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This paper presents a new image segmentation algorithm
(called FDGA-Seg) based on a combination of fuzzy
logic, multiagent systems and genetic algorithms. We
propose to use a fuzzy representation of the image site
labels by introducing some imprecision in the gray tones
values. The distributivity of FDGA-Seg comes from
the fact that it is designed around a MultiAgent System
(MAS) working with two different architectures based
on the master-slave and island models. A rich set of
experimental segmentation results given by FDGA-Seg
is discussed and compared to the ICM results in the last
section.
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1. Introduction

Image segmentation is a critical step of any im-
age analysis application, it has a significant in-
fluence on the quality of subsequent treatments
as it isolates and extracts the pertinent features
needed by image analysis processes. It consists
of partitioning the image into a set of disjoint
regions [15]. The union of such regions gives
the whole original image. Image segmentation
is a wide-ranging domain with a rich literature
describing unnumbered set of methods.

Image segmentation based on the Markov Ran-
dom Field (MRF) is among the pioneers and
very reliable approaches. It has been sub-
ject to a large list of publications since three
decades [13, 2, 9, 10, 17]. The Besag’s It-
erated Conditional Modes (ICM) [2] and the
Simulated Annealing (SA) [13, 19] are two par-
ticularly interesting MRF-based segmentation

methods. Starting with a sub-optimal config-
uration, the ICM maximizes the probability of
the segmentation field by deterministically and
iteratively changing pixel classifications. The
ICM is computationally efficient [10], but its
convergence depends strongly on the initial-
ization. Theoretically, SA always converges
to the global optimum [13]. However, SA re-
mains a computationally intensivemethod com-
pared to ICM [10]. Other approaches based on
single-population Genetic Algorithms (GAs)
[14, 16, 1, 3, 5, 22] require heavy use of memory
and a very important convergence time. How-
ever, the process of GA design is significantly
faster than in the case of single population.
Also, evolutionary algorithms have a natural
mapping onto parallel architectures. In various
domains of applications, fuzzy logic [36] tech-
niques (e.g. fuzzy operators, fuzzy measures,
fuzzy criteria, etc.) have been used to model
GA components in order to improve the GA
behavior. Please refer to these two excellent
surveys [24, 8] for a bibliographical synthesis
of hybrid methods and their applications.

In this paper, we combine GAs and fuzzy logic
within a MultiAgent-based framework to define
a new image segmentation approach. Through
the remaining part of this paper, we refer to
this algorithm by FDGA-Seg for Fuzzy Dis-
tributed Genetic Algorithm Segmentation. The
distributivity aspect comes from the fact that
FDGA-Seg is designed around a MultiAgent
System (MAS). The FDGA-Seg is designed to
work with two different MAS architectures (or
models) based on the master-slave and island
models (Section 2.2 gives more details about
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these two models). A MAS is a system com-
posed of several software agents, collectively
capable of reaching goals that are difficult to
achieve by an individual agent or monolithic
system. More details about MASs can be found
in references [32, 33, 11, 31].

The organization of this paper is as follows.
Section 2 presents image and MRF related con-
cepts. It also presents the master-slave and the
island models which support the implementa-
tion of MAS and the GA. Section 3 is the bulk of
this paper, it details the proposed FDGA-Seg al-
gorithm by describing the fuzzy representation,
the genetic operators and the MAS distributed
architecture. Some experimental results are dis-
cussed in Section 4. The conclusion and some
ideas for future extensions of thiswork are given
in Section 5.

2. Related Concepts

2.1. Image and MRF

Let S = {1, .., t, .., MN} be an image which
specifies the gray levels for MN = M × N pix-
els, where M and N are the number of rows and
columns of the image, t is called a site. Given an
initial image X, referenced so far as “the true im-
age”, and another image Y obtained by adding
Gaussian noise process to the true image, Y is
referenced so far as “the observed image”. Both
images are represented by the MN random vec-
tors:
X = (X1, . . . , Xt, . . . , XMN), Xt ∈ {1, . . . , C},
Y = (Y1, . . . , Yt, . . . , YMN), Yt ∈ {0, . . . , 255},
where C is the number of cluster or classes in
the image [10].

The MRF is a discrete stochastic process whose
global properties are controlled by means of lo-
cal properties. The Ising model highlight MRF
and facilitate their use in different domains of
application [20]. In fact, the Ising model is the
best known and the most used in MRF image
segmentation.

In 1924 Ernest Ising tried to use a model, called
thereafter ’Ising model’, in order to explain cer-
tain empirically observed facts about ferromag-
netic materials.

The Ising model considers a sequence (0, . . . , i,
. . . , a) of sites on the line. At each site, there is

small dipole or spine which at any given time is
in up position or in down position. A configu-
ration x = (x0, . . . , xi, . . . , xa) is considered as
a MRF where xi = + if the site i is in a spin up
position and xi = − if the site i is in a spin down
position. Ising defined a probabilitymeasure on
the all possible configurations and assigned an
energy function which is caused by neighbor-
ing spins interactions and the external magnetic
field property. The Ising model is applicable on
two dimension lattice (image).

The Ising model can provide a simple illustra-
tion of a collection of MRFs. Thus, it has been
most investigated and used in MRF. In this pa-
per, we assume the notation introduced in the
paper and we talk about an isotropic second-
order Ising-MRF model. A neighborhood sys-
tem NS = (Ni ⊂ S, i ∈ S) is a subset col-
lection Ni of S verifying: (1) i /∈ Ni and (2)
j ∈ Ni ⇔ i ∈ Nj. A clique c is a set of points
which are all neighbors to each other: ∀r ∈ c
and t ∈ c then r ∈ Nt.

Figure 1. (a) A neighborhood system,
(b) Cliques of the second order neighborhoods.

The structure of the neighborhood system (see
Figure 1.(a)) determines the MRF order. For a
first order, the neighborhood of a site consists
of its four nearest neighbors. In a second or-
der, the neighborhood of a site consists of the
eight nearest neighbors. The clique structures
for a second order MRF are illustrated in Figure
1.(b).

Let X = (X1, . . . , XMN) ∈ Ω, whereΩ is the set
of all possible configurations of the segmented
images. X is a MRF with respect to NS if:

1. ∀x ∈ Ω : P(X = x) > 0

2. ∀t ∈ S x ∈ Ω : P(xi/xj, j ∈ S − {i})
= P(xi/xj, j ∈ Ni)
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X is a MRF on S with respect to NS if and only
if P(X = x) is a Gibbs distribution defined by
the a-priori probability P(X = x) = e−U(x)/Z
where Z =

∑
x∈Ω

e−U(x) is the partition function

and U(x) is the energy function:

U(x) =
MN∑
t=1

∑
r∈Nt

θrδ(xt, xr) (1)

where θr are the clique parameters, δ(a, b) =
−1 ifa = b and δ(a, b) = 1 ifa �= b. P(X = x),
called the a-priori probability follows the Gibbs
distribution.

We assume an isotropic second-order Ising mo-
del, so in equation 1, θ1 = θ2 = θ3 = θ4 = β .
This model uses only cliques that contain no
more than 2 sites having non-zero potentials.
In this paper, a second order model is used,
so the number of clique types is 4 presented
in gray (see Figure 1.(b)). The a-posteriori
probability P(x/y) is a Gibbs distribution given
by: P(x/y) = e−U(x/y)/Zy where Zy is the nor-
malization constant and U(x/y) is the energy
function [17] given in equation 2:

U(x/y) =
MN∑
t=1

[ln(
√

2Πσxt) +
(yt − μxt)2

2σ2
xt

+
∑
r∈Nt

(βδ(xt, xr))] (2)

where β is a positive model parameter that con-
trols the homogeneity of the image regions.

Figure 2. Membership functions for a site-label with
best label �.

Let X = {x1, x2, . . . , xMN} be an image with a
set of classes {1, 2, . . . , C}, and xj be the gray
level of the jth site in X. Let μ(X) be the fuzzy
membership degrees derived from X given by
μ(X)=μ(x1), μ(x2), . . . ,μ(xMN).

μ(.) is obtained by operating a fuzzifier on X.
This fuzzifier performs a mapping from crisp
data values X into a fuzzy set represented by
μ(X). We denote by μi(xj) the fuzzy member-
ship degree of site label xj to fuzzy subset class
i of X (see Fig. 2).

2.2. MAS Architectures

In this subsection, we briefly introduce the
master-slave and island models which are used
to implement the GA and support FDGA-Seg.

In the master-slave model, the MAS is com-
posed of a set of segmentation agents (slaves)
connected to a coordinator agent (master). Dur-
ing the initialization phase, each agent creates a
fuzzy set of images from the observed image us-
ing K−means and a chaotic membership func-
tion. The behavior of each agent depends on
its own initial data. During the evolution cycle,
each agent performs ICM on its own crisp ini-
tial image, and then transmits its initial and seg-
mented images together with the fitness value
to the coordinator agent which selects and saves
the best segmentation, performs genetic opera-
tors, then retransmits the new crisp initial im-
ages to all the segmentation agents for another
segmentation cycle.

Island models are a popular and efficient way
to implement GAs and improve their behaviors
[6, 34, 25]. In this model, the population of
the GA is clustered into a set of subpopula-
tions called demes (or islands). The various
islands maintain some degree of independence.
They explore deferent search spaces, but share
information by means of the migration opera-
tors [39, 38]. Recently, a fuzzy adaptive search
method for island parallel genetic algorithms
is proposed in [28]. They proposed a method
that is able to tune the genetic parameters ac-
cording to the search stage by the fuzzy rea-
soning. In FDGA-Seg, we propose to combine
fuzzy logic concepts with an island-based MAS
model. This combination results in a segmen-
tation mechanism composed of a set of agents
called island agents [37].
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3. FDGA-Seg the Proposed Segmentation
Algorithm

There is potential risk that the distributed evo-
lutionary approach can be attracted to a local
minimum, especially when small size subpop-
ulations and not appropriate initial parents are
used [25]. Such local attraction can be avoided
using a new fuzzy initialization based on the
chaotic system. We propose to use the extreme
sensitivity of chaos to define a fuzzy set which
produces a potentially good starting values in
the initialization of the FDGA-Seg. The in-
trinsic features of the chaotic system allows to
use chaos as a good random number generator
[27, 26].
The simplest non linear mappings is called lo-
gisticmap, it exhibits order-to-chaos transitions.
This one-dimension logistical map is given in
equation 3:

zk+1 = f (μ, zk) = μzk(1 − zk), zk ∈ [0, 1]
(3)

where zk,k=0,1,... is the value of variable z at the
kth iteration, zk represents the extinction rate
where 0 represents extinction and 1 the maxi-
mum viable population. The bifurcation param-
eter μ represents the growth rate of the popula-
tion.

In equation 3, the variable zk represents the ex-
tinction rate where 0 represents extinction and
1 the maximum viable population. The bifur-
cation parameter μ represents the growth rate
of the population. According to equation 3, we
assume that the higher the scale of the growth
rate, the higher the value the population would
take.

The second chaotic system is derived from cha-
otic neuron [29, 35] and produced by a new
chaotic map defined by:

zk+1 = ηzk − 2tanh(γ zk)exp(−3z3
k),η ∈ [0, 1]

(4)
where zk,k=0,1,... represents the internal state of
the neuron, η is a damping factor of nerve mem-
brane and the second term of the equation 4
given by f (zk) = 2tanh(γ zk)exp(−3z3

k) is a
non-linear feedback. So, we use this chaotic
mapping to define a fuzzy suboptimal image
according to a chaotic mapping.

Let x0 = (x0
1, . . . , x

0
s , . . . , x

0
MN) be a crisp ini-

tial image created using K−means. This initial

image will undergo chaotic perturbation by ap-
plying formula 5 as follows: for a given site s
selected with a truth degree of 0.005, the site
label x0

s ∈ {1, .., C} will possibly take the fol-
lowing new value:

x0
s = α�C ∗ zks
 + (1 − α)�C ∗ wks
 (5)

For a given z0, the chaotic variables zks , s =
1, 2, . . . , MN are generated by the logistic map
of equation 3 and for a given w0, the chaotic
variables wks , s = 1, 2, . . . , MN are generated
by the chaotic map of equation 4, where ki ∈
{1, . . . , 400} is a randomly generated integer
and α is a parameter in the interval [0, 1].

In a classical definition of a crisp set, an ele-
ment may or may not belong to a set. If the
idea of partial truth is introduced, this concept
may be extended to fuzzy sets. Thus, in fuzzy
logic, an element may be a member of a set to
a certain extent depending on the membership
function which characterizes the set. We can
use this concept in the image representation to
find a robust justification argument.

For example, in classical sets [30], if we want
to classify pixels by their gray values into three
classes: dark, gray and white we define these
sets as:

f (x) = dark if 0 ≤ x ≤ 60, gray if 60 ≤ x ≤
200, and white if 200 ≤ x ≤ 255

But a pixel with gray value 62 is too dark to
be classified as a gray pixel. If by incorporat-
ing fuzziness, we can rewrite the membership
functions as shown in Figure 3. So, there is an
ambiguity to classify the pixel with gray value
62 especially between dark and gray.

Figure 3. Membership functions for dark, gray and
white colors.
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This example shows that the pixels clustering
cannot be resolved using classical approaches.
In fact, a pixel is considered as a crisp element.
It is obtained from the intensity of light of a
scene collected by one or more sensors. A pixel
may be considered as a quantity of matter mod-
elled with some loss of information due to di-
mension reduction.

In this paper, we propose a fuzzy model in order
to mimic how to distribute the information by a
fuzzy classification of an imprecise suboptimal
image. In fact, we suppose that gray tone im-
ages possess ambiguity within each pixel. So,
regions of the initial image may be considered
as fuzzy set. Therefore, the slightly perturbed
images diversify the agents’ initial data, which
allows to reach different solutions in the config-
uration space.

This fuzzy representation gives a large diver-
sification to our distributed approach. This un-
certainty in the initialization information allows
each agent to access to good solutions at a lower
cost.

3.1. Fuzzy Image Representation

We can represent initial images by the fuzzy set:

x0(μs)=
{

�xs if μs > 0.005,

α�C ∗ zks
+(1−α)�C ∗ wks
 else.

with s ∈ {1, .., MN}, and �xs is the best label
found for xs by the K−means rule and μs is a
uniform random number in [0, 1].

Let x0 be the sub-optimal image created using
K−means where x0

s = �xs . In this approach, we
relax from {0, 1} to the interval [0, 1] concern-
ing the assignment K−means rule of x0

s = �xs.

The justification of this hypothesis is that after
dimension reduction of the space of real im-
age, there is a loss of information in the new
image representation. Defined by a fuzzy set,
the fuzzy input image produces a variety of ini-
tial images for the segmentation agents to start
with (see Figure 4). Also, our applied dis-
tributed GA is naturally familiarized with the
fuzziness approach. Indeed, genetic operator
is a Darwinian-based principle of reproduction
which is ’the survival of the fittest’. We can
interpret this concept as a fuzziness process.

Figure 4. The fuzzy initialization of FDGA-Seg.

3.2. The Genetic Operators

3.2.1. The Population or Fuzzy Set

Our population can be obtained from a num-
ber of defuzzifications of a fuzzy initial image.
So, each individual is a crisp initial image and
its gene is defined by a site label belonging
to {1, 2, . . . , C}, which is the alphabet. Each
chromosome is evaluated with a fitness measure
via the energy function given in equation 2.

3.2.2. The Crossover

The crossover exchanges, with a probability of
0.9, genetic data between two parent chromo-
somes to produce offsprings. The parent chro-
mosomes correspond to two crisp initial images
for producing offsprings. For each mating, the
crossover positions (line and column indexes)
are selected randomly (see Figure 5).

Figure 5. The two parents represent the initial images
and the two offsprings are the new initial images. i1, i2,
i3 and j1, j2 are indexes of the cross line points and the

cross column points.
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3.2.3. The Mutation

The mutation is a rare, but extremely important
event in GA. When a site label is mutated, it is
randomly selected with a probability of 0.005
and replaced with another category from the
alphabet. Each individual is considered as a
crisp element that can be obtained by a muta-
tion which is considered as defuzzification. The
mutation phenomena open the door to fuzziness
interpretation of such evolutionary approaches.

3.3. The Master-slave Model

We consider k segmentation agents (slaves)
connected to a coordinator agent (master) as
presented in Figure 6. This FDGA-Seg is an
intensive way to find a very good or the best
segmentation by genetically breeding of a pop-
ulation of initial images over a series of new
generations of input images. The master-slave
architecture of FDGA-Seg is detailed in Algo-
rithm 1.

Figure 6. Communication network of the FDGA-Seg.

Algorithm 1. Step of FDGA-Seg based on master-
slave MAS model.

1. In the initialization phase, each segmentation
agent
• performs K−means on the observed image,
• applies a fuzzification on the K−means out-

put image in order to define the fuzzy initial
image.

• applies a defuzzification to obtain a crisp ini-
tial image.

2. In the evolution cycle,
• each segmentation agent: performs ICMstart-

ing from its own crisp initial image and then
sends it with its segmented image and its fit-
ness segmentation value to the coordinator
agent.

• The coordinator agent:
— receives the messages from the agents,
— saves the best segmentation and its fit-

ness in the variables Best-Segmentation
and U∗ respectively.

— performs the crossover and the muta-
tion and retransmits the new offsprings
to the segmentation agents.

3. The process repeats steps 2 and 3 until a stability
of the system is reached.

3.4. The Island MAS Model

In this model, the population is considered as
a fuzzy set and demes as fuzzy sub sets. This
distributed model can be readily implemented
in parallel computers, in which case, the ad-
vantages of the fuzzy representation are added
to the parallel architecture to drastically reduce
the evaluation number and execution time, and
enhance the functioning of the FDGA-Seg. In-
deed, the fuzzy set definition and the fuzzy logic
can be considered like new strategy that offers a
large diversification of starting data which gives
some freedom in the solution searching activity.

Algorithm 2. The description of the island-MAS.

1. In the initialization phase, each island-agent
• performs K−means on the observed image,
• applies a fuzzification on the K−means out-

put image in order to define the fuzzy initial
image.

• applies a defuzzification to compute a crisp
initial image.

• performs ICM starting from its own crisp ini-
tial image,

• transmits this initial image, to the other island-
agents to define the initial deme.

2. In the evolution cycle, each island-agent:
• receives individuals from the different island-

agents,
• performs aGAon a deme: applies a crossover

on peers of parents and performs a mutation
on one or several individuals,

• performs ICM starting from a good offspring,



Fuzzy Distributed Genetic Approaches for Image Segmentation 227

• updates the best segmented image with its
fitness,

• transmits the new good crisp initial image to
the different island-agents for another seg-
mentation process.

During initialization 4, each island agent per-
forms a defuzzification in order to obtain a pos-
sible individual corresponding to a crisp ini-
tial sub-optimal image from the fuzzy initial
image. Thanks to this migration strategy, the
island agents exchange the judged good indi-
viduals selected among the offsprings (see Al-
gorithm 2). Each island agent will contain a
deme represented by the current good individ-
uals. In the island strategy presented with a
fully-connected model (see Figure 7), within
each deme, a standard sequential GA is exe-
cuted on a set of crisp initial images. However,
each island agent performs GA on a deme in
order to choose a new better crisp initial image.
In fact, the island-MAS shares genetic material
between crisp initial images in order to produce
good initializations.

Figure 7. Communication network of the island-MAS.

At each cycle, each island agent receives the
judged best individuals from the other Island
agents, performs the GA on the current deme,
runs ICM starting from a good enough off-
spring, updates the best segmented image and
then retransmits this new initial image to the
other island agents.

4. Experimental Results

We present the experimental results of the appli-
cation of the proposed FDGA-Seg on synthetic
as well as real data. Results are also compared
to those produced by the ICM. We have used
one value of β which is kept constant through
each segmentation. The segmentation is eval-
uated by both visual examination and energy
function. The observed y is the same starting
discrete data for all algorithms. These experi-
ments are performed by using Builder C++ 6
on a Pentium 4, CPU 2.66 GHz with 256 MB.

In Figure 8, we show a noisy flower image.
It can be seen that different parts in the flower
image are better segmented by FDGA-Seg (sub-
figures c and d) than by ICM (subfigure a), this
is despite the interference and the thinness of
some regions. Table 1 shows minimal values
of the the energy for the examples of Figures
8-12. Also, in the blurred experience of the
word “FUZZY” (see Figure 9), the FDGA-Seg
extracts the characters better than ICM in spite
of the attenuation of this Gaussian blur of the
image.

Experiment Approach U(x∗/y)/MN
Figure 8.(b) ICM −4.0381
Figure 8.(c) FDGA-Seg master-slave −4.9851
Figure 8.(d) FDGA-Seg Island-MAS −4.9674
Figure 9.(b) ICM −5.1557
Figure 9.(c) FDGA-Seg master-slave −5.9341
Figure 9.(d) FDGA-Seg Island-MAS −5.9158
Figure 10.(b) ICM −3.3462
Figure 10.(c) FDGA-Seg master-slave −4.5398
Figure 10.(d) FDGA-Seg island −4.5727
Figure 11.(b) ICM master-slave −3.8780
Figure 11.(c) FDGA-Seg master-slave −4.6350
Figure 11.(d) ICM Island-MAS −4.8273
Figure 12.(b) ICM master-slave −4.1067
Figure 12.(c) FDGA-Seg master-slave −4.9623
Figure 12.(d) ICM Island-MAS −4.9425

Table 1. Minimal values of energy functions and
parameters of the FDGA-Seg.

In Figure 10(a), the cast shadow of a manufac-
tured object has a geometric shape. The two-
class segmentation (see Figure 10) shows again
a better robustness of the FDGA-Seg models
against the speckle noise.
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Figure 8. Segmentation of a noisy real scene.
FDGA-Seg Iterations=50. (a) a flower, (b) ICM result,

(c) FDGA-Seg master-slave result,
(d) FDGA-Seg Island result.

Figure 9. Segmentation of blurred scene. FDGA-Seg
Iterations=50. (a) the blurred scene, (b) ICM result,

(c) FDGA-Seg master-slave result,
(d) FDGA-Seg Island result.

Whereas, ICM fails to enhance the quality of
the segmentation, because the real image vio-
lates the assumed noise model.

The second implementation is the island-MAS.
In Figure 11(a), the observed image represents
blood with a cast shadow of cells having circle
shapes. The two FDGA-Seg results are similar
and better than the ICM one, which is not able
to eliminate well the background noise.

Figure 12(a) shows a noisy scenewhich presents
a half of a fruit. The three color segmentation
of the ICM result cannot extract well the fruit
parts out of its background. However, the re-

Figure 10. Segmentation of a sonar image.
FDGA-Seg iterations=100 and α = 0.

(a) a cylindrical object shadow, (b) ICM result on (a),
(c) FDGA-Seg master-slave result on (a),

(d) FDGA-Seg island result on (a).

Figure 11. Segmentation of a blood image. FDGASeg
iterations= 50. (a) the image, (b) ICM result,

(c) FDGA-Seg master-slave result,
(d) FDGA-Seg Island-MAS result.

sults of FDGA-Seg show the features of the fruit
in two FDGA-Seg results. Also, we show that
our FDGA-Seg decomposes the segmentation
in great objects, while the ICM tries unsuccess-
fully to detail the segmentation.

This FDGA-Seg robustness is due to a great va-
riety of input data obtained by defuzzification
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of the fuzzy initial image. These different start-
ing points permit the different agents to access
any configuration in the solution space.

Figure 12. A three-class segmentation of a natural
scene. FDGA-Seg iterations=50.

(a) the scene, (b) FDGA-Seg master-slave result,
(c) ICM result, (d) FDGA-Seg Island-MAS result.

5. Conclusion

We have introduced a new fuzzy distributed
evolutionary approach for image segmentation.
The competition/cooperation activity is inter-
preted by an iterative fuzzification/defuzzifi-
cation process. In fact, the FDGA-Seg in-
creases the possibilities to find good segmen-
tations across a number of parallel ICM pro-
cesses, each one starts from its own possible
sub-optimal image.

We have defined a new fuzzy representation
of the image used as input discrete data for
the proposed distributed approaches. The re-
trieval process of the judged good information
can be made by parallel deterministic processes
instead of the genetic algorithms because it is
completely clear that the role of the genetic al-
gorithm is to offer good starting points to an
efficient deterministic processes. We can find
in this fuzzy distributed genetic algorithm the
answer to many questions posed in the classical
distributed GA such as the premature conver-
gence and diversity.

This FDGA-Seg can be extended to large appli-
cations and reinforces with advantage the im-
portance of the distribution. In order to assess
the validity and the performance of the FDGA-
Seg, we have applied our MASs on synthetic
and real scenes. The experimental results are
very encouraging and show clearly the robust-
ness and the fast convergence of such approach.
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