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ABSTRACT The ‘‘trophic level enrichment’’ between
diet and body results in an overall increase in nitrogen
isotopic values as the food chain is ascended. Quantify-
ing the diet–body D15N spacing has proved difficult, par-
ticularly for humans. The value is usually assumed to be
13–5% in the archaeological literature. We report here
the first (to our knowledge) data from humans on isoto-
pically known diets, comparing dietary intake and a
body tissue sample, that of red blood cells. Samples were
taken from 11 subjects on controlled diets for a 30-day
period, where the controlled diets were designed to
match each individual’s habitual diet, thus reducing
problems with short-term changes in diet causing iso-

topic changes in the body pool. The D15Ndiet-RBC was
measured as 13.5%. Using measured offsets from other
studies, we estimate the human D15Ndiet-keratin as 15.0–
5.3%, which is in good agreement with values derived
from the two other studies using individual diet records.
We also estimate a value for D15Ndiet-collagen of �6%,
again in combination with measured offsets from
other studies. This value is larger than usually assumed
in palaeodietary studies, which suggests that the pro-
portion of animal protein in prehistoric human diet
may have often been overestimated in isotopic studies
of palaeodiet. Am J Phys Anthropol 149:426–434,
2012. VVC 2012 Wiley Periodicals, Inc.

Light element isotopic analyses of human and animal
body tissues are increasingly used to elucidate dietary
patterns in past and living populations, with applications
in archaeology, ecology, and nutritional epidemiology.
However, the full potential of those analyses remains con-
strained by our limited understanding of the mechanisms
involved in the transfer of the isotopic signature to the
body during the absorption and incorporation of food.
This is particularly the case with nitrogen isotopes, where
there is an observed enrichment between diet and body
(the ‘‘trophic level effect’’ or D15Ndiet-body), resulting in an
increase in d15N as the food chain is ascended (DeNiro
and Epstein, 1981; Minagawa and Wada, 1984; Schoe-
ninger and DeNiro, 1984). Despite its clear empirical suc-
cess as a dietary indicator, we do not yet know metabol-
ically how and where the 15N enrichment between diet
and body occurs. Ecological studies suggest that mam-
mals, fish, birds, reptiles, and insects all have similar
enrichments (Caut et al., 2009), so it seems to be inde-
pendent of the mode of nitrogen excretion, but there has
been little exploration of the cause. Quantifying the
enrichment has proved difficult: large-scale ecological
studies suggest that the enrichment associated with each
trophic level is �13–4%, while small-scale animal feed-
ing experiments show values anywhere between 11.5 and
16% (see review in Caut et al., 2009). In addition to being
poorly quantified and understood, the trophic level effect
also seems capable of quite large variation under a range
of environmental conditions (temperature, altitude, arid-
ity), as well as being potentially affected by physiological
factors such as water stress, starvation and growth, diges-
tive physiology and diet composition (for a review see
McCue and Pollock, 2008).

For isotopic studies of human diet, the resolution of
our interpretations is limited because we do not know
what value to use for the 15N enrichment in humans
(see Hedges and Reynard, 2007). While broad-scale
changes in diet are easily observed in human isotopic
values (Vogel and van der Merwe, 1977; Tauber, 1981;
Buikstra and Milner, 1991; Lubell et al., 1994; Bonsall
et al., 1997; Richards et al., 2003), our lack of knowledge
of the D15Ndiet-body value, and of influencing factors on
this parameter, means that we cannot with confidence
identify isotopic shifts resulting from small-scale dietary
changes. For this, we need to quantify better the
D15Ndiet-body in humans.

QUANTIFYING THE ENRICHMENT

It has been generally assumed that the nitrogen iso-
topic enrichment in mammals, including humans, is
broadly similar, with a D15Ndiet-body value initially taken
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to be about 3% (DeNiro and Epstein, 1981; Minagawa
and Wada, 1984; Schoeninger and DeNiro, 1984; Hare
et al., 1991), but more recently values of up to 5% have
been postulated (Ambrose, 2000; Jenkins and Partridge,
2001; Bocherens and Drucker, 2003; Sponheimer et al.,
2003; Robbins et al., 2005; Caut et al., 2009). General
reviews of the ecological literature for animals ranging
from invertebrates to large mammals and aquatic and
terrestrial species give overall mean D15Ndiet-body values
of 2.5–3.5%, with a high degree of variability, based on
analyses of a range of body tissues (Post, 2002;
McCutchan et al., 2003; Vanderklift and Ponsard, 2003).
A value of around 3% fits with numerous predator–prey
relationships in terrestrial ecological situations (see a
summary in Bocherens and Drucker, 2003).

A large number of controlled animal feeding studies
have been carried out, to attempt to quantify the offset
(see summary in Caut et al., 2009). But for humans, the
situation is more complicated, as there are significant
difficulties in obtaining reliable data on which to base an
estimate of human D15Ndiet-body. A number of human
studies have looked at isotopic variation within popula-
tions depending on self-reported diet type (O’Connell
and Hedges, 1999a; Bol and Pflieger, 2002; Petzke et al.,
2005b), or compared human isotopic variation to esti-
mated diets, either at a population level (Minagawa
et al., 1986; Schoeller et al., 1986; Minagawa, 1992;
Thompson et al., 2011; Valenzuela et al., 2011) or on
household basis (Yoshinaga et al., 1996). A few studies
have compared individuals’ isotopic values to self-
reported dietary records (Petzke et al., 2005a; Hedges
et al., 2009; Huelsemann et al., 2009; O’Brien et al.,
2009; Nash et al., 2012). Most studies of humans have
used hair keratin, and some have used blood proteins
(RBC, plasma, serum). Some short term feeding studies
have measured other samples (such as urine and feces:
Kuhnle et al., in press).

A significant problem with controlled diet isotopic
studies is that of tissue turnover rates. When measuring
the D15Ndiet-body, the tissues usually of interest (e.g., bone
collagen, hair keratin, blood proteins) isotopically reflect
medium or long-term diet (months or years), so that a
short-term dietary intervention study is not possible,
due to issues with tissue turnover and isotopic equilibra-
tion (Jones et al., 1981; Tieszen et al., 1983; O’Connell
and Hedges, 1999a; Ayliffe et al., 2004; Huelsemann
et al., 2009; Petzke and Lemke, 2009). This has long
been recognized, and all robust published controlled ani-
mal feeding studies are of animals raised on a single
diet over a long time period of several years, if not a life-
time. Such a study is not ethically or practically possible
in humans.

Here we report isotopic analyses from humans on
known and controlled diets for a short period, where the
controlled diets were designed to match each individual’s
habitual diet, thus reducing problems with short-term
changes in diet causing isotopic changes in the body
pool. We measured dietary intake and a body tissue sam-
ple, red blood cells (RBCs).

MATERIALS AND METHODS

Samples were collected from healthy subjects taking
part in a 30-day dietary intervention study to develop di-
etary biomarkers during the period of October 2002 to
June 2003. Participants were provided with their habit-
ual diet under controlled conditions for 30 days; blood

samples and duplicate diets were collected. Details of the
study protocol can be found in Tasevska et al., (2005,
2006). The study was approved by the Cambridgeshire
Local Research Ethics Committee (LREC No 02/232) and
all participants gave their full informed written consent.
Samples were archived in a controlled storage facility
(Fisher Bioservice, Bishop’s Stortford, UK) at 2808C for
RBC and 2208C for all other specimens, and analyzed
for this study in 2009–2010.

Subjects

A total of 13 healthy subjects from Cambridgeshire,
UK, were recruited with advertisements. All participants
were medically examined before the beginning of the
study, including an assessment of the individual’s past
and family medical history, details of recent and current
medications, vitamin supplements, and tobacco/alcohol
intake, and a cardiovascular examination. Blood analysis
of fasting plasma glucose and glycated hemoglobin
(HbA1c) was undertaken and all subjects were within the
normal range (fasting plasma glucose \6.1 mmol/l,
HbA1c \ 6%). For this study, only samples from 11 par-
ticipants (five males and six females, aged 23–66 y (39.7
6 14.7 y), with a mean BMI of 25.8 6 4.6 kg/m2; Table
1) were suitable, as the 30-day study period for the
remaining two was not continuous (a brief break for
Christmas).

Study design

For the duration of the study, participants lived in the
volunteer suite of the MRC Dunn Human Nutrition Unit
(Cambridge, UK), where all food provided was prepared
by trained technicians, and all specimens collected and
processed. Participants followed their normal daily rou-
tine but were only allowed to consume foods prepared by
the diet technicians. Subjects weighed themselves daily
on an electric balance without shoes and in light clothing
and recorded their body weight in the study diary. Physi-
cal activity was assessed using a questionnaire validated
by the EPIC study (Wareham et al., 2003). Physical ac-
tivity was recorded in the study diary on a daily basis as
time (minutes) engaged in different type of exercise.
A four-level score (inactive, moderately inactive, moder-
ately active, and active) was assigned by combining
occupational physical activity together with time partici-
pating in higher-intensity physical activities such as cy-
cling, aerobics, swimming, jogging, exercising at a gym
on a regular basis, etc.

Diets

Prior to the study, participants were asked to keep 7-
day food diaries for 4 weeks while living at home.
Weekly interviews with one of the investigators provided
additional information, such as brand names. These data
were used to replicate the habitual diet of each partici-
pant for the duration of the study. From approximately
two-and-a-half times the amount of food expected to be
eaten by the participant, one-half was prepared and one-
half was kept for the preparation of a duplicate meal.
The prepared half was weighed to the nearest gram, la-
beled with the name and the day, and left in a separate
refrigerator for each individual. During the day, partici-
pants helped themselves and returned the uneaten food
to the containers in the refrigerator. The next day, the
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uneaten food was weighed out and the amount of food
eaten was calculated.

Dietary intake was calculated from the UK food-com-
position tables using DINER (Data Into Nutrients for
Epidemiological Research) (Welch et al., 2001). Tea and
coffee were consumed freely during the course of the
study, but participants were asked to keep their intake
consistent and estimated intake was included in the
data analysis. Five of the participants occasionally con-
sumed alcohol; as this was not permitted in the volun-
teer suite, participants consumed alcohol outside the
premises and recorded amount and type. The calculated
dietary intake for alcoholic drinks was also added into
the consumption data obtained in the study.

Duplicate diets were prepared daily for each partici-
pant. All food and drink items (excluding coffee, tea,
alcoholic drinks, water, added salt, and pepper) were
weighed to the nearest 1 g, chopped up and crushed,
mixed with a weighed amount of boiling deionized water,
and homogenized with a Magimix 5100 automatic food
processor, usually for 10–15 min, until a smooth emul-
sion was obtained. Aliquots of each duplicate were stored
at –208C for analysis.

Blood collection, handling, and storage

Blood was sampled twice from each subject, at the
start and in the last week of the study, by a trained
phlebotomist. For one subject (V12), only blood collected
at the end of the study was available for analysis.
Fasting venous blood was collected into 10 ml lithium
heparin monovettes. Within 1 h, the monovettes were
centrifuged, the red blood cells removed from below the
LiHep beads, washed thrice in chilled physiological solu-
tion, and then stored at 2808C prior to analysis.

Isotopic analyses

Duplicate diet samples were analyzed as liquid homog-
enates representative of 24 h food intake for each indi-
vidual’s diet. Eight to twelve days’ diets were analyzed
per subject, from the last half of the study. Samples
were lyophilized and weighed into tin capsules (0.8 mg
per aliquot). Red blood cell samples (0.2 ml) were lyophi-
lized and then weighed into tin capsules (0.8 mg per
aliquot). Diet samples were isotopically analyzed in
duplicate, while blood samples were run in triplicate.

Isotopic analyses were performed using a Costech (Va-
lencia, CA) automated elemental analyzer coupled in
continuous-flow mode to a Thermo Finnigan MAT253
(Bremen, Germany) mass spectrometer at the Godwin
Laboratory, Department of Earth Sciences, University of
Cambridge. Stable isotope concentrations are measured
as the ratio of the heavier isotope to the lighter isotope
relative to an internationally defined standard, AIR
(Hoefs, 1997). Isotopic results are reported as d15N val-
ues in parts per 1000 or ‘‘permil" (%) values, where d15N
5 [(15N/14N sample/

15N/14N standard) 2 1] 3 1,000. Based
on replicate analyses of international and laboratory
standards, measurement errors are less than 60.2% for
d15N.

Statistical analysis

Because of the sample size and distribution of the
data, nonparametric tests were conducted to investigate
differences. The main objective of this study was to
investigate differences in d15N between diet and blood;
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assuming a standard deviation of 10% (higher than
observed in this study) and a sample size of 11, changes
of 15% can be detected with a power (1-b) of 0.9 at a sig-
nificance level of a 5 0.05. Power calculations were per-
formed with G*Power 3.1.2 (Faul et al., 2009). Data
analyses were conducted using Stata 11.2 (Statacorp,
College Station, TX). The bivariate boxplot (bagplot:
Rousseeuw et al., 1999) was prepared in R 2.12.1 (Team,
2009). Unless indicated otherwise, data are given as
mean 6 standard deviation.

RESULTS

Results are shown in Table 1. Overall, the body weight
remained constant throughout the study (75.6 6 15.7 kg
at start vs. 75.8 6 15.6 kg at end; Wilcoxon signed rank
test, P 5 0.56) which suggests that the intake achieved
in the study was a valid reflection of the usual dietary
habits in these volunteers. Weight changed by less than
2% in 10 participants; in one participant, the weight
increased from 63.1 kg to 64.8 kg. However, this can be
explained by normal fluctuations in the body weight,
and changes in activity patterns during the study. Thus
we take this population as being in a good approxima-
tion to steady state. True steady-state conditions are
rarely achieved in free-living individuals, because abrupt
changes in nitrogen balance occur from day to day,
related to changes in dietary intake. Net accumulations
and loss in nitrogen can be as much as 62SE for free-liv-
ing individuals, largely due to day-to-day variations in
dietary nitrogen intake which can take several days to
be reflected in excreted nitrogen (Bingham and Cum-
mings, 1985). Of the 11 subjects, three of the subjects
were physically inactive, three moderately inactive, four
moderately active, and one active. They mostly practiced
cycling, swimming, exercising at the gym, and jogging.

The median diet nitrogen isotopic value for all subjects
was 4.7% (range in subject medians of 4.3–5.2%). The
mean diet nitrogen isotopic value for all subjects was 4.8
6 0.4% (range in subject means of 4.4–5.5%). We inves-
tigated whether daily variation in dietary nitrogen con-
tent would affect the average dietary nitrogen isotopic
value for each subject, since individuals did not consume

the same amount of protein on each of the 30 days of the
study. For nine of the subjects, the difference between
the arithmetical mean d15N and the mean d15N of each
subject’s diets weighted by the nitrogen contribution
from each day’s diet was less than 0.1%, and for two
individuals, the difference was less than 0.2%; overall
there was no statistically significant difference (Wilcoxon
signed rank test, P 5 0.37) between the two means
(Table 1), so we consider that varying nitrogen intake
had little if any quantifiable effect. Total protein intake
and total nitrogen intake were inversely correlated with
diet d15N, although this correlation was only marginally
significant (Spearman rank correlation: q5 20.59, P 5
0.05, and q 5 0.57, P 5 0.07, respectively).

The range of RBC nitrogen isotopic values for all sub-
jects was 7.6–8.9% at the start of the study and 7.4–
8.8% at the end of the study. The median d15NRBC for all
subjects was 8.2% (IQR5 7.9–8.6%) at the start of the
study, and 8.1% (IQR 5 8.0–8.4%) at the end of the
study; the mean d15NRBC for all subjects was 8.3 6 0.5%
at the start of the study, 8.2 6 0.4% at the end of the
study, and 8.2 6 0.4% for the two values averaged. Com-
parison of the d15NRBC of blood taken at the start and
end of the study shows a small decrease (comparison
possible for 10 of the 11 subjects: median difference 5
20.1%, Wilcoxon test, P 5 0.02; Table 1).

The overall difference between blood RBC and diet
d15N (D15Ndiet-RBC) in the population can be calculated in
several ways, depending on whether the mean or median
for the population is used (Table 2). The range of individ-
ual D15Ndiet-RBC is between 2.7 and 4.4%, whichever way
is used, and the average D15Ndiet-RBC for the group is
between 13.3 and 13.6%, with the statistically most
parsimonious value (using the final blood sample
d15NRBC and the median diet d15N) of 13.5% (Fig. 1).
We did not observe any statistically significant difference
between men and women, and no significant correlation
with age or physical activity. The study was carried out
over a period of months, but the sample size was too
small to investigate the possible effects of seasonal
changes in metabolic activity. However, D15Ndiet-RBC and
d15NRBC—but not d15Ndiet—correlated significantly with
BMI (Spearman rank correlations, respectively: q 5

TABLE 2. The D15Ndiet-RBC of the population calculated in different ways, using the mean and median measures of the subjects’
nitrogen isotopic values

Subject
Arith mean
d15Ndiet (%)

Median
d15Ndiet (%)

Blood 2
d15NRBC (%)

Mean
d15NRBC (%)

D15Ndiet-RBC

(mean blood -
mean

diet) (%)

D15Ndiet-RBC

(blood 2 -
mean

diet) (%)

D15Ndiet-RBC

(mean blood -
median

diet) (%)

D15Ndiet-RBC

(blood 2 -
median

diet) (%)

V1 5.5 5.2 8.8 8.9 3.3 3.3 3.7 3.6
V2 4.5 4.8 7.4 7.5 3.0 2.9 2.7 2.7
V5 4.9 4.7 8.3 8.4 3.4 3.3 3.7 3.6
V6 5.1 4.7 7.9 7.8 2.7 2.7 3.1 3.1
V7 4.4 4.5 8.0 8.0 3.7 3.6 3.6 3.5
V8 5.0 4.4 8.1 8.2 3.2 3.1 3.7 3.7
V9 4.4 4.3 7.8 7.8 3.5 3.5 3.5 3.5
V10 4.4 4.4 8.8 8.9 4.4 4.4 4.4 4.4
V11 4.9 4.7 8.5 8.6 3.7 3.7 3.9 3.8
V12 4.7 4.7 8.1 8.1 3.4 3.4 3.4 3.4
V13 5.4 5.2 8.1 8.1 2.8 2.8 2.9 2.9
Mean 4.8 8.2 8.2 3.4 3.3 3.5 3.5
Stdev 0.4 0.4 0.4 0.5 0.5 0.5 0.4
Median 4.9 4.7 8.1 8.1 3.4 3.3 3.6 3.5
IQR 4.5–5.1 4.4–4.8 7.9–8.4 7.9–8.5 3.1–3.6 3.0–3.5 3.2–3.7 3.3–3.7
Max 5.5 5.2 8.8 8.9 4.4 4.4 4.4 4.4
Min 4.4 4.3 7.4 7.5 2.7 2.7 2.7 2.7
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0.73, P 5 0.02; q 5 0.62, P 5 0.04; q 5 20.29, P 5 0.38).
If we exclude those who are obese (BMI [ 30), all three
correlations are non-significant, thus it is possible that
the two obese subjects skew the data. For the nine sub-
jects with BMI \ 30 (nonobese) the mean D15Ndiet-RBC is
13.2%, as compared with 13.4% for all 11 subjects,
using the mean d15N values of diet and RBC.

DISCUSSION

The assumption underlying the premise of this study
is that the controlled diet consumed by subjects over the
30-day study was isotopically similar to their habitual
diets. The study for which these samples were collected
was not designed as an isotopic study, so no considera-
tion was made of isotopic variability in foods. However,
the diets were carefully designed so as to match the com-
position of habitual diets, including the matching of
brands consumed. A small but significant average
decrease of 0.1% in d15NRBC suggests that the study
diets were not isotopically identical to habitual diets
(bearing in mind that each subject’s study diet was spe-
cific to them, so some may have been different and
others not). Red blood cells have a mean in vivo life span
of 120 days (Landaw, 1991), so a median change of
20.1% in d15NRBC over the duration of the 30-day study
suggests that there could be a median difference of
20.4% over 120 days. Thus the measured d15NRBC of
bloods taken at the end of the study may be an overesti-
mate by 10.3% compared with that which would be
measured if the subjects continued on the controlled
diets for several months. Therefore we suggest that the
range of D15Ndiet-RBC values that we derive, of 13.3 to
13.6% (Table 2), should be expanded to be 13.0–3.6%,
but that D15Ndiet-RBC is highly likely to be larger than
13%. For the further discussion in this paper, we use
the value of 13.5%, based on the most parsimonious

value of D15Ndiet-RBC, with the recognition that it may be
a slight overestimate.

Studies have shown that isotopic differences between
diet and animal tissues can vary under different condi-
tions (e.g., Ambrose and DeNiro, 1986; Heaton et al.,
1986; Sealy et al., 1987; Hobson and Clark, 1992; Hob-
son et al., 1993; Gröcke et al., 1997), and that human
nitrogen isotopic values vary under different conditions,
including pregnancy, growth, illness and pathology (e.g.,
Katzenberg and Lovell, 1999; Fuller et al., 2004; Fuller
et al., 2005; Mekota et al., 2006; Waters-Rist and Kat-
zenberg, 2010). Thus it is likely that the offset measured
here will not be universally constant for all humans on
all diets. However, this is the first quantified isotopic
study of the diet to body enrichment in humans on con-
trolled diets, and therefore gives an indication of the
magnitude of the offset that we can expect. We found no
effect of sex or age on D15Ndiet-body offset in these sub-
jects. The observed positive correlation with BMI, driven
by the two obese subjects, is intriguing and requires fur-
ther investigation: the possibility of an effect of differen-
tial bioavailability of nutrients and differential uptake
between individuals may be a factor here, and one that
should be considered further.

Offsets from diet to keratin and collagen

To be able to use this measured diet-body offset for
humans in palaeodietary studies, we must estimate
what it equates to in terms of tissues analyzed in other
studies, such as keratin or collagen. We can combine our
data with that of three other studies, all on North Amer-
ican residents, to derive a value for D15Ndiet-keratin (Ta-
ble 3). Nash et al. (2009) showed a mean increase of
11.5 6 0.6% from RBCs to hair keratin. Kraft et al.
(2008) showed that blood plasma has a higher d15N than
red blood cells by 1.5% on average. Schoeller et al.
(1986) showed a mean increase of 10.3 6 0.7% from
plasma protein to hair keratin. Combining the plasma/
RBC/keratin results from these two latter studies, we
get an estimated offset of 11.8% from RBCs to hair ker-
atin, in fairly good agreement with the value of 11.5%
observed by Nash et al. Our measured D15Ndiet-RBC value
of 13.5% equates to a D15Ndiet-keratin of �15.0% using
the Nash offset, and to �15.3% using the Kraft-Schoel-
ler combined offset (no errors propagated).

Our derived D15Ndiet-keratin value can be compared to
estimates from two studies specifically examining the
offset from diet to hair keratin, based on estimates of di-
etary intake combined with food and hair isotopic analy-
sis (Table 3). Yoshinaga et al. (1996) analyzed 49 males
in Papua New Guinea, in the period 1980–1982.
Through food consumption surveys, food isotopic analy-
sis, and hair isotopic analysis, they derived an estimated
value of 15.0–6.9% for D15Ndiet-keratin based on a calcu-
lated diet for each individual. Hedges et al. (2009) ana-
lyzed 20 females in Fiji sampled in 1999. Through diet
diaries, food isotopic analysis, and hair isotopic analysis,
they derived an estimated value of 14.1 6 0.7% for
D15Ndiet-keratin based on a calculated diet for each individ-
ual. Our measured data with a combination of the Nash-
Jahren-Schoeller offsets gives an estimate of D15Ndiet-ker-

atin of 15.0–5.3%, which falls between the estimated val-
ues from Yoshinaga and Hedges. Studies estimating die-
tary intake at the population level have estimated a
D15Ndiet-keratin of ca. 14.3% (Minagawa et al., 1986;
Schoeller et al., 1986).

Fig. 1. Nitrogen isotopic values of red blood cells and study
diets for each subject. Data for the final blood sample and the
median diet for each individual are shown as a bagplot (Rous-
seeuw et al., 1999): 50% of samples are within the gray area,
the median is marked as a star, the central white region is a
95% confidence region for the depth median of the group, and
the two identified outliers are shown in gray.
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To consider how our data would translate to a D15Ndiet-

collagen offset, we must then consider the offset between
human hair keratin and bone collagen. Three published
studies have measured this in humans, one in a modern
population (10.9 6 0.2%: O’Connell et al., 2001) and
two in archaeological individuals (11.0 6 1.1%:
O’Connell and Hedges, 1999b); 11.0 6 1.4%: (Richards,
2006) (Table 3). There are problems in using such data
(such as the small sample sizes and the large standard
deviations in the two archaeological studies) but it is
noteworthy that all studies have similar mean offsets for
the D15Nkeratin-collagen offset. Adding these corrections to
the estimated D15Ndiet-keratin of 15.0–5.3% derived from
our data and the offsets measured by Nash/Kraft/Schoel-
ler et al., we derive a range of 15.9–6.3% for the
D15Ndiet-collagen offset (again no errors propagated).

As we discuss earlier, the measured d15NRBC may be
an overestimate, and thus the derived values of D15Ndiet-

keratin and D15Ndiet-collagen may also be overestimated.
Possible problems with studies comparing keratin to diet
include issues with growth cycle errors (Williams et al.,
2011). Problems with studies comparing collagen and
keratin include differential time periods represented in
the two tissues (O’Connell et al., 2001; Hedges et al.,
2007). However, even with a very conservative approach,
assuming a D15Ndiet-RBC value of 13%, and using mini-
mum offset values to keratin (Nash study, 10.9%, i.e.,
1r less than the mean), and to collagen (O’Connell 2001
modern study, 10.7%, i.e., 1r less than the mean), our
results suggest a D15Ndiet-collagen offset of 14.6%, which
is at the upper end of the currently accepted range.
These data suggest therefore a larger offset than com-
monly assumed.

We can place the limited human data in the context of
that from other animal studies. All controlled feeding
studies on animals so far have observed isotopic inhomo-
geneity in different tissues, and such isotopic differences
can be substantial (Caut et al., 2009). Other mammalian
studies have shown a similar pattern to that summar-
ized above for humans: whole blood and red blood cells
generally have low nitrogen isotopic values relative to
other tissues, or at the low end of the range, and in com-
parisons of plasma and red blood cells, plasma always
has a higher nitrogen isotopic value, often by more than
1% (Table 4). As regards the magnitude of the offsets,
similar values to our estimates are found for a range of
species in the literature. A number of animal studies
have found D15Ndiet-body differences of greater than 4%
for a variety of tissues (DeNiro and Epstein, 1981;
Hilderbrand et al., 1996; Roth and Hobson, 2000; Spon-
heimer et al., 2003; Arneson and MacAvoy, 2005; Miron
et al., 2006; Caut et al., 2008), and studies of goat, al-
paca, seal and bear have shown differences larger than
5%, up to 6.4% (Kurle, 2002; Felicetti et al., 2003; Spon-
heimer et al., 2003).

Implications of this study for palaeodietary work

Overall, our data suggest that the D15Ndiet-collagen off-
set in this group is ca. 16%, larger than that usually
assumed in the archaeological literature, typically
around 13-5% (Bocherens and Drucker, 2003). Using a
very conservative approach to the data, the estimate is
still ca. 14.6%, at the upper end of the currently
accepted range. Such an observation has implications for
the interpretation of human palaeodiet from isotopic
data: an underestimation of the D15Ndiet-collagen offset
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will lead to an overestimation of the dietary importance
of foods with higher nitrogen isotopic values, usually
higher trophic level foods such as meat, milk and fish.
As Hedges and Reynard (2007) note, using a D15Ndiet-col-

lagen value of 3-4% produces an estimate of dietary ani-
mal protein percentage (as a proportion of total protein
intake) of 60% and sometimes up to 80% for prehistoric
farmers in Europe, which is greater than animal protein
dietary fraction of modern ‘‘developed’’ countries and
twice that of modern ‘‘developing’’ countries (Sluijs et al.;
Frassetto et al., 2000; FAOSTAT, 2012), as well as being
in excess of that consumed by most ethnographically
documented hunter-gatherer populations (Cordain et al.,
2000). If a value of 16% were used as D15Ndiet-collagen off-
set, this would typically reduce the dietary animal pro-
tein intake estimate by about a third to a half, bringing
such estimates for prehistoric farmers in line with die-
tary animal/plant protein ratios in living horticultural/
agricultural populations (Yoshinaga et al., 1996; Fras-
setto et al., 2000; MacIntyre et al., 2002; Muhammad-
Lawal and Balogun, 2007; Hedges et al., 2009; Iyangbe
and Orewa, 2009; Baroudi et al., 2010).

CONCLUSIONS

In 11 subjects consuming their habitual diets under
controlled conditions, we have measured the D15Ndiet-RBC

as 13.5%. This is the first study to measure the
D15Ndiet-body offset in humans on controlled diets of
known isotopic composition. Using measured offsets from
other studies, we estimate the human D15Ndiet-keratin as
15.025.3%, which is in good agreement with estimates
derived from the two other studies using individual diet
records (Yoshinaga et al., 1996; Hedges et al., 2009). We
also derive a value for D15Ndiet-collagen of �6%, larger
than usually assumed in palaeodietary literature. This
larger value goes some way to resolving the conundrum
of interpretations of very high animal protein intake in
isotopic studies of prehistoric farmers—we suggest that
this has often been overestimated. We advocate that die-
tary interpretations of previously published archaeologi-
cal human isotopic data are reconsidered in the light of
our work.
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