both the perturbed square and honeycomb hexagonal tessellation, the parametric dependence on 

α  of the statistical properties of the area of the Voronoi cells is more regular than for the case of 

the number of sides. Results are shown in Fig. 2. 

In general, the ensemble mean value ( )
α

μ A  of the area of the Voronoi cells is, basically 

by definition, constrained to be ( ) 4
0 101 −== ρμ

α
A  for all values of α , and we observe that for 

both perturbed tessellation its fluctuations ( )[ ]
α

μδ A  have, for  0>α , a constant value, coinciding 

with that observed in the Poisson-Voronoi case.  The α -dependence of ( )
α

σ A  is more 

interesting. We first note that the two functions ( )
α

σ A  computed from the two perturbed 

tessellation are basically coincident, and the same occurs for ( )[ ]
α

σδ A . This implies that the impact 

of adding noise in the system in the variability of the area of the cells is quite general and does not 

depend on the unperturbed patters. We can be confident of the generality of this result also because 

for relatively small values of  α  (say, 5.0<α ), ( )
α

σ A  has a specific functional form reminding 

of symmetry breaking behaviour: in such a range we have that ( ) ( ) ασσ
α

×≈
V

AA . For 2>α , 

( )
α

σ A  is almost indistinguishable from the Poisson-Voronoi value, so that we can estimate an 

asymptotic value ( ) 5
0 103.553.0 −×=≈ ρσ

V
A .  

Results for the statistical estimators of the perimeter of the Voronoi cells are shown in figure 

3. When considering the perturbed square tessellation, ( )
α

μ P  basically coincides with that of the 

Poisson-Voronoi case for 1>α . Note that also ( ) ( )
V

PP μρμ
α

=×== −
=

2
00

104/4 , but 

anyway ( )
α

μ P  is a function with some interesting structure: for 25.0≈= mαα  ( )
α

μ P  

features a distinct minimum ( ) ( )
V

PP
m

μμ
αα

975.0≈
=

, whereas for 75.0≈= Mαα  a maximum 



for ( )
α

μ P  is realized, with ( ) ( )
V

PP
M

μμ
αα

01.1≈
=

. The unperturbed honeycomb hexagonal 

tessellation is optimal in the sense of perimeter-to-area ratio, and, when noise is added the 

corresponding function ( )
α

μ P  increases quadratically (not shown) with α  for 3.0<α , whereas 

for 5.0>α  its value coincides with what obtained starting from the regular square tessellation. We 

deduce that there is, counter-intuitively, a specific amount of noise (for mαα = ) which optimizes 

the mean perimeter-to-area ratio for the regular square tessellation, whereas, for  Mαα =  the 

opposite is realized for both tessellation. When considering the functions ( )
α

σ P , we are in a 

similar situation as for the statistics of mean cells area: the result of the impact of noise is the same 

for both tessellations, and for 5.0<α ,  ( )
α

σ P  is proportional to α , with 

( ) ( ) ασσ
α

×≈
V

PP . Moreover, for 2>α , ( )
α

σ P  becomes undistinguishable from the 

asymptotic value realized for Poisson-Voronoi process ( ) 3
0 108.998.0 −×=≈ ρσ

V
A . 

For 0>α , the empirical pdfs of cells area and perimeter can be fitted very efficiently using 

2-parameter gamma distributions. The wide-extent effectiveness of using 2-parameter gamma 

distributions for fitting the statistics of all of the geometric properties of 2D Voronoi cells, noted by 

Zhu et al. (2001) for another sort of parametric investigation, is confirmed also in this case. The 

behaviour of ( )
α

μ k  and ( )
α

θμ  for small values of α  can be obtained as follows. Since  

( ) ( ) ( ) ( ) ( )
ααααα

θθμ YYkYYkY ≈=  (with Y = P, A) is basically constant (within few 

percents for both tessellations), and  ( ) ( ) ( ) ( ) ( ) 222
ααααα

θθσ YYkYYkY ≈≈   with 

( ) ( ) 222 ασσ
αα

∝≈ YY , we have that  ( ) 2−∝ α
α

Yk   and   ( ) 2αθ
α

∝Y . 

Area and perimeter of n-sided cells 

A subject of intense investigation has been the characterization of the geometrical properties of n-

sided cells; see Hilhorst (2006) and references therein for a detailed discussion. We have then 

computed the for the considered range of α  the quantities ( )
n

A
α

μ , ( )[ ]
n

A
α

μδ , ( )
n

P
α

μ , and 

( )[ ]
n

P
α

μδ , obtained  by stratifying the outputs of the ensemble of simulations with respect to the 

number of sides n of the resulting cells. The 2-standard deviation confidence interval centered 

around the ensemble mean is shown as a function of n in Fig. 4 for the area and the perimeter of the 

cells, for selected values of α . Note that for larger values of n the error bar is larger because the 

number of occurrences of n-sided cells is small.  



The results of the two perturbed regular tessellations basically agree for 5.0>α , thus 

confirming what shown previously. This implies that already a moderate amount of noise provides 

an efficient mixing, which allows the convergence of the statistical properties of tessellation 

resulting from rather different regular, unperturbed parent tessellations, with very different 0≈α  

behaviour. 

In particular, for 2>α , the results coincide with what resulting from the Poisson-Voronoi 

case. Firstly, we verify the Lewis law, i.e. ( ) ( )201 anaA
n

+≈ ρμ
α

. Our data give 23.01 ≈a , 

which is slightly less than what resulting from the asymptotic computation by Hilhorst (2005), who 

obtained a linear coefficient of 0.25. Secondly, and, more interestingly, we confirm that Desch's law 

is violated, i.e. ( ) ( )21 bnbP
n

+≠
α

μ , as shown, e.g. by Zhou (2001). Nevertheless, instead of a 

polynomial dependence on n, we find that a square root aw can be established, i.e. 

( ) ( )201 cncP
n

+≈ ρμ
α

. Our data give 71.11 ≈c , again slightly less than the asymptotic 

computation by Hilhorst (2005), who obtained 77.11 ≈= πc . Fig. 8 features a log-log plot to 

emphasize such result. We note that the Lewis law and such law allow the establishment of a 

weakly n-dependent relationship such as ( ) ( )[ ]2
nn

PA
αα

μμ ∝ , which is re-ensuring and self-

consistent at least in terms of dimensional analysis. Moreover, this agrees with the asymptotic result 

for large n, ( ) ( )[ ]2
4
1

nn
PA

αα
μ

π
μ =  , which descends from the fact that, as shown in Hilhorst 

(2005), cells tends to a circular shape.  

In the intermediate range ( 25.0 << α ), we have that the Lewis law and the square root law 

are not verified, and, quite naturally, the functions ( )
n

A
α

μ  and ( )
n

P
α

μ  get more and more 

similar to their Poisson-Voronoi counterparts as α  increases.  

A very interesting result is that for all values of α , ( ) ( ) ( )
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ccc ), whereas the ensemble mean estimators restricted to the 

other polygons are biased (positive bias for n>6 and negative bias for n<6). The fact that, in 

general, the statistics performed only on the most probable state coincides, at least in terms of 

ensemble mean, with that of the complete set of states, mirrors somehow the equivalence between 

the canonical and microcanonical formulations of the thermodynamics of a system. In this sense, 



the number of sides seem to have the status of a thermodynamic state variable fluctuating about 

n=6, and, hexagons reinforce their status as being the generic polygon in a quite general family of 

Voronoi tessellations.  

Summary and Conclusions 
This numerical study wishes to bridge the properties of the regular square and honeycomb 

hexagonal Voronoi tessellations of the plane to those generating from Poisson point processes, thus 

analyzing in a common framework symmetry-break processes and the approach to uniformly 

random distributions. This is achieved by resorting to a simple parametric form of random 

perturbations driven by a Gaussian noise to the positions of the points around which the Voronoi 

tessellation is created. The standard deviation of the position of the points induced by the Gaussian 

noise is expressed as 0ραε = , where α  is the control parameter, the intensity 0ρ  corresponds 

to having about 0ρ  points, and about the same number of Voronoi cells, inside the unit square, and  

01 ρ  is the natural length scale. We consider as starting points the regular square and honeycomb 

hexagon tessellations with intensity 0ρ , and change the value of α  from 0, where noise is absent, 

up to 5. In this way, the probability distribution of points is in all cases periodic. For each value of 

α , we perform a set of simulations, in order to create an ensemble of points and of corresponding 

Voronoi tessellation in the unit square, and compute the statistical properties of n, A, and P, the 

number of sides, the area and the perimeter of the resulting cell, respectively. The main results we 

obtain can be listed as follows: 

• The symmetry break induced by the introduction of noise destroys the square tessellation, 

which is structurally unstable: already for an infinitesimal amount of noise the most 

common turns out to be a hexagon, whereas the honeycomb hexagonal tessellation is very 

stable and all Voronoi cells are hexagon for finite noise up within a certain range of α  

( 12.0<α ). Interesting signatures of the symmetry break emerge from a linear relationship 

between the standard deviation of the perimeter and the area of the Voronoi cells and the 

parameter α ; 

• Already for a moderate amount of Gaussian noise (say 5.0>α ), memory of the specific 

initial unperturbed state is lost, because the statistical properties of the two perturbed regular 

tessellations are indistinguishable; 

• In the case of perturbed square tessellation, for a specific intensity of the noise determined 

by 25.0≈= mαα , it is possible to minimize the mean perimeter-to-area ratio of the 



Voronoi cells, whereas by choosing 75.0≈= Mαα  we obtain the maximum perimeter-to-

area ratio for both perturbed tessellations;     

• For large values of α  (say )2>α , quite expectedly, the statistical properties of the 

perturbed regular tessellations converge, both in terms of ensemble mean and fluctuations,  

to those of the Poisson Voronoi process with the same intensity, since the points generating 

the tessellations are practically randomly and uniformly distributed in the plane;   

• For all values of 0>α , the 2-parameter gamma distribution does a great job in fitting the 

distribution of sides, area, perimeters of the Voronoi cells, the only exceptions being the 

singular distributions obtained for n in the case of perturbed honeycomb tessellation for 

12.0<α ;  

• For all values of 0>α  the ensemble mean of mean number of sides, area and perimeter 

(except the latter for 5.0<α ) of the cells are remarkably constant, and the most common 

polygons result to be hexagons, whereas the ensemble mean of the standard deviations of 

these quantities increase steadily, in agreement with the transition to a more extreme random 

nature of the tessellation;  

• The geometrical properties of n-sided cells change with α  until the Poisson-Voronoi limit is 

reached for 2>α ; in this limit the Desch law for perimeters is confirmed to be not valid 

and a square root dependence on n, which allows an easy link to the Lewis law for areas, is 

established; 

• The ensemble mean of the cells area and perimeter restricted to the hexagonal cells 

coincides with the full ensemble mean; this might imply that the number of sides acts as a 

thermodynamic state variable fluctuating about n=6, and this reinforces the idea that 

hexagons, beyond their ubiquitous numerical prominence, can be taken as generic polygons 

in 2D Voronoi tessellations. 

In previous works much larger densities of points have been considered – up to several million 

(Tanemura 2003). In this work, those numbers would be rather inconvenient because we perform a 

parametric study of ensemble runs. Nevertheless, we wish to emphasize that the choice of 0ρ  does 

not alter any of the result on the ensemble mean of statistical properties of n, A, and P. In fact,  for 

all values of α , and not only in the Poisson-Voronoi limit, as discussed in the paper and verified in 

several simulations to hold accurately for 0ρ  up to 1000000, ( ) ( ) ( )
n

AAA
ααα

μσμ ,,  scale as 

01 ρ  and ( ) ( ) ( )
n

PPP
ααα

μσμ ,,  scale as 01 ρ , whereas ( )
α

μ n  does not depend on 0ρ . 

Therefore, by multiplying these quantities times the appropriate power of 0ρ , we get universal 



functions. Where, instead, the choice of 0ρ  is more relevant is in the pursuit for a small ratio 

between the ensemble fluctuations and the ensemble mean of the above mentioned quantities, 

because the ratio decreases with 0ρ , as to be expected. A related benefit of a larger value of 0ρ , is 

the possibility of computing the statistics on n-sided cells on a larger number of classes of polygons, 

since the probability of detecting a n-sided polygons decreases very quickly with n.   

We believe that it is definitely worthy to extend this study to the 3D case, which might be especially 

significant for solid-state physics applications, with particular regard to crystals’ defects and 

electronic impacts of vibrational motion in various discrete rotational symmetry classes. 

Nevertheless, a much larger computational cost has to be expected, since a larger number of points 

and a larger computing time per point are required for sticking to the same precision in the 

evaluation of the statistical properties. 



(a) (b)  
Figure 1: Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the number of sides (n) of 
the Voronoi cells. Note that in (a) the number of sides of all cells is 4 (out of scale) for α=0 in the case of regular 
square tessellation. Half-width of the error bars is twice the standard deviation computer over the ensemble. 
Poisson-Voronoi limit is indicated.   
 

(a) (b)  
Figure 2: Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the area (A) of the Voronoi 
cells. Half-width of the error bars is twice the standard deviation computer over the ensemble. Poisson-Voronoi 
limit is indicated. In (b), linear approximation for small values of α is also shown. Values are multiplied times ρ0 
in order to give universality to the ensemble mean results.  
 
 

(a) (b)  

Figure 3: Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the perimeter (P) of the 
Voronoi cells. Half-width of the error bars is twice the standard deviation computer over the ensemble. Poisson-
Voronoi limit is indicated. In (b), linear approximation for small values of α is also shown. Values are multiplied 
times ρ0

½ in order to give universality to the ensemble mean results. 
 



(a) (b)  

Figure 4: Ensemble mean of the area A - (a) -  and of the perimeter P – (b) – of n-sided Voronoi cells. Half-width 
of the error bars is twice the standard deviation computer over the ensemble. Full ensemble mean is indicated. 
Linear (a) and square root (b) fits of the Poisson-Voronoi limit results as a function of n is shown. Values are 
multiplied times ρ0 (a) and ρ0

½ (b) in order to give universality to the ensemble mean results. 
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