
Strojarstvo 52 (2) 137-145 (2010) G. ŠIMUNOVIĆ et. al., Comparison of the Technological� 137Comparison of the Technological� 137 137

CODEN STJSAO ISSN 0562-1887 
ZX470/1438 UDK 004.896:65.012.122:004.032.26

Original scientific paper
The paper sets out to describe the results obtained by investigating the 
prediction of technological parameters and, indirectly, of technological 
time needed for seam tube polishing. The results of experimental 
investigations were used to define, analyse and compare two models. One 
is a mathematical i.e. statistical model obtained by the application of the 
least squares method and the least absolute deviation method. The other is 
a model based on the application of neural networks. To define the model 
based on the application of neural networks various structures of the back-
propagation neural network with one hidden layer were analysed and the 
optimal one with the minimum RMS error was selected.
The more precise predictions of technological time provided by the 
models supplement the previously defined manufacturing operations, 
replace the predictions based on the technologists’ experience and form 
the basis on which to plan production and control delivery times. The 
work of technologists is thus made easier and the production preparation 
technological time shorter.

Usporedba modela za procjenu tehnološkog vremena
Izvornoznanstveni članak

U radu su opisani rezultati istraživanja vezani uz procjenjivanje tehnoloških 
parametara i, neizravno, tehnološkog vremena poliranja šavnih cijevi. 
Prikupljeni su rezultati eksperimentalnih istraživanja koji su poslužili za 
definiranje, analizu i usporedbu dvaju modela: matematičkog, odnosno 
statističkog modela, za čije je postavljanje primijenjena metoda najmanjih 
kvadrata i metoda najmanjih apsolutnih odstupanja, i modela temeljenog na 
primjeni neuronskih mreža. Za definiranje modela temeljenog na primjeni 
neuronskih mreža analizirane su različite strukture neuronske mreže širenja 
unazad s jednim skrivenim slojem, te je izabrana optimalna s najmanjom 
razinom RMS greške. 
Točnije procjene tehnološkog vremena koje daju modeli upotpunjavaju 
prethodno definirane tehnološke operacije, zamjenjuju iskustvene procjene 
tehnologa i predstavljaju osnovu za planiranje proizvodnje i kontrolu 
rokova isporuke. Na ovaj se način olakšava rad tehnologa i skraćuje vrijeme 
tehnološke pripreme proizvodnje.
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Comparison of the Technological Time Prediction Models

1. Introduction

The application of new scientific approaches that 
will improve the level of knowledge and organisation 
in production preparation sectors has a considerable 
impact upon the final characteristics of products and an 
indirect effect on production costs and times of delivery. 
Integration of computers i.e. computer systems into 
the preparation, manufacturing and managing process 
has exerted a great influence on increasing the level of 
automation, productivity and flexibility in manufacturing 
companies. In this way the human involvement in 
production has been significantly reduced while at the 
same time the human factor’s importance in production 
preparation has remained exceptionally great.

In manufacturing companies in which emphasis is 
placed on technological and operational preparation 
of production i.e. those that keep up to date with the 
technological parameters and the results of technological 
processes, essential prerequisites are set for improving 
the activities in the observed sectors. By the application 
of the systems based on artificial intelligence attempts 
are made to integrate and make commonly accessible the 
accumulated individual knowledge and experience of the 
people working in the production preparation sectors. 
Some authors today deal with the way of collecting the 
technological knowledge, its presentation and application 
to intelligent systems. They use the acquired expert 
knowledge in the Computer Aided Process Planning 
(CAPP) system for the identification (classification) 
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of work pieces, selection of a manufacturing process, 
machines and machining parameters in order to 
shorten the time and minimize the errors in the process 
planning of the machining process [1-3] and some other 
processes like forging [4]. The technological knowledge 
is necessary for determination of the basic material, 
sequence of manufacturing operations, selection of tools 
etc [5-6]. The problem of optimization in the mentioned 
activities is quite important in manufacturing industries. 
One of the up-to-date techniques in the optimization 
procedure is the application of genetic algorithms (GA). 
This optimization technique, which is more efficient than 
the traditional ones (geometric programming, dynamic 
programming, ..) is described and implemented in the 
works of many authors [7-10]. The authors [7] and [8] 
use genetic algorithms in the optimization of cutting 
parameters in turning processes.  They consider a great 
number of constraints such as cutting force, machine 

power, tool reliability, cutting zone temperature etc. 
in order to shorten the time and reduce the operating 
costs. Attempts are made to achieve the same goals by 
a continuous improvement of cutting conditions i.e. by 
the development and application of an on-line intelligent 
system for the monitoring and optimization of cutting 
conditions based on genetic algorithms [9-10]. Besides 
the GA the neural networks (NN) [11-14] are also 
often combined in the procedures of the machining 
parameters optimization. Thus for the selection of 
optimal machining parameters, based on experimental 
data, when the analytical and empirical mathematical 
models are not available, Genetically Optimized Neural 
Network System (GONNS) [12] is proposed. In this 
paper the NN represents the relationship between the 
cutting conditions and machining-related variables, and 
Genetic Algorithm (GA) obtains the optimal operational 
condition. The paper [13] presents the use of neural 

Symbols/Oznake

α – vector of unknown parameters 
– vektor nepoznatih parametara

P – parameter space 
– prostor parametara

(ωi , ζi , yi ) – experimental data 
– eksperimentalni podaci

ωi – weights of data 
– težine podataka

εi – unknown additive errors 
– nepoznate aditivne greške

σ 2 – variance 
– varijanca

Fp – functional 
– funkcional

ø1, � , øn – known real functions 
– poznate realne funkcije

s – given positive vector 
– zadani pozitivan vektor

Di – outside diameter of tube, mm 
– vanjski promjer cijevi

oi – oval shape of the tube after the first phase of
production, μm

– ovalnost cijevi nakon prve faze proizvodnje

gi – gradation of belts for grinding and polishing, grit 
– gradacija remenja za brušenje ili poliranje

ti – condition of belts (time usage of belts), min 
– stanje remenja (vrijeme uporabe remenja)

pi – pressure of belts, A 
– pritisak remenja

e – global error 
– globalna greška

 – network weighted connections 
– prirast težina veza u mreži

α – learning coefficient 
– stopa učenja

 – output state of j-th of this neuron in the s-th layer 
– izlazno stanje j-tog neurona u s-tom sloju

 – parameter that represents the learning error 
– parametar koji predstavlja grešku učenja

RMS – Root Mean Square error 
– korijen srednjeg kvadratnog odstupanja

MS – Mean Square error 
– srednje kvadratno odstupanje

N – number of pairs of the training set
input-output values

– broj parova ulazno-izlaznih vrijednosti
skupa za učenje

yn – neural network n-th output 
– n-ti izlaz neuronske mreže

d n – desired value of a neural network n-th output 
– željena vrijednost n-tog izlaza neuronske mreže

Δwji – value of the difference in the weights of neuron j
and neuron i realized in two steps (k-th and k-1)

– vrijednost razlike težina neurona j prema
neuronu i ostvarene u dva koraka (k-tom i k-1)

ydi – actual (desired) output 
– stvarni (željeni) izlaz

G – function increment 
– prirast funkcije

T – function threshold 
– prag funkcije
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network and genetic algorithm for modelling and optimal 
selection of input parameters of abrasive flow machining 
process. For a multi-criteria optimization of the cutting 
parameters in a turning process the hybrid analytical-
neural network approach [14-15] is also proposed. 
Neural networks are also used for evaluation of the 
machined surface roughness [16] i.e. of the tool wear in 
the machining process [17]. The authors [16-17] compare 
the results obtained by the application of neural networks 
with the results obtained by analytical models. In the 
multi-dimensional problems in which the mathematical 
dependence of the input and output variables cannot be 
easily established, the application of neural networks is 
of considerable importance.

Mathematical modelling is also widely applied in 
prediction of surface roughness [18-19], in prediction 
of cutting forces [20] and in prediction of technological 
time [21].

This work therefore deals with the problem of 
prediction of the seam tube polishing   technological 
time by the application of two approaches for the model 
definition: mathematical, i.e. statistical and the other, 
based on neural networks. Based on experimental research 
results the models are set up, analysed and compared.

2. The problem and investigating goal 
definition

There are two phases in the production of stainless 
steel seam tubes: rolling phase and grinding and polishing 
phase. In the initial phase a stainless steel band of diverse 
width and thickness, depending on the required external 
diameter of the tube, is rolled over a number of vertical 
and horizontal rollers and formed into a tube. Then the 
edges of the rolled tube are heated and prepared for the 
TIG welding in a protective chamber. This is followed by 
the grinding of the raised edges of the weld and calibrating 
of the tube according to the required tolerance of external 
diameter and the required oval shaping. After the weld 
is tested by a non-destructive method and occasional 
technological trials, the tube is rough ground, marked, cut 
to the specified length and taken to a store for the semi-
manufactured products. A planned minimal quantity of 
the tubes of various dimensions is kept in the store.

In most cases (about 95 %) these stainless steel seam 
tubes need additional grinding and polishing. The scheme 
of the grinding and polishing line is given in Figure 1. 
Depending on the customers’ orders the tubes are taken 
from the storage place and the second phase (grinding 
and polishing) follows. Passage through abrasive belts 
and polishing heads and rotation around axis give the 
required cleanliness and polish to the external surface. 
If the required quality is to be reached the worn out 
abrasive belts should be replaced in time. If this is not the 

case the tubes will be sent back for additional treatment 
(II or III phase of polishing) which results not only in the 
loss of time but in the increase of the working order costs 
too. Machining parameters and the time necessary for the 
second phase of production are mostly assessed based on 
experience. The machining time can be calculated on the 
basis of the polishing rate and the polishing rate depends 
on a great number of other parameters of influence.

Therefore one of the goals of this paper is to develop 
a mathematical model for predicting technological 
parameters and, indirectly, technological time of the seam 
tube polishing. Along with this model a processing model 
is developed based on the application of neural networks. 
To establish the model, mathematical approach and neural 
networks have been selected since   the knowledge about 
the problem is available in the form of a set of discrete 
values of the state vector element and the process output 
values. Actual data for setting up the model have been 
collected from 172 work orders over a longer period of 
time in the company Đuro Đaković Welded Vessels Ltd. 
in the production of stainless steel seam tubes.

After the paper was published [21] the research and 
the collection of experimental data continued. By the 
analysis of the experiment data variance a conclusion 
was reached on the importance of factors and factor 
interactions. Therefore, with regard to the model published 
in the paper [21] the factors that are not important have 
been removed.

3. Least squares method modelling 

In setting up the model the linear least squares 
problem was applied i.e. the moving least squares method 
described in the text that follows. The problem is reduced 
to the prediction of parameters in mathematical model. 
Assuming that the given model function is ,

 (1)

which depends on the vector of unknown parameters 
. The unknown parameters 

vector  is to be determined based on experimental 
data , i=1,�,m, m>>n. In the process 
are the values of independent variable and  the 
values of dependent variable, while ωi > 0 denote the 
corresponding data weights. Weights ωi usually depend 
on ξi and γi. In literature such problem is known as the 
parameters prediction problem in a mathematical model 
[22-25].

If assumed that the dependent variables γi contain 
unknown additive errors εi i.e. 

 i=1,�,m, (2)
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the unknown parameters vector is normally to be 
predicted by the minimization of the weighted sum of the 
p-th power 1 ≤ p ≤ ∞ of additive errors εi absolute values, 
i.e. by the minimization of the functional

 (3)

in the parameters space [23-26].
Assuming that the additive errors εi are normally 

distributed anticipating zero and with variance σ 2, it is 
usual to predict the unknown parameters vector  
by the minimization of derivable functional

 (4)

in the parameters  space. What is dealt with in 
this case is the least squares method [22-27].

If the model – function is linear in parameters i.e. if 
it is in the form of

 (5)

where  are known real functions   

i = 1,...,n the functional  can be written in the form

 (6)

where

 

(7)

and

 

(8)

Because the functional , 1 ≤ p ≤ ∞ is convex, in 
general, the sub-gradient methods, that unfortunately 
converge very slowly, are used for its minimization.

This paper treats the problem of the functional (p) 
minimization in case p = 2. The case p = 2 is known under 
the name linear least squares problem or the linear LS 
problem for short. The linear LS problem has been well 
studied in literature so that the stable numerical methods 
based on QR or SVD decomposition of the matrix X are 
used for its solution.

In the paper the moving linear LAD i.e. the linear 
LS method is applied for modelling. In this method 

point  experimental data 

 

and function  are given. It is 
assumed that the aim is to solve the linear LS and the 
linear LAD problem (p) around the point P. At the same 
time the data that are closer to point p are to have stronger 
impact on optimal parameters with regard to the data that 
are further away. For this purpose each datum   
i = 1,..., m with regard to point p = (u, v) is assigned the 
weights  i = 1,..., m where  is 
the given positive vector. 

The minimization problem of the functional is 
considered given by the following expression:

 
(9)

Before establishing the function model it is essential 
to predict the form of the function dependence. This is 
particularly important in multi-dimensional problems. 
Thus it is advisable to present the results of the 
measuring in the three-dimensional coordinate system 
i.e. try to “reduce” it to the three-dimensional one. Upon 
examination of the graph showing research (experiment) 
results some essential predictions can be made for setting 
up the function model. For the case studied in this paper 
it has been found (according to Figure 1) that linear 
members only in the function model will not suffice to 
obtain the prediction function. 

Figure 1. Functional dependence of the rate of polishing on 
outside diameter and oval shape of the tube
Slika 1. Funkcijska ovisnost brzine poliranja o vanjskom 
promjeru i ovalnosti cijevi
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The model-function which is linear in parameters has 
the following general form

 (1)

As mentioned earlier, based on experimental data, 
dependent variable  is defined as the polishing 
rate υi, while the outside diameter of tube Di, oval shape 
of the tube after the first phase of production oi,  gradation 
of belts for grinding and polishing gi, condition of belts 
(time of usage of belts) ti and pressure of belts pi are 
defined as independent variables. Therefore:

,

 

(11)

where the real functions  are defined in the 
following way:

 

Table 1. Model (15) values of coefficients
Tablica 1. Vrijednosti koeficijenata u modelu (15)

Values of coefficients / 
Vrijednosti koeficijenata

Values of coefficients /
Vrijednosti koeficijenata 

α1 = 56.949700 α1 = 0.008406

α1 = 0.087596 α1 = 0.000036

α1 = -0.000134 α1 = 0.014040

α1 = -0.114694 α1 = 0.000976

α1 = -0.001127 α1 = -0.008527

α1 = 0.003533 α1 = 0.020593

α1 = -0.020795 α1 = -0.000070

α1 = -0.002485 α1 = -0.000818

Figure 2 shows the actual and predicted (by a 
mathematical model (15) values of the rate of polishing. 

(12)

so finally according to

 i = 1,..., m (13)

it is possible to write 

 
(14)

It follows that the polishing rate can be written by the 
regression model obtained on the basis of experimental 
results: 

 

(15)

The values of coefficients were obtained from the 
program package Mathematics and are shown in Table 1. 
The overall relative error for the weighted LS is 5.98%.

Figure 2. The rate of polishing actual and predicted (by a 
mathematical model (15)) values
Slika 2. Stvarna i procijenjena vrijednost brzina poliranja 
(matematičkim modelom (15))
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4. Modelling by the application of the 
“back-propagation” neural network

4.1. Selection of the type of neural network – general 
model

The observed research belongs to the problems dealing 
with continuous input and output values i.e. problems 
connected with prediction, thus the back-propagation 
network is applied.

During the process of learning the aim is to enable 
fast convergence and reduce global error given by (16).

 
(16)

In this type of network global error propagates 
backwards through the network all the way to the input 
layer. During the backward pass all weighted connections 
are adjusted in accordance with the desired neural network 
output values. Increase or decrease of the actual values of 
the weights  affects the decrease of global error.

By the application of the gradient descent rules the 
increase in the network weighted connections  can 
be given as:

 

(17)

where α is the learning coefficient.  
Derivations given above can be calculated as:

 
(18)

The value of the weighted connections increase in the 
network  is now:

 
(19)

where α is the learning coefficient,  represents output 
state of the  j -th of this neuron in  the  s –th layer, and the 
parameter  that represents the error and propagates 
backwards through all the layers of the network is defined 
as: 

 
(20)

The learning coefficient should be kept law to avoid 
divergence although this could result in very slow learning. 
This situation is solved by including a momentum term 
into expression (19):

 
(21)

The weights in the network can be updated for 
each learning vector separately or else cumulatively, 
which considerably speeds up the rate of learning 
(convergence).

 Therefore the objective of the learning process in 
a neural network is to achieve the lowest possible level 
of error between the outputs obtained by training the 
network and the actual (desired) results. This is realized 
by adjusting the weights of the neurons, and by accepting 
the objective function, defined below through the 
minimization of the mean square error.

General form vector of the model applicable for a 
neural network input is as follows:

 
(22)

where vector  represents input 

variables, and vector  output 
variables.

4.2. Setting up of the model and the obtained results

In the given problem the model vector has one 
output variable – the rate of polishing. The machining 
technological time is calculated from the rate of polishing. 
Input variables are: tube external diameter, tube oval 
shaping after first phase of production, gradation of the 
belts used for grinding or polishing adjusted on machine 
(conveyor), condition of belts (time of usage) and 
pressure of belts (Table 2).

The RMS error (Root Mean Square error) is taken as 
a criterion for network validation. It is defined as:

 
(23)

where: 

MS - Mean Square error,

N - Number of pairs of the training set input-
output values 

yn - Neural network n-th output
dn - Desired value of a neural network n-th output

The Delta rule is applied for network training. This 
rule is also called Widrow/Hoff rule or the minimum 
mean square rule which has become one of the basic 
rules in the training process of most neural networks. 
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Table 2. Variables with a value range for the proposed model
Tablica 2. Varijable s vrijednostima protezanja za predloženi 
model istraživanja

No Variable / Naziv varijable

Minimum 
value / 

Minimalna 
vrijednost

Maximum 
value /

Maksimalna 
vrijednost

1.
Tube external diameter / 
Vanjski promjer cijevi, 
mm

10 50

2.

Tube oval shaping after 
first phase of production 
/ Ovalnost cijevi nakon 
prve faze proizvodnje, µm

0,04 0.1

3.

Gradation of belts for 
grinding or polishing / 
Gradacija remenja za 
brušenje ili poliranje, grit

80 700

4.

Condition of belts 
(time of usage) / Stanje 
remenja (vrijeme uporabe 
remenja), min

0 1200

5. Pressure of belts / Pritisak 
remenja, A 0.8 2.5

In expression (24) the formula for the Delta rule is 
given:

 (24)

where Δwij is the value of the difference in the weights of 
neuron j and neuron i realized in two steps (k-th and k-1), 
mathematically described by (25):

 (25) 

α is the rate (coefficient) of learning, ycj is the output value 
of neuron j calculated according to transfer function, εi is 
the error given as:

εi = ycj– 
ydi  (26)

where ydi is the actual (desired) output. The error given 
by the expression (26) returns to the network only rarely, 
other forms of error are used instead depending on the 
kind of network.  

For most actual problems various rates of learning 
are used for various layers with a low rate of learning 
for the output layer. It is usual for the rate of learning 
to be set at a value anywhere in the interval between 
0,05 and 0,5, the value decreasing during the learning 
process. While using the Delta rule algorithm the used 
data are to be selected from the training set at a random 
basis. Otherwise frequent oscillations and errors in the 
convergence of results can be expected.

The transfer function used in this study is the Sigmoid 
function calculated according to expression (27).

 
(27)

where G – is the function increment. It is calculated as 
G=1/T. T is the function threshold. This function is often 
used when neural networks are created or investigated. 
The function graph is continuously monotonous. The 
values of this transmission function are in the interval 
[0,1].   

The study of the application of the back-propagation 
network was carried out for a defined data model. By 
alternating the attributes diverse architectures of neural 
networks were studied. The network with the best 
architecture generated the network output with 3,46 % 
rate of RMS error in the training phase and 5,01 % in 
the validation phase. The graph in Figure 3 shows the 
results obtained by this network structure with regard to 
experimental results. 

Figure 3. Presentation of actual and predicted values given by 
NN for the rate of polishing
Slika 3. Prikaz stvarnih i neuronskom mrežom procijenjenih 
vrijednosti brzine poliranja

5. Conclusion

The paper deals with the comparison of the 
technological time prediction models. In the mathematical 
(regression) model, based on experimental results, 
the relative error for the weighted LS is 5.98 %. The 
prediction model, based on neural networks, gives the 
result with the 3.46 % level of RMS error in learning 
phase and 5.01 % in validation phase. The error of 
prediction of technological parameters and technological 
time of seam tube polishing in both models is within 
permitted limits. Namely, the models are acceptable if 
the percentage of prediction does not exceed 10 % since 
according to some earlier research the young and less 
experienced engineers as a rule commit about 10 % error 
in technological process planning when determining the 
rate of machining and technological time.
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The results obtained by the models should be used 
as a starting point for a more precise prediction of the 
possible delivery times and production planning. The 
models will upgrade the activities in technological 
scheduling of production and make the production 
planning jobs easier. 

In future research the aim is to proceed with collecting 
actual data in the production of polished seam tubes and 
thus enlarge the amount of sample data. It is to be expected 
that after learning and training and the application of 
different transmission functions the network will give 
even better results i.e. smaller error and that the time 
deviation of the actual versus planned time by a working 
order will be reduced. It is of course also possible to 
include various models of neural networks into the 
research and through adaptation of their architecture and 
by adjusting   network parameters try to find an optimal 
solution. 

Further research should also aim at optimizing the 
technological process parameters by the application of 
response surface methodology.
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