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Background and purpose. NO/prostanoid independent, EDHF-mediated hyperpolarization and 

dilation in rat middle cerebral arteries is mediated solely by endothelial cell IKCa. However, when 

the NO-pathway is also active, both SKCa and IKCa contribute to EDHF responses. As the SKCa 

component can be inhibited by stimulation of thromboxane A2 (TxA2) TP receptors and NO has the 

potential ability to inhibit thromboxane synthesis, we investigated whether TxA2 might explain loss 

of functional input from SKCa during NOS inhibition in cerebral arteries. 

Experimental approach Rat middle cerebral arteries were mounted in a wire myograph. 

Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous 

changes in smooth muscle membrane potential and tension. 

Key results Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP 

receptors with either ICI 192,605 or SQ 29,548, did not effect EDHF mediated hyperpolarization 

and relaxation, but in their presence neither TRAM-34 nor apamin (to block IKCa and SKCa 

respectively) individually affected the EDHF response. However, in combination they virtually 

abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, 

furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization 

and relaxation in the combined presence of TRAM-34 and apamin.  

Conclusions and implications In the rat middle cerebral artery, inhibition of NOS leads to a loss of 

the SKCa component of EDHF responses. Either antagonism of TP receptors or block of 

thromboxane synthase restores an input through SKCa. These data indicate that NO normally 

enables SKCa activity in rat middle cerebral arteries. 

 

Keywords: Thromboxane A2, small conductance calcium activated potassium channel, 

intermediate conductance calcium activated potassium channel, large conductance calcium 

activated potassium channel, endothelium derived hyperpolarizing factor, nitric oxide, cerebral 

artery. 
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Abbreviations: 20-HETE, 20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid; BKCa, large 

conductance calcium activated potassium channel; CYP450, cytochrome P450; EDHF; 

endothelium-derived hyperpolarizing factor; EETs; epoxyeicosatrienoic acids; HETEs, 

hydroxyeicosatetraenoic acids; IKCa, intermediate conductance calcium activated potassium 

channel; NO, nitric oxide; NOS, nitric oxide synthase; ODQ, 1H-(1,2,4)oxadiazolo(4,3-

a)quinoxalin-1-one; PKG, protein kinase G; SKCa, small conductance calcium activated potassium 

channel; TxA2, thromboxane A2; TP, thromboxane A2 receptor;  
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Introduction 

In rat middle cerebral arteries treated with a NO synthase (NOS) inhibitor (L-NAME), blockade of 

endothelial cell intermediate conductance calcium activated potassium channels (IKCa) alone is 

sufficient to block smooth muscle hyperpolarization and relaxation due to endothelium-derived 

hyperpolarizing factor (EDHF: (McNeish et al., 2005, Marrelli et al., 2003). This is in contrast to 

peripheral arteries, where EDHF mediated responses are only abolished by the combined inhibition 

of both small conductance calcium activated potassium channels (SKCa) and IKCa (Busse et al., 

2002). A number of studies with peripheral arteries have provided functional, electrophysiological 

and immunohistochemical data showing that SKCa and IKCa channels are expressed only within the 

endothelium (Burnham et al., 2002, Bychkov et al., 2002, Walker et al., 2001). We recently 

investigated if the apparent solitary role of IKCa in the EDHF response of rat middle cerebral 

arteries reflected an absence of SKCa channels. Surprisingly in the light of the functional data, but in 

common with peripheral arteries, both IKCa and SKCa channels were demonstrated in the 

endothelium (McNeish et al., 2006).  

The relative contribution from SKCa and IKCa channels to the EDHF response is altered by arterial 

stimulation. In rat mesenteric arteries, during smooth muscle contraction evoked by phenylephrine, 

block of endothelium-dependent hyperpolarization and relaxation requires inhibition of both 

endothelial SKCa and IKCa, but in unstimulated vessels (where there is no contraction to reverse) 

inhibition of SKCa  alone is sufficient to block EDHF-mediated hyperpolarization (Crane et al., 

2003). In contrast to mesenteric arteries, arterial stimulation may not regulate KCa function in 

middle cerebral arteries, as increases in stretch-induced tension did not alter SKCa input (McNeish et 

al., 2006). However, basal release of NO suppresses myogenic tone and an ability to elaborate NO 

is associated with maintained SKCa input to EDHF-evoked hyperpolarization in this artery. It is only 

after inhibition of NO synthase that the contribution of SKCa is lost, with EDHF responses 

becoming entirely reliant on IKCa (McNeish et al., 2005, McNeish et al., 2006) .  
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Although NO may suppress EDHF activity under some circumstances, these two separate dilator 

pathways do operate simultaneously in many arteries, including the rat middle cerebral artery 

(Zygmunt et al., 1998, Feletou and Vanhoutte, 2006, McNeish et al., 2006), but it is not clear how 

NO may alter SKCa activity. In non-vascular smooth muscle from the rat, there is evidence that NO 

can directly stimulate SKCa channel function (Geeson et al., 2002). Basal release of NO may also 

protect SKCa channel function indirectly. For example, NO may suppress an inhibitory mediator for 

the SKCa channel (and thus the EDHF response) such as the potent vasoconstrictor 20-HETE. 20-

HETE does inhibit the EDHF response in small porcine coronary arteries (Randriamboavonjy et al., 

2005) and NO can inhibit the synthesis of 20-HETE, by binding to the heme group of  cytochrome 

P450 (CYP450) (Minamiyama et al., 1997). Another mediator that could potentially affect the 

EDHF response and in particular the SKCa channel is thromboxane A2 (TxA2). In rat mesenteric 

resistance arteries, stimulation of TxA2 receptors (TP receptors) with U46619 attenuates SKCa 

function (Crane and Garland, 2004).  NO has also been shown to inhibit the synthesis of TxA2, 

again by an interaction with a heme active site, this time in thromboxane synthase (Wade and 

Fitzpatrick, 1997). Indeed, increased TxA2 signalling has been reported to contribute to 

vasoconstriction and the development of vasomotion induced in middle cerebral arteries by NO 

synthase inhibitors (Lacza et al., 2001, Benyo et al., 1998). Finally, NO may also affect KCa 

function via indirect cGMP mediated effects. So, for example, NO/cGMP causes desensitisation of 

TP receptors via a protein kinase G (PKG) dependent mechanism (Reid and Kinsella, 2003).  

 

Therefore we hypothesised that constriction following inhibition of NOS and the associated loss of 

the SKCa component of agonist induced hyperpolarization may be underpinned by an increase in the 

synthesis and/or function of TxA2 or 20-HETE in the rat middle cerebral artery. The aim of the 

present study was therefore to assess the contribution of KCa channel subtypes to hyperpolarization 
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and relaxation in rat middle cerebral artery smooth muscle cells by stimulating the endothelium 

with the PAR2 receptor agonist, SLIGRL; SLIGRL was the only agent used to stimulate 

endothelium dependent responses as other mediators such as ACh, ADP and bradykinin elicit, at 

best, a weak EDHF response in middle cerebral arteries (unpublished data). Subsequently we 

investigated whether inhibiting TP receptors, thromboxane synthesis or synthesis of 20-HETE can 

restore the SKCa component of the EDHF response that is lost after inhibition of NOS. The ability 

of these treatments to reverse the L-NAME induced depolarisation and constriction was also 

evaluated.   

 

Materials and Methods 

The brain from male Wistar rats (200-300g) was removed and immediately placed in ice-cold Krebs 

solution. Segments of the middle cerebral artery (~2mm long) were dissected and stored in ice-cold 

Krebs for use within 30 min, with similar size vessels used in all experimental groups 

Experimental protocols  

Segments of middle cerebral artery (internal diameter ~150 m) were mounted in a Mulvany-

Halpern myograph (model 400A, Danish Myotechnology) in Krebs solution containing (mM): 

NaCl, 118.0, NaCO3, 24; KCl, 3.6; MgSO47H2O, 1.2; glucose, 11.0; CaCl2, 2.5; gassed with 95% 

O2 and 5% CO2 and maintained at 37C. After equilibration for 20min, vessels were tensioned to 1-

1.5mN (approximates wall tension at 60mmHg). Smooth muscle tension was recorded with an 

isometric pressure transducer and Powerlab software (ADI, Australia). Vessel viability was 

assessed by adding exogenous K
+
 (15-55mM, total K

+
 concentration); only vessels developing 

tension of 3 mN were used. Endothelial cell viability was assessed by the ability of SLIGRL 

(20M) to relax myogenic tone and to hyperpolarize the smooth muscle cell membrane by >15mV.  
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All EDHF responses to SLIGRL (20 M) were obtained in the presence of L-NAME (100 M) to 

block NO synthase (NOS), unless otherwise stated. EDHF-mediated responses were assessed in the 

presence of the KCa channel blockers, apamin (SKCa, 50 nM), TRAM-34 (IKCa, 1M) and 

iberiotoxin (BKCa, 100 nM) The effect of KCa blockers on EDHF mediated responses was also 

assessed after addition of the  TP receptor antagonists SQ 29,548 (10 M) and ICI 192,605 (100 

M); the TxA2 synthase inhibitor, furegrelate (10 M); the cyclo-oxygenase inhibitor, 

indomethacin (10 M) and the phospholipase A2 inhibitor, AACOCF3 (10 M). In some 

experiments endothelium dependent hyperpolarization was assessed in vessels without L-NAME 

and still able to synthesise NO. In these experiments, the effect of the KCa channel blockers was 

assessed on endothelium-dependent hyperpolarization induced by SLIGRL (20 M) in the presence 

of the TP receptor agonist U46619 (5 nM).   Papaverine (150 M) was added at the end of each 

experiment to assess overall tone. All drugs were allowed to equilibrate for at least 20min before 

vasodilator responses were stimulated. In most experiments smooth muscle membrane potential 

(Em) and tension were measured simultaneously as previously described, using glass 

microelectrodes (filled with 2M KCl; tip resistance, 80-120M) to measure Em (Garland and 

McPherson, 1992). 

Data analysis and statistical procedures 

Results are expressed as the means.e.mean of n animals. Tension values are given in mN (always 

per 2mm segment) and Em as mV. Vasodilatation is expressed as percentage reduction of the total 

vascular tone (myogenic tone plus vasoconstrictor response), quantified by relaxation with 

papaverine (150M). Graphs were drawn and comparisons made using one-way ANOVA with 

Tukeys’ post-test (Prism, Graphpad). P≤0.05 was considered significant. 
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Drugs, chemicals, reagents and other materials 

Exogenous K
+
 was added as an isotonic physiological salt solution in which all the NaCl was 

replaced with an equivalent amount of KCl. Concentrations of K
+
 used are expressed as final bath 

concentration. AACOCF3 (1,1,1-Trifluoromethyl-6,9,12,15-heieicosatetraen-2-one) L-NAME (N
G
-

nitro-L-arginine methyl ester), papaverine HCl and U46619 (9,11-Dideoxy-11α,9α-

epoxymethanoprostaglandin F2α) were all obtained from Sigma (Poole, U.K.). Apamin and 

iberotoxin, from Latoxan (Valence, France). ICI 192,605 (4(Z)-6-(2-o-chlorophenyl-4-o-

hydroxyphenyl-1,3-dioxan-cis-5-yl)hexenoic acid) from Tocris (Nottingham, UK). SLIGRL (serine, 

leucine, isoleucine, glycine, arginine, leucine)  from Auspep (Parkville, Australia). Furegrelate and 

SQ 29,548 ([1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-[(phenylamino)carnonyl]hydrazine]methyl]-7-

oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid) from Cayman-Europe (Tallinn, Estonia). TRAM-34 

was a generous gift from Dr H. Wulff (University of California, Davis). All stock solutions (100 

mM) were prepared in dimethylsulfoxide (DMSO) except L-NAME, apamin, iberiotoxin, 

papaverine and SLIGRL which were dissolved in 0.9% NaCl and indomethacin which was 

dissolved in Na2CO3 (1 M); vehicle controls were performed when necessary.  

 

Results 

We have previously reported myogenic tone equivalent to about 14% of the maximal 

vasoconstriction induced in rat middle cerebral arteries by raising [K
+
]o to 55 mM, and that the NO 

synthase inhibitor, L-NAME (100 M) further contracts the artery to circa 70% of this maximum 

associated with smooth muscle depolarization of  12.8  0.7 mV (McNeish et al., 2005).  In the 

current study, in the presence of L-NAME induced vasoconstriction SLIGRL induced EDHF-

mediated hyperpolarization and relaxation of 19.6  3.1 mV and 80.9  6.7 % (n=4, respectively). 

In agreement with our previous studies, this hyperpolarization and relaxation was abolished by the 

selective IKCa channel inhibitor TRAM-34 (to 1.2  0.8 mV and 6.0  1.8%, respectively, n=4).   
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Effect of inhibiting TP receptors or CYP 450 on L-NAME constriction and EDHF mediated 

hyperpolarization and relaxation  

The TP receptor antagonist ICI 192,605 (100 M) reversed depolarization and contraction to L-

NAME (by 12.9  2.9 mV, n=3 and 67.9  6.3%, n=7, respectively), but did not alter the EDHF-

mediated hyperpolarization (of 18.7  3.8 mV, n=7) and relaxation (73.2  8.5%, n=9) to SLIGRL 

(20 M). In the presence of ICI 192,605, EDHF responses were now resistant to block of IKCa with 

1 M TRAM-34 (hyperpolarization of 13.8  2.3 mV and 52.1  8.6% relaxation, respectively n=4) 

and remained insensitive to blockade of SKCa (apamin 50 nM, 11.9  3.5 mV and 59.4  6.1 %, 

respectively, n=5: Figure 1 & 2). However, in combination these blockers markedly attenuated the 

EDHF response (to only 4.0  1.9 mV and 21.7  7.3 %, respectively, n=10, P<0.05: Figure 1 & 2).  

 

The structurally distinct TP receptor antagonist SQ 29,546 (10 M) did not modify L-NAME 

induced tone, but did have similar effects to ICI 192,605 against the EDHF response. In the 

presence of SQ 29,546 EDHF-mediated hyperpolarization (18.0  2.8 mV, n=10) and relaxation 

(74.2  6.3%, n=10) was not significantly altered (16.2 3.2 mV and 63.6  6.2 %, respectively, 

n=7). Neither apamin (50 nM, 14.7  0.7 mV and 64.1  2.3%, respectively, n=3) nor TRAM-34 

(13.2  4.8 mV and 58.1  9.3%, respectively, n=4, P>0.05; Figure 2) had a significant effect on the 

EDHF hyperpolarization and relaxation (Figure 2), but in combination abolished the response (to 

0.5  0.9 mV and 5.0  4.8 %, respectively, n=6, P<0.05; Figure 2). 

 

The non-selective CYP 450 inhibitor, 17-ODYA (10 M) did not alter L-NAME induced 

constriction (total tone 4.2  0.4 mN and 4.0  0.4 mN in the absence and presence of 17-ODYA, 

respectively, n=6), or EDHF mediated hyperpolarization and relaxation (19.8  4.3 mV and 74.9  
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5.8 %, versus 19.0  2.3 mV and 74.4  5.5 %, respectively, n=4). Furthermore, in the presence of 

17-ODYA, TRAM-34 alone still effectively abolished EDHF responses (residual, 2.2  2.4 mV and 

13.1  5.1%, n=4). 

 

Effect of TP receptor stimulation on endothelium dependent hyperpolarization in the absence of L-

NAME 

With NO (basal) synthesis  extant, endothelium dependent hyperpolarization to SLIGRL (20 M) in 

cerebral arteries reflects activation of both SKCa and IKCa channels (McNeish et al., 2006). In the 

present study, under similar conditions, the TP receptor agonist U46619 (5 nM) depolarized and 

contracted the cerebral arteries (by 7.2  2.8 mV and 3.5  0.3 mN; n=5 and n=13, respectively). 

During constriction with U46619, SLIGRL-induced hyperpolarization (25.6  2.7 mV n=13) was 

resistant to apamin (25.6  6.7 mV, n=4) but partially inhibited by TRAM-34 (12.0  1.0 mV, 

P<0.01). The inhibitory action of TRAM-34 was not increased by the additional presence of 

apamin. The remaining, residual hyperpolarization was, however, attenuated by the inhibitor of 

BKCa, iberiotoxin (to 4.6  0.6 mV, n=5, P<0.001; Figure 3). Apamin and TRAM-34 alone or in 

combination did not affect relaxation to SLIGRL (Figure 3), reflecting the direct smooth muscle 

vasodilator action of NO in these vessels. However, a combination of apamin, TRAM-34 and 

iberiotoxin did significantly inhibit SLIGRL-induced relaxation (Figure 3). This probably reflects 

block of NO action, as hyperpolarization (McNeish et al., 2006) and relaxation (unpublished 

observation) to the NO donor DEA-NONOate is inhibited by iberiotoxin in this artery.  

 

 

Effect of inhibiting TxA2 synthase, cyclo-oxygenase or phospholipaseA2 on L-NAME induced tone 

and EDHF responses 
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The thromboxane synthase inhibitor, furegrelate (10 µM), did not affect L-NAME induced 

constriction (5.0  0.4 mN and 5.0  0.4 mN before and after furegrelate, respectively, n=6), 

EDHF-mediated hyperpolarization (25.7  5.5 mV, n=5) and relaxation (76.1  6.8, n=5) evoked by 

SLIGRL (20 M) was also not significantly modified by furegrelate (at 19.1  3.2 mV and 67.8  

5.3%, respectively, n=6) and TRAM-34 did not have any additional effect (14.6  5.9 mV and 67.9 

 8.8%, respectively, n=4). However, in combination apamin and TRAM-34 did attenuate EDHF-

mediated hyperpolarization (to 8.2 ± 1.2 mV, n=5, P<0.05; figure 4), but without significantly 

altering relaxation (64.6 ± 6.3 %, n=5). In the additional presence of the BKCa channel inhibitor, 

iberiotoxin (100 nM) EDHF responses were blocked (hyperpolarization of 0.8 ± 1.6 mV and 

relaxation of 6.4 ± 2.4%, n=4, P<0.001; figure 4 & 5). N.B. control EDHF responses obtained in the 

presence of L-NAME alone (hyperpolarization of 26.0  6.0 mV and relaxation of 84.6  4.7%, 

n=5) were unaffected by the addition of iberiotoxin (hyperpolarization of 21.2  6.3 mV and 

relaxation 75.8  4.2 %, n=5, respectively). 

 

Similar results were obtained after inhibition of cyclo-oxygenase with 10 µM indomethacin. 

Indomethacin did not affect L-NAME induced vasoconstriction or the EDHF response (tone of 5.0 

 0.6 and 4.7  0.4 mN, n=6 and 11, before and after indomethacin, respectively), but when present 

TRAM-34 alone only slightly depressed EDHF-mediated hyperpolarization and relaxation (12.1  

3.2 and 46.6  10.3%, n=10). However, in combination with apamin these responses were 

significantly attenuated (7.4 ± 2.0 mV and 35.5 ± 9.3%, respectively, n=6, P<0.05). The residual 

response was blocked by the addition of iberiotoxin (1.4 ± 1.8 mV and 11.6 ± 3.7%, respectively, 

n=3, P<0.05; Figure 5). 

 

The PLA2 inhibitor AACOCF3 (10 µM) reversed L-NAME-induced tone (85.6 ± 3.8%; Figure 6) 

and inhibited EDHF hyperpolarization and relaxation (27.7 ± 6.0 mV and 72.0 ± 7.4%, n=7, versus 
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9.4 ± 3.5 mV and 32.7 ± 15.0%, n=6, respectively). The residual EDHF response was blocked by 

TRAM-34 alone (5.6 ± 2.8 mV and 4.5 ± 6.5%, respectively, n=4, P<0.05; Figure 6).  

 

Discussion 

These data demonstrate that activation of TxA2 (TP) receptors in the rat middle cerebral artery can 

explain the absence of SKCa input to endothelium dependent hyperpolarization when NO synthesis 

is inhibited. Furthermore, inhibition of NOS may result in an increase in TxA2 synthesis, as 

inhibiting TxA2 synthesis restores SKCa input as well as uncovering a previously unrecognised role 

for large conductance calcium activated potassium channels (BKCa) in the EDHF response. These 

results help to explain our previous observation, that NO protects a functional input from SKCa in 

the rat middle cerebral artery (McNeish et al., 2006) and provide a link to our demonstration that 

the stimulation of TP receptors inhibits SKCa function (Crane and Garland, 2004, Plane and 

Garland, 1996). 

 

EDHF responses in the rat middle cerebral artery are unusual, in being dependent only on activation 

of IKCa. In most vessels that exhibit an EDHF response, inhibition of both SKCa and IKCa channels 

is necessary to block the EDHF response (Busse et al., 2002). Despite this difference, the rat middle 

cerebral artery does exhibit similar morphological features to other vessels i.e. both IKCa and SKCa 

channels are expressed within the endothelium (McNeish et al., 2006) and the endothelium is 

coupled to the smooth muscle layer by myo-endothelial gap junctions (McNeish et al., 2006, 

Sokoya et al., 2006). Furthermore, SKCa channels can contribute to endothelium dependent 

hyperpolarization in the middle cerebral artery, but only when the vessels are still able to synthesise 

NO (McNeish et al. 2006). The NO-dependent contribution of SKCa  to endothelium dependent 

hyperpolarization did not appear to involve a concomitant inhibition of IKCa, because in the 

presence of apamin a normal, maximum hyperpolarization and relaxation was still evoked 



 13 

(McNeish et al., 2006). The mechanism responsible for the apparent ability of NO to protect SKCa 

function is, however, unclear and may involve both a direct effect of NO and downstream signalling 

mediators such as cGMP-linked effects. For example, NO may directly interact with SKCa channels, 

as it does in  smooth muscle of the rat fundus (Geeson et al., 2002). Alternatively or additionally, as 

NO readily interacts with other signalling pathways, particularly those involving heme containing 

enzymes and the metabolism of arachidonic acid, a protective role may reflect an interaction of the 

NO/cGMP pathway with factors elaborated within the artery wall. 

 

One possibility, is an alteration in the synthesis of 20-HETE a potent vasoconstrictor derived from 

arachidonic acid by cytochrome P450 (CYP 450)-dependent enzymes. 20-HETE is involved in 

myogenic constriction/autoregulation  in cerebral vessels (Gebremedhin et al., 2000, Harder et al., 

1994) and is also known to inhibit EDHF mediated responses by reducing KCa function in small 

coronary arteries (Randriamboavonjy et al., 2005). Furthermore, synthesis of 20-HETE can be 

inhibited by NO binding to the heme active site of its synthetic enzyme (Minamiyama et al., 1997). 

However, despite the fact that 20-HETE has a role in myogenic tone we failed to demonstrate any 

input to cerebral constriction after inhibition of NOS. The non-selective CYP 450 inhibitor 17-

ODYA, did not alter the L-NAME induced constriction in the middle cerebral artery. Furthermore, 

17-ODYA also failed to reveal any functional role for the SKCa channel in the EDHF response, as 

TRAM-34 alone was still able to abolish this response. This suggests that NO does not normally 

protect SKCa channel function by inhibiting the synthesis/function of 20-HETE or a related 

metabolite generated by CYP 450-dependent enzymes. 

Another autacoid that could affect KCa channel function is the potent vasoconstrictor and 

platelet activator TxA2. As well as being involved in NOS mediated vasoconstriction in rat middle 

cerebral arteries (Benyo et al., 1998, Lacza et al., 2001, Gonzales et al., 2005), we have previously 

shown that stimulation of TxA2 receptors (TP) results in a fairly rapid loss of the SKCa component 
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of EDHF hyperpolarization and associated relaxation in peripheral arteries of the rat (Crane and 

Garland, 2004). NO does inhibit the formation of TxA2, by binding to the heme active site of TxA2 

synthase (Wade and Fitzpatrick, 1997). It may also inhibit cyclo-oxygenase (Kanner et al., 1992), 

responsible for synthesising the precursor of TxA2 (and other prostaglandins), PGH2. In addition to 

inhibiting synthesis, NO is also known to desensitise the TP receptor through a PKG-dependent 

mechanism (Reid and Kinsella, 2003). In the present study, L-NAME induced constriction was 

significantly reduced by the TP receptor antagonist, ICI 192,605, indicating that receptor activation 

might account for at least some of the constriction following inhibition of NOS. In contrast, a 

structurally unrelated TP receptor antagonist SQ 29,548 failed to alter L-NAME induced 

constriction, suggesting that ICI 192,605 may have been acting non-selectively. Indeed, the 

concentration of ICI 192,605  used in this study (100 M) is known to have effects on PGE2 (EP) 

receptors, which may provide an explanation (Brewster et al., 1988). However, in vessels pre-

treated with L-NAME, both of the TP receptor antagonists uncovered a functional role for the SKCa 

channel in the EDHF response. Simultaneous block of both SKCa and IKCa channels with apamin 

and TRAM-34 was necessary to abolish the response as the functional ability of either channel 

appeared sufficient to elicit adequate hyperpolarization for full EDHF mediated relaxation. 

Therefore, stimulation of TP receptors could explain the loss of the SKCa dependent component of 

endothelium dependent hyperpolarization after inhibition of NOS. This suggestion is supported by 

the observation that activation of TP receptors with U46619 abolishes the SKCa component of 

endothelium dependent hyperpolarization, in arteries still able to synthesise NO. NO dependent 

inhibition of TP receptors appears to depend on activation of PKG (Reid and Kinsella, 2003), which  

may explain our previous observation that ODQ (1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one)  , 

an inhibitor of soluble guanylate cyclase, revealed endothelium dependent hyperpolarization mainly 

dependent upon IKCa (McNeish et al., 2006). The possible involvement of cGMP mediated effects 

in the regulation of SKCa channel function is a subject of ongoing investigation. 
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As stimulation of TP receptors appeared to account for the loss of SKCa function in arteries 

treated with a NOS inhibitor, we investigated if receptor stimulation reflected an increased synthesis 

of TxA2 (or its precursor PGH2, which can also stimulate these receptors) as opposed to an 

inhibitory action of NO/cGMP dependent signalling on TP receptors.  The former appeared to be 

the case, as inhibition of TxA2 synthase with furegrelate or inhibition of cyclo-oxygenase (to inhibit 

synthesis of PGH2 and thus TxA2) with indomethacin each revealed a role for SKCa channels in the 

EDHF response. Neither treatment had any effect on the L-NAME induced constriction, again 

indicating that stimulation of TP receptors does not form a major component of this response.  

Interestingly, pre-treatment with either indomethacin or furegrelate also revealed a role for BKCa in 

the EDHF response. The explanation for this unexpected observation is the subject of ongoing 

investigation. One possibility is that altering the prostanoid profile in the vessel wall uncovers an 

eicosanoid pathway able directly to activate BKCa on the smooth muscle cells in this artery 

(McNeish et al., 2006). 

 

The observation that stimulation of either TP receptors or 20-HETE did not appear to contribute to 

the contraction following inhibition of NOS was surprising, as both signalling pathways have 

previously been implicated in this response (Benyo et al., 1998, Lacza et al., 2001, Harder et al., 

1994). However, our data do indicate that constriction involves a metabolite of arachidonic acid, as 

the PLA2 inhibitor AACOCF3 fully reversed L-NAME-induced constriction. Interestingly, the 

EDHF response was also attenuated by inhibition of PLA2, which is consistent with previous 

observations in the rat middle cerebral artery (You et al., 2002). However, a significant EDHF 

response remained after treatment with AACOCF3 and was abolished by TRAM-34. Overall, these 

observations suggest there are at least two components of the EDHF response in the rat middle 

cerebral artery. One component appears to involve a metabolite of arachidonic acid. A recent study 

by You et al. (2005) appears to rule out the involvement of metabolites of either the lipoxygenase 
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(EETs) or epoxgenase pathways (HETEs) in rat middle cerebral arteries (You et al., 2005), so the 

identity of such an active metabolite remains uncertain. Other components of the EDHF response 

appear to rely solely upon the activation of endothelial KCa channels, and may lead to smooth 

muscle hyperpolarization/relaxation through an increase in extracellular [K
+
] (McNeish et al., 2005) 

and/or a direct transfer of hyperpolarization via myoendothelial gap junctions (McNeish et al., 

2006, Sokoya et al., 2006). 

 

In summary, inhibition of NO synthase leads to pronounced constriction in cerebral arteries that 

appears to involve an unidentified metabolite of arachidonic acid. This metabolite does not appear 

to be either of the potent endogenous vasoconstrictors 20-HETE or TxA2. However, block of the 

SKCa-mediated component of endothelium-dependent (EDHF) hyperpolarization which follows 

inhibition of NOS, can be reversed by inhibiting TP receptors or by reducing the synthesis of TxA2. 

Therefore, increased thromboxane signalling after inhibition of NOS may underlie blockade of a 

fundamental part of the EDHF response in these arteries. The fact that loss of NO signalling can 

disrupt the EDHF pathway and associated vasodilatation, through increased activity of the potent 

vasoconstrictor/platelet activator TxA2, is likely to be of fundamental relevance in disease states 

where NO release is known to be compromised. 
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Figure 1 Original recordings of EDHF mediated relaxation (upper trace) and hyperpolarization 

(lower trace) from a rat middle cerebral artery preconstricted with the NOS inhibitor L-

NAME (100 M) and in the presence of the of the TP receptor inhibitor ICI 192,605 (100 

M; A), also shown is the subsequent effects either of the IKCa channel inhibitor TRAM-34 

(1 M) alone (B) or the combined blockade of IKCa and SKCa channels with TRAM-34 and 

apamin (50 nM; C) on the EDHF response. Hatched lines represent the control tension and 

resting membrane potential, respectively. In the presence of ICI 192,605, EDHF responses 

have a functional input from SKCa as they were only blocked by the combination of TRAM-

34 and apamin. Parallel lines (//) indicate a time break between separate recordings from a 

single vessel. 
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Figure 2 Histograms showing the effect of the structurally distinct TP receptor antagonists 

ICI 193,605 (100 M; A) and SQ 29,548 (10 M; B) on SLIGRL (20 M)-induced, EDHF 

mediated hyperpolarization (left panels) and relaxation (right panels) in rat middle cerebral 

artery preconstricted with the NOS inhibitor L-NAME (100 M). Also shown is the effect 

of the IKCa blocker, TRAM-34 (1 M) and the SKCa blocker apamin (50 nM) both alone and 

in combination. When TP receptors are inhibited, the EDHF response was only blocked by 

combined incubation of both TRAM-34 and apamin indicating that there is a functional 

input from SKCa in this response. **P<0.01 and ***P<0.001 indicate a statistically 

significant difference from control. 
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Figure 3 Histograms showing the effect of the TxA2 mimetic U46619 (5 nM) on 

hyperpolarization (A) and relaxation (B) produced by SLIGRL (20 M) in rat middle 

cerebral arteries that had not been treated with a NOS inhibitor.  Also shown are the effects 

of the IKCa inhibitor TRAM-34 (1 M), the SKCa channel inhibitor, apamin (50 nM) and the 

BKCa inhibitor, iberiotoxin (100 nM) on these responses. TRAM-34 alone inhibited the 

SLIGRL induced hyperpolarization whereas apamin had no effect. Combination of TRAM-

34 and apamin had no additional effect when compared to TRAM-34 alone. The 

combination of apamin, TRAM-34 and iberiotoxin did further attenuate hyperpolarization 

and relaxation. Relaxations were unaffected by apamin and TRAM-34 alone or in 

combination with apamin as these vessels are able to synthesise NO. The NO dependent 

relaxation is affected by iberiotoxin. **P<0.01 and ***P<0.001 indicate a statistically 

significant difference from control. 
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Figure 4 Original traces showing SLIGRL (20 M)-induced, EDHF mediated relaxation 

(upper panels) and hyperpolarization (lower panels) in a rat middle cerebral artery treated 

with the NOS inhibitor L-NAME (100 M) and the thromboxane synthase inhibitor, 

furegrelate (10 M). Also shown is the additional effect of:  (B) the IKCa inhibitor, TRAM-

34 (1 M); (C) the combination of TRAM-34 and the SKCa inhibitor, apamin (50 nM) and 

(D) the combination of TRAM-34, apamin and the BKCa inhibitor, iberiotoxin (100 nM). 

Hatched lines represent the control tension and membrane potential. Only the combination 

of apamin, TRAM-34 and iberiotoxin fully blocked the EDHF response indicating that 

functional inputs from SKCa, IKCa, and BKCa contribute to the EDHF response under these 

conditions. Parallel lines (//) indicate a time break between separate recordings from a single 

vessel. 
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Figure 5 Histograms showing the EDHF mediated hyperpolarization (left panels) and 

relaxation (right panels) in the presence of the NO synthase inhibitor L-NAME (100 M) 

and either: (A) the thromboxane synthase inhibitor, furegrelate (10 M), or (B) the cyclo-

oxygenase inhibitor indomethacin (10 M). Also shown are the effects of the KCa inhibitors, 

TRAM-34 (IKCa; 1 M), apamin (SKCa; 50 nM) and iberiotoxin (BKCa; 100 nM). Only 

combined application of TRAM-34, apamin and iberiotoxin fully blocked the EDHF 

response in the presence of either furegrelate or indomethacin. *P<0.05, **P<0.01 and 

***P<0.001 indicate a statistically significant difference from control. 
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Figure 6 Original traces showing SLIGRL (20 M)-induced EDHF mediated relaxation (upper 

traces) and hyperpolarization (lower traces) in a rat middle cerebral artery treated with the 

NOS inhibitor L-NAME (100 M; A). Also shown is the effect of the PLA2 inhibitor 

AACOCF3 (10 M) on L-NAME induced tone and the EDHF response (B) and the 

subsequent effect of IKCa blocker, TRAM-34 (1 M) on the residual EDHF response (C).  

Hatched lines represent the control membrane potential and tension before addition of 

AACOCF3. AACOCF3 relaxed the L-NAME-induced tone as well as attenuating the EDHF 

response, the residual EDHF response was completely blocked by TRAM-34 alone. Parallel 

lines (//) indicate a time break between separate recordings from a single vessel. 
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