
Alma Mater Studiorum · Universit

`

a di

Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Generalize Policy
on

Supporting User Scenario

Relatore:
Chiar.mo Prof.
Mauro Gaspari

Presentata da:
Lorenzo Cazzoli

Sessione II
Anno Accademico 2016/2017

a Cazzoli

mio nipote,

che nascerá in questi giorni

Abstract

In this thesis we present a way of combining previously learned robot be-

havior policies of di↵erent users. The main idea is to combine a set of policies,

in tabular representation, into a final sub-optimal solution for the problem all

users have contributed to. We assume that the features/di↵erences of users

are unknown and need to be extracted from the di↵erent policies generated

from same user. This information is used to weight the importance of a set

of actions to sum up two policies.

The proposed approach has been tested on a virtual environment finding

out that the combined policy works as a general policy suitable for all users,

as it always selects actions that are satisfying the users at the border of the

defined sensorial possibilities.

All the assumptions has been finally verified on a real environment finding

out all the limitations of the proposed model.

i

Sommario

La Human-Robot-Interaction é un area di studio che coinvolge diverse

discipline. Le di↵erenti categorie di possibili target condizionano il tipo di

sfida a cui si é posti di fronte. Per esempio, piattaforme robot pensate per i

bambini devono adattarsi alle loro capacitá comunicative e al loro comporta-

mento in continua evoluzione. Al contrario piattaforme per persone anziane

devono adeguarsi ad eventali deficit delle capacitá visive ed uditive. I robot

hanno bisogno di potersi adattare alle capacitá e deficit delle persone con cui

stanno interagendo. Ci si aspetta che nel caso di utenti con problemi alla

vista, il robot usi piú suggerimenti vocali, mentre per utenti con problemi

uditivi siano usate le mimiche facciali e altri movimenti.

Attraverso l’uso del Reinforcement Learning [Sutton and Barto(2011)]

i robot possono facilmente imparare il comportamento corretto per ogni

gruppo di utenti indipendentemente dalle loro di↵erenze sensoriali. Il pro-

blema é che le informazioni imparate dall’interazione con uno di questi non

possono essere usate nel processo di apprendimento di un altro, poiché il

secondo utente potrebbe avere diverse capacitá e quindi non garantire che

le azioni siano percepite nello stesso modo causando gli stessi risultati. Le

policy imparate permettono al robot di comportarsi correttamente solo con

l’utente corrente, ma quando il robot é di fronte a un nuovo utente, deve

aggiornare la sua policy per adattarsi alla nuova situazione. Se i due utenti

non sono troppo diversi, il robot é in grado di generare una nuova policy

a�dabile, mentre, nel caso contrario, il comportamento generato potrebbe

iii

iv

essere fuorviante a causa dell’imprecisione della policy.

Combinando le policy vogliamo superare questo problema garantendo che

il robot si comporti correttamente, con un comportamento sub-ottimale, con

tutti gli utenti incontrati e senza il bisogno di imparare una policy da zero

per i nuovi. Questo fatto é ancora piú importante quando si impara online

interagendo con persone che sono sensibili agli errori e al passare del tempo.

In questo caso la policy combinata é usata per inizializzare il processo di

apprendimento, accelerandolo e limitando gli errori dovuti all’esplorazione

iniziale.

In questa ricerca presentiamo un modo per combinare policy di utenti

diversi precedentemente apprese. L’idea é di combinare un insieme di policy,

rappresentate in forma tabulare, in una soluzione sub-ottimale al problema

a cui tutti gli utenti hanno contribuito. Nel fare ció assumiamo che le carat-

teristiche degli utenti siano sconosciute e quindi necessitino di essere estratte

dalle di↵erenze evidenziate dal comfronto di policy generate interagendo con

lo stesso utente. Le informazioni estratte in questo modo sono usate per

pesare l’importanza delle azioni scelte per l’utente nel processo di policy

combination.

Per iniziare sono state raccolte le policy da utenti simulati che dove-

vano completare il gioco del memory, assistiti da un agente virtuale. Ogni

volta che l’utente cercava una coppia sull’area di gioco, l’agente, che era a

conoscenza della posizione della carta da trovare, lo aiutava suggerendo la

direzione o l’area del tabellone in cui tentare. Per permettere l’adattamento

del comportamento dell’agente, si é utilizzato un algoritmo di apprendimento

chiamato Q-learning insieme alla tecnica ✏-greedy per bilanciare exploration

ed exploitation [Watkins and Dayan(1992)]. La comunicazione é stata imple-

mentata tramine la simulazione di azioni multimodali composte da sguardo,

voce, movimenti della testa ed espressioni facciali.

SOMMARIO v

Un insieme di personas [Schulz and Fuglerud(2012)] é stato generato per

coprire i diversi tipi di utenti e capire i loro bisogni. Tramite le storie di

ogni personas é stato estratto un set di caratteristiche usato per definire il

comportamento degli utenti virtuali. Per esempio un utente sordo ignorerá

tutti i suggerimenti vocali e seguirá solo le altre parti delle azioni multimodali.

La bontá dei risultati ottenuti nelle simulazione dello scenario, ci ha mo-

tivato ad estendere la ricerca con test sullo scenario reale. Questo é stato

realizzato utilizzando una piattaforma touch, su cui sono state disposte le

carte del memory, posizionata di fronte a FurHat, il robot usato per intera-

gire con l’utente. Un gruppo di volontari é stato usato per la raccolta dei

dati, da cui é stata generata la combined policy utilizzata su un gruppo al-

largato di volontari al fine di validare i risultati ottenuti dalle simulazioni con

le personas e quindi l’algoritmo proposto.

La tesi é divisa nei seguenti capitoli: nel capitolo 2 viene fornita una

panoramica delle ricerche correlate; il capitolo 3 introduce le basi teoriche

richieste per lo studio in questione; il capitolo 4 presenta lo scenario utiliz-

zato nei test, la cui implementazione é trattata nel capitolo 5; nel capitolo

6 e 7 sono riportate le scelte e risultati relativi alle simulazioni e↵ettuate

rispettivamente nello scenario virtuale e reale; il capitolo 8 riporta una breve

riflessione conclusiva e le possibili direzioni future della ricerca.

Contents

Abstract i

Sommario iii

Summary of Notation xi

1 Introduction 1

2 Related Work 5

2.1 Transfer of Knowledge . 5

2.2 Composite Agent . 7

2.3 Human Feedback . 7

3 Background & Concept 9

3.1 Policy Generation . 10

3.1.1 Q-learning . 10

3.1.2 SARSA . 11

3.1.3 LSPI . 11

3.2 Policies Combination . 14

3.2.1 User Informations Extraction 14

3.3 Speed Up the Learning . 15

4 Scenario 17

4.1 State Representation . 19

4.2 Action Space . 22

vii

viii CONTENTS

4.3 Reward Function . 25

5 Implementation 27

5.1 Online RL algorithms . 27

5.1.1 Q-learning same as SARSA 27

5.1.2 Online LSPI . 29

5.2 Policy Combination . 31

5.2.1 User Informations Extraction 31

5.2.2 Combination Algorithm 34

5.3 Policy Reuse Adaptation . 36

6 Virtual Simulation 39

6.1 Adaptation of Implementation 39

6.1.1 Virtual Environment 40

6.1.2 Virtual Agent . 40

6.1.3 Fictional User . 41

6.2 Procedure . 44

6.3 Results . 45

6.4 Discussion . 50

7 Human World 55

7.1 Adaptation of implementation 55

7.1.1 User . 56

7.1.2 Central Logic . 56

7.1.3 Touch Screen . 57

7.1.4 Furhat . 58

7.2 Procedure . 58

7.3 Results . 60

7.4 Discussion . 64

8 Conclusion 71

List of Figures 75

CONTENTS ix

List of Algorithms 77

List of Tables 79

A Personas 81

B Suggestion Interpretation 91

C Furhat 93

D Communicate with Furhat 95

Summary of Notation

Capital letters are used for random variables and major algorithm vari-

ables. Lower case letters are used for the values of random variables and for

scalar functions. Quantities that are required to be real-valued vectors are

written in bold and in lower case (even if random variables).

s state

a action

S set of nonterminal states

S

+ set of all states, including the terminal state

A(s) set of action possible in state s

t discrete time step

S

t

state at t

A

t

action at t

R

t

reward at t

⇡ policy, decision making rule

⇡(s) action taken in state s under deterministic policy ⇡

w set of parameters

� basis functions

w

⇡

parameters for the approximated function of ⇡

v

⇡

expected return under policy ⇡

xi

xii CONTENTS

v

⇡

(s) value of state s under policy ⇡

Q̂(s, a, w) approximate value of state-action pair s, a given weight w

↵ learning rate parameter

� discount rate parameter

✏ probability of random action in ✏-greedy policy

 probability of past policy action in policy reuse algorithm

Chapter 1

Introduction

Human-Robot-Interaction is an increasingly studied field with many dis-

ciplines involved. The di↵erent categories of targets influence the type of

challenges that need to be accomplished. For instance, robot platforms de-

signed for children have to adapt to their maturing behavior and commu-

nication abilities. On the other hand, platforms for elderly people have to

accommodate to the digressive visual and hearing capacities. The robots

need to adapt their behavior to the capabilities and deficits of their interac-

tion partners. It is expected that if the user has some visual lack the robot

will use more voice suggestion and in the opposite case, with lacking hearing

abilities, more facials expressions or gestures are required.

Using Reinforcement Learning [Sutton and Barto(2011)] robots can easily

learn the correct behavior for each group of users independently from their

sensorial di↵erences. The problem is that information learned interacting

with one user can’t be used in a learning process of another user because

they presumably have di↵erent capabilities, thus it is not guaranteed that

two actions are perceived in the same way and cause the same results. The

learned policy allows the robot to infer a correct behavior only for the current

user. The way in which the user is interacting and interpreting the agent’s ac-

tions define the problem and the learned behavior. When the robot interacts

1

2 1. Introduction

with a new user it has to update its policy to adapt to the new situation.

If the two users are not too di↵erent, the robot is able to generate a new

reliable behavior policy. Otherwise the generated behavior could be mislead-

ing or frightening due to an inaccurate policy. An agent that has to assist

multiple and di↵erent users has to learn di↵erent behavior for each user. In

addition is required a method to recover already learned behavior for users

whose presence recurs more than one time. This is not immediate because

it need memory to store the learned policies and an identification system to

recognize each user.

Combining policies we can overcome this problem guaranteeing that the

robot behaves properly, with a sub-optimal solution, with all encountered

users and without the need to learn again a policy from scratch for the cur-

rent user. This fact is even more important when the system has to interact

with humans. In this case the combined policy is used to initialize the learn-

ing process, with the target of speed up the learning and limit the initial

wrong suggestions due to exploration.

In the past di↵erent solutions have been tested to speed up the learning

on di↵erent tasks performed by the same user. Examples of there are [Taylor

and Stone(2009), Sherstov and Stone(2005), Fernández and Veloso(2006),

Konidaris and Barto(2006)] where the information learned about a task are

used in the resolution of a similar one. They are all interesting approaches,

but they are not suitable for the problem that we have in question, since we

are working with di↵erent users and they are thought to work in di↵erent

task of the same user.

The policies combination is similar to the combination of the policies per-

formed by an arbitrator on the information learned by the di↵erent subagents.

This combination techniques are used by [Russell and Zimdars(2003), Rosen-

blatt(2000)] in order to find new way to select the optimal action in dis-

tributed scenarios.

3

For a successful combination of the policy is important to understand the

deficits of the user situated in front of the agent. this is important to make

the correct use of policy learned on him. No one would take in considera-

tion the visual suggestions learned during the interaction with a blind user.

Understand the users is vital to understand the di↵erent way on which the

users tackle the problem and this knowledge is used to find a common inter-

pretation that defines the base of a general behavior. In all the situations

where di↵erent users react to di↵erent actions the optimal action need to be

selected between the performed actions. If the scenario include multimodal

actions every user can influence the final action with parts of his behavior,

the parts on which his senses are not lacking in perception.

As in [Gri�th et al.(2013)Gri�th, Subramanian, Scholz, Isbell, and Thomaz,

Thomaz and Breazeal(2008)] human feedback can be used, in the online

learning, to improve the quality of the reward and to drive the training of

the agent. Used in the correct ways they can also accelerate the learning

obtaining good policies even after few rounds.

The goals of this thesis can be summarized in find an implementation of

the policy combination algorithm in order to:

1. Use the same policy for multiple users

2. Decrease the time required for online training.

The rest of the thesis is structured as follow: in chapter 2 an overview of

recent research organized in three categories is given. They are divided on

groups that are concerning the di↵erent phases of our research. In the chapter

3 are introduced the concepts and the theoretical background required for

the studies. The scenario used for the simulation is presented in the chapter

4, while all the implementations are illustrated in the chapter 5. Chapters

6 and 7 are reporting the choices and results of the simulations performed

4 1. Introduction

on the virtual and real world scenarios. The last chapter, the number 8,

presents the conclusion and future works.

Chapter 2

Related Work

In the recent past there aren’t similar works done in the research com-

munities, that is instead focused on di↵erent forms of knowledge transfer.

In this chapter we will first cite some of these and after we will see some

approaches used to solve di↵erent research questions, from which we have

taken inspiration. The last section are works that explain how human feed-

back can be used to improve online training.

2.1 Transfer of Knowledge

The reinforcement learning paradigm is a popular way to address prob-

lems that have only limited environmental feedback, rather than correctly

labeled examples, as is common in other machine learning contexts. While

significant progress has been made to improve learning in a single task, the

idea of transfer learning has only recently been applied to reinforcement

learning tasks. The core idea of transfer is that experience gained in learning

to perform one task can help improve learning performance in a related, but

di↵erent, task. [Taylor and Stone(2009)] present a framework that classifies

transfer learning methods in terms of their capabilities and goals, and then

use it to survey the existing literature, as well as to suggest future directions

for transfer learning work.

5

6 2. Related Work

In the paper of [Sherstov and Stone(2005)] is presented action transfer,

a novel approach to knowledge transfer across tasks in domains with large

action sets. They demonstrate the use of knowledge transfer between related

tasks to accelerate learning with large action sets. The algorithm rests on

the idea that actions relevant to an optimal policy in one task are likely to

be relevant in other tasks. Their technique extracts the actions from the

optimal solution to the first task and uses them in place of the full action set

when learning any subsequent tasks. When optimal actions make up a small

fraction of the domain’s action set, action transfer can substantially reduce

the number of actions and thus the complexity of the problem. However,

action transfer between dissimilar tasks can be detrimental.

[Fernández and Veloso(2006)] contribute Policy Reuse as a technique to

improve a reinforcement learning agent with guidance from past learned sim-

ilar policies. Their method relies on using the past policies as a probabilistic

bias where the learning agent faces three choices: the exploitation of the on-

going learned policy, the exploration of random unexplored actions, and the

exploitation of past policies. Policy Reuse also identifies classes of similar

policies revealing a basis of core policies of the domain. They demonstrate

that such a basis can be built incrementally, contributing the learning of the

structure of a domain.

[Konidaris and Barto(2006)] introduce the use of learned shaping rewards

in reinforcement learning tasks, where an agent uses prior experience on a

sequence of tasks to learn a portable predictor that estimates intermediate

rewards, resulting in accelerated learning in later tasks that are related but

distinct. Such agents can be trained on a sequence of relatively easy tasks

in order to develop a more informative measure of reward that can be trans-

ferred to improve performance on more di�cult tasks without requiring a

hand coded shaping function.

2.2 Composite Agent 7

2.2 Composite Agent

[Russell and Zimdars(2003)] explores a very simple agent design method

called Q-decomposition, wherein a complex agent is built from simpler sub-

agents. Each subagent has its own reward function and runs its own rein-

forcement learning process. It supplies to a central arbitrator the Q-values

for each possible action. The arbitrator selects an action maximizing the

sum of Q-values from all the subagents. This approach has advantages over

designs in which subagents recommend actions. It also has the property that

if each subagent runs the Sarsa reinforcement learning algorithm to learn its

local Q-function, then a globally optimal policy is achieved.

[Rosenblatt(2000)] introduces a new means of action selection via utility

fusion. Distributed asynchronous behaviors indicate the utility of various

possible states and their associated uncertainty. A centralized arbiter then

combines these utilities and probabilities to determine the optimal action

based on the maximization of expected utility. The construction of a utility

map allows the system being controlled to be modeled and compensated for.

2.3 Human Feedback

While Reinforcement Learning (RL) is not traditionally designed for in-

teractive supervisory input from a human teacher, several works in both

robot and software agents have adapted it for human input by letting a

human trainer control the reward signal. [Thomaz and Breazeal(2008)] ex-

perimentally examine the assumption underlying these works, namely that

the human given reward is compatible with the traditional RL reward sig-

nal. This work demonstrates the importance of understanding the human-

teacher/robot-learner partnership in order to design algorithms that support

8 2. Related Work

how people want to teach and simultaneously improve the robot’s learning

behavior.

[Gri�th et al.(2013)Gri�th, Subramanian, Scholz, Isbell, and Thomaz]

argue for an alternate, more e↵ective characterization of human feedback:

Policy Shaping. They introduce Advise, a Bayesian approach that attempts

to maximize the information gained from human feedback by utilizing it as

direct policy labels. With these advancements this paper may help to make

learning from human feedback an increasingly viable option for intelligent

systems.

Chapter 3

Background & Concept

Reinforcement leaning is learning what to do, how to map situation to

action so as to maximize a numerical reward signal. The learner is not

told which actions to take but instead must discover which actions yield the

most reward by trying them. In the most interesting and challenging cases,

actions may a↵ects not only immediate reward but also the next situation

and all subsequent rewards. These two characteristics trial and error and

delayed reward are the two most important distinguish features of reinforce-

ment learning.

Reinforcement learning is di↵erent form supervised learning since it is

not learning from examples provided by a knowledgable external supervisor,

but it is able to learn from its own experience. The agent is located in an

uncharted territory where it must be able to learn independently.

The methods presented in section 3.1.1 and 3.1.2 are today the most

widely used reinforcement learning methods. This is probably due to their

great simplicity: a) they can be applied on-line, with a minimal amount of

computations, to experience generated from interactions with an environ-

ment b) they can be expressed nearly completely by single equations that

can be implemented with small computer programs.

In the rest of the chapter we will introduce the algorithms selected for the

9

10 3. Background & Concept

policy generation (sec 3.1) and the proposed solution for the policy combina-

tion (sec 3.2). In section 3.3 we will see how to use the policy generated with

the policy combination algorithm to speed up the learning of a new user.

3.1 Policy Generation

3.1.1 Q-learning

Developed by [Watkins and Dayan(1992)] it is an o↵-policy TD-control

algorithm. Its simplest form, one-step Q-learning, is defined by

Q(S
t

, A

t

) Q(S
t

, A

t

) + ↵[R
t+1 + �max

a

Q(S
t+1, a)�Q(S

t

, A

t

)]. (3.1)

The learned action-value function, Q, directly approximates q⇤, the opti-

mal action-value function, independent of the policy being followed.

The goal of the agent is to maximize its total reward. It does this by

learning which action is optimal for each state. The action that is optimal

for each state is the action that has the highest long-term reward. This re-

ward is a weighted sum of the expected values of the rewards of all future

steps starting from the current state.

The � factor is a number between 0 and 1 (0 � 1) called discount

factor and trades o↵ the importance of sooner versus later rewards. A factor

of 0 will make the agent considering only the current rewards, while factor

near to 1 will make it take advantage of long-term high rewards.

The factor ↵ is also included between 0 and 1 (0 ↵ 1). It represent

the learning rate and determines to what extent the new acquired information

will override the old information. A factor equal to 0 will make the agent

not learning anything, while a factor of 1 will make the agent consider only

the most recent information. In fully deterministic environment a learning

rate of 1 is optimal, while in stochastic problem is required to decrease the

learning rate to zero.

3.1 Policy Generation 11

3.1.2 SARSA

It is a on-policy TD control method that learn action-value function rather

than state value function. In an on-policy method we must estimate q
⇡

(s, a)

for the current behavior policy ⇡, for all states s and action a. This can be

done using the TD method [Sutton and Barto(2011), chapter 6, p. 219] for

learning v

⇡

.

In Sarsa an episodes consist of alternating sequence of state and state-

action pairs:

Sarsa considers transition from state-action pair to state-action pair and

learn the value of state-action pairs. The update function:

Q(S
t

, A

t

) Q(S
t

, A

t

) + ↵[R
t+1 + �Q(S

t+1, At+1)�Q(S
t

, A

t

)] (3.2)

is performed after every transition from a non terminal state S

t

. If S
t+1 is

terminal then Q(S
t+1, At+1) is defined as zero. This rules uses every element

of the quintuple (S
t

, A

t

, R

t+1, St+1, At+1), that make up a transition from a

state-action pair to the next.

3.1.3 LSPI

Introduced by [Lagoudakis and Parr(2003)], LSPI is an approach to re-

inforcement learning for control problems which combines value-function ap-

proximation with linear architectures and approximate policy iteration. It

learns the state-action value function which allows for action selection with-

out a model and for incremental policy improvement within a policy-iteration

framework.

The state-action value function is approximated using a linear architec-

ture:

Q̂(s, a, w) =
kX

i=1

�

i

(s, a)w
i

= �(s, a)Tw. (3.3)

12 3. Background & Concept

Though maximization of the approximate value over all actions in A(s)

the greedy policy ⇡ can be obtained at any given state s using the formula:

⇡(s) = argmax
a2A(s)

Q̂(s, a) = argmax
a2A(s)

�(s, a)Tw. (3.4)

For finite action spaces this is straightforward, but for very large or contin-

uous action spaces, explicit maximization over all actions in A(s) may be

impractical.

Any policy ⇡ (represented by the basis functions � and a set of parameters

w) is fed to LSTDQ [Lagoudakis and Parr(2003), section 6] along with a set of

samples for evaluation. LSTDQ performs the maximization above as needed

to determine policy ⇡ for each s

0 of each sample (s, a, r, s0) in the sample

set. LSTDQ outputs the parameters w

⇡

of the approximate value function

of policy ⇡ and the iteration continues in the same manner.

LSPI would be best characterized as an o↵-line, o↵-policy learning algo-

rithm since learning is separated from execution and samples can be collected

arbitrarily. On-line and on-policy versions of LSPI are also possible with mi-

nor modifications.

Online LSPI

The crucial di↵erence from the o✏ine case is that policy improvements

must be performed once every few samples, before an accurate evaluation

of the current policy can be completed. In the extreme case, the policy is

improved after every transition, and then applied to obtain a new transition

sample. Then, another policy improvement takes place, and the cycle repeats.

Such a variant of PI1 is called fully optimistic. In general, online LSPI

improves the policy once every several transitions taking the name of partially

optimistic.

A second major di↵erence between o✏ine and online LSPI is that, while

o✏ine LSPI is supplied with a set of transition samples by the experimenter,

1Policy improvement.

3.1 Policy Generation 13

online LSPI is responsible for collecting its own samples, by interacting with

the controlled process.

Tile Coding

Tile coding [Sutton and Barto(2011), chapter 9, p. 225] is an approxi-

mation method that is particularly well suited for e�cient on-line learning.

In tile coding the receptive fields of the features are grouped into exhaustive

partitions of the input space. Each such partition is called a tiling, and each

element of the partition is called a tile. Each tile is the receptive field for one

binary feature.

The computation of the indices of the present features is particularly easy

if grid like tilings are used. If we address a task with two continuous state

variables the simplest way to tile the space is with a uniform two-dimensional

grid:

Given the x and y coordinates of a point in the space, it is computationally

easy to determine the index of the tile it is in. The width and shape of the

tiles should be chosen to match the width of generalization that one expects

to be appropriate.

The number of tilings should be chosen to influence the density of tiles.

The denser the tiling, the finer and more accurately the desired function can

be approximated, but the greater the computational costs.

14 3. Background & Concept

3.2 Policies Combination

In this section we will introduce the idea behind the policies combination

algorithm, that is thought to work with multimodal actions and impaired

users.

Figure 3.1: Graphical representation of the policies combination schema.

The main idea represented in the figure 3.1 consists of creating a black

box able to generate a merged policy from the policies of two di↵erent users.

To make it possible the system needs the user information, an object that

contains information about gaps and keys factor of the relative user.

The process can be applied to more than two users, because a third user

can be combined with the policy obtained from the combination of the first

two and the process can be iterated again on a new user. The final merged

policy is expected to be suboptimal for all the users that has contribute for.

3.2.1 User Informations Extraction

In an environment with impaired users, where not all the parts of the

composite actions can be perceived, it is possible that in two policies of the

same user, the same state is associated to di↵erent actions and both are

correct.

For examples in the situation where the agent is assisting a blind user

3.3 Speed Up the Learning 15

to play the memory card games, in the state where the matching card is

over the card that the user has a propensity for, the agent can perform two

di↵erent actions that are proved to be both corrects. In the first case the

agent can suggest with an head movement the left direction while the voice

is saying “Maybe Up”. In the second case it can point the correct card with

the gaze and say again “Maybe Up”.

Since the user can’t percept visual suggestions, the two action, for him,

are identical. We can use this defect in our advantage to identify the user’s

gap.

Figure 3.2: Graphical view of the user information extraction schema.

The user info extraction algorithm (fig 3.2) compares state by state the

actions selected in the di↵erent policies and from that comparisons extracts

the features of the user.

3.3 Speed Up the Learning

One of the biggest problems of reinforcement learning in online social sce-

narios is the time required for the learning. The rewards are received directly

from the users and a long training phase with many wrong suggestions could

cause frustration and lose of attention. Using Policy Reuse [Fernández and

16 3. Background & Concept

Veloso(2006)], a technique for reinforcement learning guided by past policies,

we can learn the current policies following a past policy and avoid the initial

exploration that slow down the learning.

Policy Reuse algorithm balances among exploitation of the ongoing learned

policy, exploration of random actions, and exploration of the past policies.

The exploration versus exploitation tradeo↵ defines whether to explore un-

seen parts of the space or to exploit the knowledge already acquired during

the learning process.

The main algorithm of Policy Reuse is the PRQ-Learning algorithm, a

method to probabilistically reuse a set of past policies that solve di↵erent

tasks within the same domain. This algorithm is composed by two main

parts: a) ⇡-reuse exploration strategy b) similarity function.

The ⇡-reuse strategy is an exploration strategy able to bias a new learn-

ing process with a past policy. Its goal is to balance random exploration,

exploitation of the past policy, and exploitation of the new policy, as repre-

sented in Equation 3.5.

a =

8
<

:
⇧

past

(s) w.p.

✏� greedy(⇧
new

(s)) w.p. 1�
(3.5)

The ⇡-reuse strategy follows the past policy with probability , and it

exploits the new policy with probability of 1� . As random exploration is

always required, it exploits the new policy with an ✏-greedy strategy.

The similarity function evaluate which are the policies more similar to

the current behavior. These policies will be easily preferred in the future

knowledge exploration.

Chapter 4

Scenario

The scenario has to be a representation of the environment in which we

want to test the e�ciency of the policies combination algorithm. For this

reason it need to include a user, a social agent, and a simple task on which

both user and agent will interact.

Figure 4.1: Picture of the scenario. It is composed by a user a touch screen

with the matching memory game and a social robot.

The task selected for the environment is Memory [Wikipedia(2017)], a

17

18 4. Scenario

card game in which all the card are laid face down on a surface and two

cards are flipped face up over each turn. The object of the game is to turn

over pairs of matching cards. Any deck of playing cards may be used, and

in our case it is composed of 9 pairs of similar card as is shown in the figure

4.2. The figure of the card are monochromatic image of leaf. For each kind

Figure 4.2: Memory deck.

of leaf there is at least a di↵erent pair with similar shape or number of sub-

leaf. This similarity it is thought to reduce their distinctiveness and make

the game harder for a human user. In this way the user, that is trying to

complete the game, is more inclined to pay attention to the agent suggestions.

As physical agent, Furhat (Appendix C) fits perfectly the problem. Furhat

is a back projected robot head capable of speech and head gestures. The

agent is connected with the game in order to know at priori the position of

the matching card. This information allows to Furhat to learn which is the

action that suggest better the card position without the need of remember

and explore the game board.

The last part of our test scenario is the user. The user interact with the

game and agent to complete the task.

4.1 State Representation 19

An import point is the definition of the dynamics of the environment.

User and agent interact between each other to complete the task following

the routine illustrated in the figure 4.3. The routine starts with the pick, by

the user, of the first card. After this action, while the user continue looking

for the right card to complete the pair, the game communicates at the agent

the position of the matching card. When the user decides which is his second

pick the agent detects his gaze and give him a suggestion. The suggestion is

based on the position of the observed card and tries to confirm or move the

attention of the user on the right card. In the end the user is free to follow

or ignore the agent’s suggestion before selecting the second card.

User

selects the

first card

User

decides the

second card

Agent

gives a

suggestion

User

selects the

second card

Figure 4.3: User agent interactions routine.

4.1 State Representation

The states are the shape in which we want to represent the problem. A

first naive representation could be the position of the cards on the board. At

first view it seems a good representation, but if we think about its usability

this state representation become impossible to use. In a board of 9 pairs

of cards the di↵erent disposition of the cards are 18!
2 . With the selected

representation the number of states will be so huge that the learning will

result impossible.

A new idea is to use a spatial representation that allows to store in a state

the information about the spatial relation between two cards. For example

a state can store the information about the relative position of the observed

card and the matching card. In this way, knowing the current state, the agent

has an idea about the position of the second card. For this representation 9

states have been designed.

20 4. Scenario

TOP
LEFT TOP TOP

RIGHT

LEFT MATCH RIGHT

BOTTOM
LEFT BOTTOM BOTTOM

RIGHT

Figure 4.4: Graphical view of the spatial states representation.

The possible states are listed in the figure 4.4. Considering the interac-

tions routine (fig 4.3) we can note that the user decides the second card after

the identification of an observed card. The spatial state is always evaluated

moving the “MATCH” cell of grid of the figure 4.4, and all the grid to fol-

low, over the observed card. The cells of the grid border are extended in

the direction of their label, to cover the entire game board. Checking the

position of the matching card the current state can be founded reading the

label of the grid’s cell that is covering it. Three examples of possible states

are reported in figure 4.5.

Using that representation and adding a state for all the situations where

the number of card turned in the round are di↵erent from 1, we can use 10

states to represent every situation of the game.

4.1 State Representation 21

M

1 O

(a) TOP LEFT

M

O

1

(b) TOP RIGHT

M O

1

(c) LEFT

Figure 4.5: Spatial state examples.

This is an acceptable states space size, but it doesn’t encode any infor-

mation about the game progress. Indeed the game is more complicated at

the beginning, when all the cards are covered, and becomes more easy in the

final phases when the majority of the pairs are already discovered.

Analyzing better the three examples above we can notice that the number

of possible cards in the recognized state are di↵erent. In the figure 4.5a

there are 10 cards with the same relative position respect to the observed

card. This, for the selected state representation, is the maximum number of

positions on which the matching card can be associated to the observed card

with the same resulting state. The figure 4.5c show the opposite case where

the state can be associated to only one card, and so will be obvious, with the

correct suggestion, to match the second card.

To store also this information we can add a number, to the name of the

state, in order to save the number of possible cards in the state area. At the

place of storing this number we have choose to convert the number of cards

in a level. The level are the following:

Level 0 1 covered missing card

Level 1 2 or 3 covered missing cards

Level 2 more than 3 covered missing cards

The use of the level and not the explicit number avoid problems related

to rare states, like for examples “TOP LEFT 10” that can happen only when

the observed card is in the corner with the matching card top left and no

22 4. Scenario

turned cards in that area. It is easy to understand that these states are

di�cult to train. Another advantage of the level is that the states space is

less than 30, while with the explicit number is around 100.

M

W

1

(a) TOP Level 0 (b) LEFT Level 1

M

1 W

(c) TOP LEFT Level 2

Figure 4.6: Spatial state with level examples.

For implementation choice of the board there are states where not all the

levels are possible. That states are “TOP” and “BOTTOM” where the the

”Level 2” is not possible and “MATCH” where only the “Level 0” is possible.

Now that a clear states representation has been defined we can evaluate

the real states size.

size = 9 ⇤ 3 + 1� 5 (4.1)

(2 ⇤ 2 + 1)

= 23

4.2 Action Space

The use of Furhat as agent provides us di↵erent type of actions as speak,

move the head, change expression and move the eyes.

In our scenario, these actions can be used to suggest the second card at

the user. For example a voice suggestion can say a direction or even the right

position of the card while with the head gestures the agent can confirm the

idea of the user or move his attention to another area of the board.

For each type of actions we have select a subset of possible suggestions

that can be useful in the game and fit the state representation. These subsets

4.2 Action Space 23

Figure 4.7: Graphical view of the possible combination between the di↵erent

suggestions families.

are shown in the tables 4.1 4.2 4.3 4.4. In each of these tables is displayed the

code that identifies the suggestion (Code), the action performed by the agent

(Suggestion) and the interpretation that we give to that action (Meaning).

Code Suggestion Meaning

0 Say nothing Nothing

1 “It is the right card” The watched card is the matching card

2
“Try at row x and

column y”

The matching card is at the row x and

column y

3 “Maybe up” The matching card is up

4 “Maybe down” The matching card is down

5 “Maybe left” The matching card is on the left

6 “Maybe right” The matching card is on the right

Table 4.1: Action: Speech Suggestion

All these suggestions are part of di↵erent subsets that can be combined

in composed actions. In figure 4.7 the four blue icons represent the di↵erent

suggestion subsets and the green lines the possible combinations. Not all the

combinations are significant and so appropriate. For example the connection

between the gaze, on the top, and the head movement, on the right, is deleted

because while the head is moving is not possible to detect which card the

eyes are observing. In the same way, but for a physical reason, also the

24 4. Scenario

Code Suggestion Meaning

0 Do nothing Nothing

1 Smile The observed card is the matching card

Table 4.2: Action: Face expression

Code Suggestion Meaning

0 Do nothing Nothing

1 Nod The observed card is the matching card

2 Turn to left The matching card is on the left

3 Turn to right The matching card is on the right

4 Turn up The matching card is up

5 Turn down The matching card is down

6 Turn to up-left The matching card is up left

7 Turn to up-right The matching card is up right

8 Turn to down-left The matching card is down left

9 Turn to down-right The matching card is down right

Table 4.3: Action: Head movement

connection between speech suggestion, on the left, and facial expression, on

the bottom, is canceled. Indeed during the execution of the selected facial

expression (smile) is not possible to speak.

Combining all the size of the suggestion subsets the action space will have

size = 7 ⇤ 2 ⇤ 10 ⇤ 2 (4.2)

= 280

but with the use of constrains between the subset family, the final size is

equal to 88.

4.3 Reward Function 25

Code Suggestion Meaning

0 Do nothing Nothing

1
Gaze the card at row

x and column y

Reveal the position of the matching card

Table 4.4: Action: Gaze

4.3 Reward Function

The reward function is one of the essential ingredients for the success of

the learning, because from it, depends the fate of each action. As a matter

of fact it is thanks to the reward received that the agent understands which

actions are good and which are bad for the current state.

Since the goal is to complete the game in less actions possible we want

that the user commits no error. To stimulate that behavior we are giving

positive reward for each pair found and not a unique big reward for the

completion of the game. The reward selected for the agent are the following:

+1 Pair match

-1 Pair miss

Chapter 5

Implementation

In the following chapter we will first see the choices and adaptations

done during the implementation of the di↵erent RL algorithms. Since in the

problem the agent is interacting with a user and the reward and future state

are not know at priori, the implemented algorithms are only online. In the

second part the code and the concepts behind the policies combination will

be largely explained. The last section illustrates the adaptation of the policy

reuse algorithm used to speed up the learning.

5.1 Online RL algorithms

The first two algorithms selected are Q-learning and SARSA. Originally

they are o✏ine, but thanks to their simplicity they are really easy to adapt

in order to work on an online scenario. The third algorithm selected is the

online version of LSPI.

5.1.1 Q-learning same as SARSA

During the implementation of the online version of SARSA we have no-

ticed that an online version of SARSA was not applicable on the problem.

This is due to the fact that, as is possible to see from the figure 4.3, after

every action performed by the agent the resulting state is a state where the

27

28 5. Implementation

user has to perform an action. In this state the agent never perform any

action so the value of

Q(s, a) = 0 8a 2 A(s). (5.1)

If we substitute the hypotheses of the equation 5.1 at Q(S
t+1, a) in one

step of Q-learning (eq 3.1) and SARSA (eq 3.2) the resulting equations are

the following:

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 + �max

a

Q(S
t+1, a)�Q(S

t

, A

t

)] (3.1)

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 + 0�Q(S

t

, A

t

)]

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 �Q(S

t

, A

t

)] (5.2)

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 + �Q(S

t+1, At+1)�Q(S
t

, A

t

)] (3.2)

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 + 0�Q(S

t

, A

t

)]

Q(S
t

, A

t

) = Q(S
t

, A

t

) + ↵[R
t+1 �Q(S

t

, A

t

)] (5.2)

Both the resulting equations are the same, so has no sense to implement

both the algorithms. For this reason, in the test, only Q-learning has been

implemented.

Online Q-learning

The Q-learning algorithm is shown in procedural form in algorithm 1.

The procedure starts by setting all the values of the Q matrix to 0 and goes

trough each step of each episode to discover which actions are better in each

state.

An ✏-greedy exploration is used to test new actions. The action selected

in the line 5 is with a probabilities 1� ✏ from the current policy or random in

the other case. In the line after (line 6), the procedure performs the action

and since it is online it waits until the user selects the second card to collect

the reward r and the information about the new state s

0. The value of ✏

5.1 Online RL algorithms 29

Algorithm 1: Online Q-learning

1 Initialize Q(s, a)8s 2 S, a 2 A(s),arbitrarily, and

Q(terminal � state, ·) = 0

2 for each episode do

3 s initial state

4 for each step of episode to s is terminal do

5

a

8
<

:
argmax

a

Q(s, a) w.p. 1� ✏

a uniform random action w.p. ✏

6 Take action a, observe r, s

0

7 Q(s, a) = Q(s, a) + ↵[r �Q(s, a)]

8 s s

0

9 end

10 end

decrease during the simulation in order to promote an initial exploration and

a late exploitation.

We can note, at line 7, the use of the one step equation derived in the

previous section (eq 5.2), di↵erent from the standard version of Q-learning

where the rule 3.1 is commonly used.

5.1.2 Online LSPI

Remembering that the crucial di↵erences from the o✏ine case is that

policy improvements must be performed once every few samples and that

online LSPI is responsible for collecting its own samples, we are going to

illustrate the final procedure showed in algorithm 2.

The ✏-greedy exploration is used, in line 6, to select, at every step k:

• a uniform random exploratory action with probability ✏
k

2 [0, 1]

30 5. Implementation

• the greedy (maximizing) action with probability 1� ✏
k

.

Typically, ✏
k

decreases over time, as k increases, so that the algorithm in-

creasingly exploits the current policy, as this policy (expectedly) approaches

the optimal one.

Algorithm 2: Online LSPI with ✏-greedy exploration

Input: �, �, K
✓

, {✏
k

}
k�0, �

/* � Basis functions */

/* K

✓

Transition between consecutive policy improvement */

/* {✏
k

}
k�0 Exploration schedule */

1 ` 0

2 Initialize policy ⇡0

3 �0 �I

n⇥n

; ⇤0 0
n⇥n

; z
n

 0
n

4 Measure initial state s0

5 for each time step k � 0 do

6

a

k

8
<

:
⇡

`

(s
k

) w.p. 1� ✏
k

a uniform random action w.p. ✏
k

7 Apply action a

k

; Measure next state s

k+1 and reward r

k+1

8 �
k+1 �

k

+ �(s
k

, a

k

)�T(s
k

, a

k

)

9 ⇤
k+1 ⇤

k

+ �(s
k

, a

k

)�T(s
k

, ⇡

`

(s
k+1))

10 z
k+1 z

k

+ �(s
k

, a

k

)r
k+1

11 if k = (`+ 1)K
✓

then

12 solve 1
k+1�k+1✓` = �

1
k+1⇤k+1✓` +

1
k+1zk+1

13 h

`+1(s) argmax
a

�

T(s, a)✓
`

8x
14 ` `+ 1

15 end

16 end

When K

✓

= 0 the policy is updated after every sample and online LSPI

5.2 Policy Combination 31

is fully optimistic. When K

✓

� 0 the algorithm is partially optimistic. The

number K

✓

should not be chosen too large, and a significant amount of

exploration is recommended. For this reason ✏
k

should not approach 0 too

fast.

O✏ine LSPI rebuilds �,⇤ and z from scratch before every policy im-

provement. Online LSPI cannot do this, because the few samples that arrive

before the next policy improvement are not su�cient to construct informa-

tive new estimates of �,⇤ and z. Instead, these estimates are continuously

updated.

As basis functions, tile coding (sec 3.1.3) is used without the needs of

extra implementation, because the code is available online thanks to [Sut-

ton(2016)]. We have used a 4⇥ 4 Rectangular grid representation. This will

create the possibility of generalization between any dimension of the states

in which the components (spatial state and level) are within 0.25 of each

other. Despite this fairly broad generalization, we would like the ability to

make fine distinctions if required. For this we need many tilings, say 321.

This will give us an ultimate resolution of 0.25/32 = 0.0078, or better than

1%. The length of the basic functions array will be the same as the number

of tiles.

5.2 Policy Combination

In this section we are going to explain how the “Combine Policies” and

“User Info Extraction” black boxes are implemented. We will start with the

user information extraction because the data produced by this algorithm are

used as input in the other.

5.2.1 User Informations Extraction

The user info extraction algorithm (alg 3) compares state by state the

actions selected in the di↵erent policies. The evaluation between the actions

1A power of two is good here.

32 5. Implementation

is made at suggestions level, so that for speech and head suggestions are

counted the incompatibilities and for facial and gaze if they are di↵erent to

“Do nothing” at least one time.

Algorithm 3: User Information Extraction

Input: P

/* P Set of user policies */

1 for each state s in P1 do

2 A {P1(s), ..., Pn

(s)} ; /* Set of current state actions */

3 if speech suggestion in A are incompatibles then

4 info
speech

 info
speech

+ 1

5 end

6 if head movement in A are incompatibles then

7 info
head

 info
head

+ 1

8 end

9 if smile 2 A then

10 info
facial

 True

11 end

12 if gaze 2 A then

13 info
gaze

 True

14 end

15 end

16 Convert the error in percentage

17 return info

For incompatibilities we intend suggestions that are di↵erent. An excep-

tion is done for the pairs formed by a random suggestion and the suggestion

that points the correct card or simply do nothing. For example the speech

suggestions “Maybe left” and “Try the card at row x and column y” are

accepted. The di↵erent analysis of the facial and gaze di↵erences is due to

the fact that a user that is using these suggestions is for sure able to see.

The procedure return the user information as shown in the figure 5.1.

5.2 Policy Combination 33

info = {

"speech" : 100%,

"head" : 0%,

"facial" : True,

"gaze" : True

}

(a) Deaf user

info = {

"speech" : 0%,

"head" : 0%,

"facial" : True,

"gaze" : True

}

(b) Normal user

info = {

"speech" : 0%,

"head" : 0%,

"facial" : True,

"gaze" : False

}

(c) Astigmatic or Myopic user

info = {

"speech" : 0%,

"head" : 0%,

"facial" : False,

"gaze" : False

}

(d) Partially-sighted user

info = {

"speech" : 0%,

"head" : 100%,

"facial" : False,

"gaze" : False

}

(e) Blind user

info = {

"speech" : 0%,

"head" : 100%,

"facial" : False,

"gaze" : True

}

(f) Blind user

Figure 5.1: Example of user info.

The case 5.1f show that the gaze could be present in the actions selected

by a blind user even if the user can’t perceive it. This could happen only

for the gaze and not for the facial suggestions because the execution of the

gaze force the head suggestion to “Do nothing” while the execution of the

“Smile” force the speech suggestion to “Say nothing”. A blind user ignores

both head and gaze, but consider the speech that will hardly be null at the

34 5. Implementation

end of the training, excluding all the actions in which the “Smile” suggestion

is included.

For a good estimation of the user info is better to compare more policies

possible, where the policies has to be optimal to avoid incompatibilities due

to an incomplete training.

5.2.2 Combination Algorithm

With the algorithm described above and the policy generated with the

use of the reinforcement learning algorithms, we now have all the elements

required for the policies combination algorithm.

This procedure simply takes a policy, in tabular representation, for both

the users and combines the actions using an algebra defined to work at sug-

gestion level, for the selected actions space. The resulting procedure is illus-

trated in algorithm 4.

Basically when the two users information di↵er in the head/speech error

levels, the head/speech suggestions of the user with lower number of errors

are taken. On the other side, when the head/speech error levels are equal,

the actions of every state are generated summing the suggestions of the users.

The merged info associated to the resulting policy are evaluated as follows:

info = {
‘‘speech” : min(info1

speech

, info2

speech

),

‘‘head” : min(info1

head

, info2

head

),

‘‘facial” : info1

facial

^ info2

facial

,

‘‘gaze” : info1

gaze

^ info2

gaze

}

This information, plus the merged policy, can be used in the combination

with successive users.

5.2 Policy Combination 35

Algorithm 4: Combine policies algorithm.

input : ⇡1, ⇡2, info11, info2

1 for each state s in ⇡1 do

2 if ⇡1(s) != ⇡2(s) then

3 if info1
speech

== info2
speech

then

4 ⇡

combined

 The sum of the speech and facial suggestions

using the algebra of table 5.1

5 else if info1
speech

< info2
speech

then

6 ⇡

combined

 speech and facial suggestions of the user1

7 else

8 ⇡

combined

 speech and facial suggestions of the user2

9 end

10 if info1
head

== info2
head

then

11 ⇡

combined

 The sum of the gaze and head suggestions using

the algebra of table 5.2

12 else if info1
head

< info2
head

then

13 ⇡

combined

 gaze and head suggestions of the user1

14 else

15 ⇡

combined

 gaze and head suggestions of the user2

16 end

17 end

18 end

Action algebra

The algebra divides the action in two parts: a) hearing suggestions and

b) visual suggestions. The suggestions involved in the combination are

summed using the rules listed in the tables 5.1 and 5.2.

This algebra gives the priority to the actions that are considered more

specific. This behavior generates policies where suggestions like Gaze/Say

the correct card are prevalent among the final suggestions. These solutions

are correct but they hide alternative solutions where specific actions, for

36 5. Implementation

Speech and Facial Expressions

Suggestion 1 Suggestion 2 Results

Action i Action i Action i

Do nothing Action i Action i

“Say exact position” Action i “Say exact position”

Other Combination Error

Table 5.1: Algebra of the hearing suggestions.

Gaze and Head Movement

Suggestion 1 Suggestion 2 Results

Action i Action i Action i

Do nothing Action i Action i

Gaze exact position Action i Action i1

Gaze exact position Action i Gaze2

Other Combination Error

Table 5.2: Algebra of the visual suggestions.

particular states, have the same expressiveness. Examples of these are all

the directional suggestions in states with level 0. These actions, for that

states, ensure a precision of the 100% but they can be replaced during the

combination of the policies.

5.3 Policy Reuse Adaptation

In our version of the algorithm, we don’t have a set of policies but only a

policy that we call ⇡
bias

generated from the combination of policies of di↵erent

users. The bias policy is inserted in the balance equation at the place of the

1Only one user is able to perceive the Gaze.
2Both the users are able to perceive the Gaze.

5.3 Policy Reuse Adaptation 37

set of past policy achieving a new revisited version of the exploration:

a =

8
<

:
⇡

bias

(s) w.p.

✏� greedy(⇡
new

(s)) w.p. 1�
(5.3)

The adapted ⇡-reuse strategy follows the bias policy with probability

 , and it exploits the new policy with probability of 1 � . As random

exploration is always required, it exploits the new policy with an ✏-greedy

strategy.

The similarity function is not needed anymore because we are following

a single past policy and not a set of policies. In the end of the training the

⇡

new

, trained on the current user, is returned to the system.

Algorithm 5: ⇧-reuse method

Input: ⇡
bias

,�, v

/* Probability to follows the past policy */

/* v Decay of */

1 Initialize Q

⇡new(s, a) = 0 8s 2 S, a 2 A(s)

2 for each episode k do

3 s initial state

4 1

5 for each step h in the episode k do

6

a =

8
<

:
⇡

bias

(s) w.p.

✏� greedy(⇡
new

(s)) w.p. 1�

7 Apply a; Measure next state s

0 and reward r

k,h

8 Q

⇡new(s, a) (1� ↵)Q(s, a)⇡new + ↵[r + �argmax

a

0
Q

⇡new(s0,a0)]

9

h+1

h

v

10 s s

0

11 end

12 end

Chapter 6

Virtual Simulation

The concepts introduced in the chapters before are first tested and vali-

dated on an easier scenario. The scenario in merit is a virtual reconstruction

of the scenario defined in the chapter 4. The word “easier” doesn’t mean

that the problem is simplified, but that the test modalities are simpler.

The advantage of a virtual scenario are countless, in the first phase of the

development of a new technique. A first example is the possibilities of repeat

the test how many times we want, thing impossible in presence of physical

user.

For the virtualization of the scenario some adaptation is required and are

explained in the section 6.1. In the other three sections the procedure of the

simulation (sec 6.2) and the results (sec 6.3) are illustrated. We will conclude

the chapter with a discussion (sec 6.4) of the obtained results.

6.1 Adaptation of Implementation

The virtual scenario has to simulate everything of the original problem,

starting from the environment, passing to the user, and arriving to the action

performed from the agent.

39

40 6. Virtual Simulation

6.1.1 Virtual Environment

The solution adopted for the virtual environment is to virtualize the cards

board using a textual representation. The game, now, can be played on the

command line inserting the index of the card that the player wants to pick. A

graphical view is proposed in the figure 6.1. In that, we can see how the cover

cards are represented with a “X” and the image of the cards are replaced by

number e.g.“2”.

X X X X 7 X

X 2 X X X X

X 7 X 2 X X

Figure 6.1: Command line version of the Memory game.

The program that is running behind the virtual board, is responsible to

check the consistence of the board after each pick. This is possible verifying

the following rules before displaying the selected card:

• If the selected card is not visible and there aren’t more then two cards

turned over in the current turn, the selected card will be turned to

show its image;

• If there are two cards turned over, the card will be checked. If both

cards are equal, they stay visible on the board, otherwise both the cards

are turned over again. In both the case a positive or negative reward

is communicated to the agent.

The memory program is also responsible for the communication of the

matching card position to the agent.

6.1.2 Virtual Agent

The virtual agent is not so di↵erent from the real one. The real agent is

composed by the reinforcement learning algorithm, that perform the learning

6.1 Adaptation of Implementation 41

task, and Furhat, the physical body of the agent, that execs the actions in

the environment.

The virtual agent is free from the physical body and directly communicate

the selected action to the user. The simulated user will interpret the action

and will react to it.

The communication are done with the exchanges of JSON packages like

the one in the figure 6.2

action = {"speech" : 4, "facial" : 0, "head" : 5, "gaze" : 0}

Figure 6.2: Example of virtual action.

6.1.3 Fictional User

To combine the policies we need policies generated from di↵erent users.

For this purpose, using the techniques of the Personas [Schulz and Fu-

glerud(2012)], we have generated a set of virtual users that di↵er for the value

of the following features: a) Focus b) Memory c) Hearing and d) Sight.

The fictional users, defined in that way, are composed by two modules.

The first is a simple intelligence that manage the selection of the cards and

the second has the role of understand the suggestions provided by the agent.

The personas generated for the simulations are listed in Appendix A.

User Behavior

The virtual user follows some really simple dynamics. His behavior can

di↵er on the base of the card that he has to pick. When he has to select the

first card, he checks whether he remembers the positions of two cards that

make up a pair. If this happens the user will select one of the two cards,

otherwise he will take a random card from the board excluding the cards

that he already knows.

42 6. Virtual Simulation

The selection of the second card is a bit more complicated because we need

to simulate a reaction at the suggestions that is as realistic as possible. First

of all the user checks for the presence of the matching card in his memory.

If he doesn’t remember it, he will select a card following the suggestions of

the agent in the limit of its features.

The suggestions are interpreted by the user in order to reduce the number

of possible cards. Depending on the features of the user the action can be

completely or partially ignored.

User Skill Translation

For each persona the features represented in the radar chart, with value

included in the range 1 to 6, are converted to value understandable from the

system.

The simulated user considers the actions performed by the agent with a

probability of p, where

p = (focus� 1) ⇤ 0.2. (6.1)

User with low level of focus have a propensity to ignore the suggestions of

the robot.

The memory feature is used to indicate the number of cards that the user

can remember. These are equal to

m = memory + 1 (6.2)

where the minimal possible result is 2 equivalent to a pair, the last seen.

The other two features are used to encode the impairment of the user. A

user hears the speech suggestions with a probability of q, where

q = (hearing� 1) ⇤ 0.2. (6.3)

Users with a value equal to 1 are considered deaf, while users with a hearing

value of 4 have just the 60% of probabilities to hear the suggestions.

The mapping of the sight is a bit di↵erent. It is performed following the

information in the table 6.1. Each level encode the suggestion family that

the user is able to perceive.

6.1 Adaptation of Implementation 43

Value User classification Perceived suggestions

6 Normal viewer Head movement, Facial expression, Gaze

5 Normal viewer Head movement, Facial expression, Gaze

4 Astigmatic Head movement, Facial expression

3 Myopic Head movement, Facial expression

2 Partially-sighted Head movement

1 Blind Nothing

Table 6.1: Sight mapping.

User Memory Management

The user can remember only a limited number of cards that, in the worst

case, is equal to 2. The discovered cards are added in the memory only after

the end of the turn. This choice yields to a situation where the user, during

a turn, knows all the cards that are showed on the board plus the cards in

his memory. When the turn is over, and a pair is not discover, the picked

cards are added to the memory. The memory can’t include pairs already

discovered, because this will lock the card selection algorithm of the fictional

user, so in the case that a pair already discovered is in the memory, it will

be removed. When the memory is full and there is no space to store a new

card, the oldest card in the memory will leave space for the new one.

Interpreter

This module is responsible for the interpretation of the actions performed

by the agent. It takes the performed action and in the respect of the user

features, return a set of cards where the user will randomly pick the next.

First we have to introduce the no informations set (NIS), a set composed

of all the covered cards on the board less the cards remembered by the user.

The function starts checking p to understand if the action has to be

considered or ignored by the virtual user. In the case that the action is

ignored the next card will be chosen in the NIS and no reward is given to

44 6. Virtual Simulation

the agent in this turn. In the opposite case, when the fictional user doesn’t

remember the card and decides to follow the suggestion, the intersection of

the sets of cards derived from each suggestion that compose the action is

returned to the main module of the user.

How are the sets of cards of each suggestion family made? To start

a NIS is associated to each of them. The interpreter function checks the

action received from the agent in each of its parts. These contain codes that

are associated to virtual actions (fig 6.3) and a relative interpretation that

will reduce the sets size of each suggestion set. If the final set is empty,

because of inconsistent suggestions in the same action, a NIS is returned and

a punishment of -3 is given to the agent.

The interpreter also gives an additional reward, equal to 1
#(final set) , to

incentivize the use of specific suggestions and speed up the learning.

action = {"speech" : 4, "facial" : 0, "head" : 4, "gaze" : 0}

Figure 6.3: Example of inconsistent action.

In the figure 6.3 we can see an example of inconsistent action due to

the incompatibility of the speech and head suggestions. The voice is saying

“Maybe down” while the head is pointing up. The resulting set of possible

cards will be empty.

The interpretation of each suggestion are listed and explained in the Ap-

pendix B.

6.2 Procedure

The simulation has been performed on all the generated fictional users.

All of them are used to train a set of policies using both the learning algo-

6.3 Results 45

rithm1. For each algorithm the user has played 10 games composed of 500

rounds. Each game generates a policy that improve after every turn2 of the

rounds, where a round is composed by all the turns required to find all the

pairs.

The training of each policy starts with the ✏ factor, responsible for the

exploration, set to 0.9 that make the initial selection of the actions totally

random ignoring the actions in the policy. Every 50 rounds, a tenth of game,

the ✏ is decreased of 0.1 until it reaches the minimum value of 0.1. We are

not interested in the initial value of �, because the estimate of the optimal

future value is always equal to 0. In Q-learning is also initialized the learning

factor ↵. It start from a value of 0.5 and is decrease every 50 rounds of 0.05.

When the policies of each user has been generated and collected, the

policies combination algorithm can be tested. The policies of each user are

stored in separate folder. Knowing the path of the users policies folders, the

algorithm automatically extract the users information from the comparison

of the policies and randomly selects a policy from each user, that is addressed

to generate the final merged policy.

Di↵erent merged policies has been generated for di↵erent subset of users.

Their goodness has been tested via multiple executions of a round in which a

user, of the users set in cause, is assisted from a rule based agent that follow

the merged policy.

6.3 Results

We will now see the results of the di↵erent step of the simulation. Not all

the results are reported, but only the most significant for the understanding

of the problem.

The first important results is that all the simulations where we have

1Online Q-learning and online LSPI
2In the case of online LSPI the policy improvement is performed every 5 turns.

46 6. Virtual Simulation

generated the policies using online Q-learning have converged to an optimal

solution in the selected number of rounds. This result has not been reached

by the simulation that were running online LSPI.

An important result is the distribution of the number of picks used by

the user to complete the single round. This number is expected to decrease

during the simulation, but sometimes we can have di↵erent evolution due to

the e↵cts of the features. In the figure 6.4 are shown the learning progress of

di↵erent users. The x axis reports the number of the round, while the y axis

represents the number of picks per round. Each graph highlights the e↵ect

of a feature in the learning process.

With the policies obtained from the Q-learning algorithm is possible to

extract the users information. The second results of the experiment are a

comparison of the information extracted and the original features of the users

and are reported in the figure 6.5. The figure is composed of two columns.

On the left side we have the information extracted from the policies, while

on the right are shown the graphical representations of the features.

Extracted the user information, the next step is the combination of the

policies. The figure 6.6 gives a visual representation of the users policies.

Each graph contains three policies. The two, without label, are the policies

used for the combination while the one with the blue cross is the merged

policy. On the axis are represented the code that identifies the states and

the code of the composite actions.

6.3 Results 47

(a) Memory

(b) Focus

(c) Sight vs Hearing

Figure 6.4: Learning process features analysis.

48 6. Virtual Simulation

info = {

"speech" : 100%,

"head" : 9%,

"facial" : True,

"gaze" : True

}

(a) Deaf

info = {

"speech" : 4.5%,

"head" : 100%,

"facial" : True,

"gaze" : True

}

(b) Blind

info = {

"speech" : 4.5%,

"head" : 31%,

"facial" : True,

"gaze" : True

}

(c) Helmut Volker

Figure 6.5: Features and user information comparisons.

6.3 Results 49

(a) Blind & Deaf combination.

(b) Ashley Tracy & Helmut Volker combination.

(c) Vincent Cormaros & Tatiana Modric combination.

Figure 6.6: Graphical representation of the policies.

50 6. Virtual Simulation

6.4 Discussion

Each user has found a solution in the 500 rounds, but if we consider

the total number of picked cards the results are very di↵erent. It is really

interesting understand how the features have influenced the performances of

the users in the di↵erent phase of the learning. Looking the graph in figure

6.4a we can notice how the learning di↵ers in the first half of the training.

The cause of that di↵erence is due to the memory feature. The user named

as “Vincent Cornaros” has a better memory than the other user and he can

reach good results also in the first phase, when the agent is performing an

high number of random actions. Indeed a user with a large memory after the

firsts mistakes, at the beginning of the round, has the memory full of card

and start to match the pairs using the memory and ignoring the suggestion

of the agent. This behavior is not possible with a low memory and it is for

this reason that the two player start to have similar results only after half

of the rounds, when the ✏ factor is lower than 0.5 and the majority of the

suggested actions are selected from the policy. In the end, independently

from the memory level, the two users achieve the same performances.

The second graph (fig 6.4b) compare two users with di↵erent level of

focus. This is evident in the second part of the learning where “Helmut

Volker”, a old man that doesn’t trust the technology, tend to ignore the agent

suggestions. Even if at the beginning it performs better than “Wasim Taider”

is learning is slower and the results barely improve. In the implementation of

the interpreter (sec 6.1.3) we have said that when the suggestion is ignored

no reward are given to the agent. Helmut has a focus value equal to 4, in

oder words he follows only the 60% of the actions, that means that in 40% of

the cases the agent doesn’t receive any reward because we don’t know if the

action performed is good or not. Checking in the data log we have verified

that the bad performance of the last rounds are due to wrong pick performed

after the ignoring of a suggestion, proving that despite the slow down of the

learning the agent was correctly trained and the non optimal performance

are e↵ect of random picks.

6.4 Discussion 51

The last graph (fig 6.4c) compares two users with di↵erent impairment.

We can see how the performance of the deaf are always worst than the blind

user. Another detail that is visible in the graph is how more stable is the

distribution of the blind user, with less variations and peaks. This two re-

sults are explainable by the fact that probably the speech suggestions are

more precise that the visual suggestions. This is not completely true because

half of the suggestions are equivalent, but if we consider the top sugges-

tions of each suggestions family, that are “Say the exact position” and “Gaze

the right card”, they have a di↵erent precision. The top speech suggestion

is more precise than every visual suggestion and guarantees a precision of

100% in each state. The impossibility for a blind user to use this suggestion

make more complicated the matching of the pairs in the first picks, where

the number of cover cards is higher.

All the previous results are about the policy learned with online Q-

learning, because the situation with online LSPI is completely di↵erent. We

don’t have any results. The procedure was extremely slow and was not con-

verging even after day of simulation and more rounds. The problem of the

slow evaluation of the policy could be provoked by the size of the matrix that

has to be solve in the linear system (line 12 algorithm 2). This matrix has

size of n⇥n where n is equal to the number of basis functions multiplied for

the number of actions. In our case that is equal to 32 ⇤ 88 = 2816 a number

too big to be evaluated online. In a second experiment the basis functions

were reduced to 3 reaching the final size of n = 264. With this new size

the time was considerably reduced but the matrix of the approximated Q

function was not converging, probably because a wrong approximation. This

wrong approximation could depend on the number of tiles or on the selected

grid representation.

In figure 6.5 are reported the comparisons between the features of the

users and the information extracted, for them, by the user information ex-

52 6. Virtual Simulation

traction algorithm. As expected the blind and deaf user has respectively

100% of error in the visual and hearing suggestions, but the unexpected

datas are that they have not 0% in the other component. An error of 4.5%

is equivalent to one incompatibilities, meaning that the blind and deaf users

could have 1 and 2 wrong actions in their policies.

After a better inspection we have discover that every user contains an in-

compatibility in the state “Right Level 0”. From the simulation appears that

this state is never visited by all the users. It looks like that the distribution

of the pairs on the board and the style of play of the users, make this state

impossible to visit. Similarly other states with incompatibilities, has been

discover. They are the states with level 0, hardly visited and as consequence

easily non corrects. For this reason higher is the number of the considered

policies easier is to find one of this state untrained and as consequence an

incompatibility. This is also the explanation to the fact that for the infor-

mation extracted from the policies the blind user is able to perceive the gaze

and the facial suggestions. For sure one of the untrained states contains a

composed action that include the gaze, making the blind user able to per-

ceive these suggestions.

The last topic that we have to discuss are the results of the policies

combination algorithm. First we have to say that all the policies generated

has given correct suggestion to the user involved in the generation. Even if

sometime a equivalent action can be used, the results in terms of number of

picks required to complete the round are always optimal or near the optimal

solution.

A second results come out from the visual representation of the com-

bined policies. We can see in each graph of figure 6.6 a visual representation

of the users policies. From the graphical visualization is easy to note how

the merged policies are always in the range of actions between the code 33

and 43. This range include the actions that are using the speech suggestion

“Say the exact position” and the remaining parts of that action are the visual

6.4 Discussion 53

suggestions to the card. This results depend from the created algebra, that

give advantage to the actions considered more powerful. Recovering the un-

trained states problem of the paragraph before the actions corresponding to

the state 12 are always out of the range. This state is the state “Right Level

0” that is untrained in each policy and as consequence are random actions.

The other actions that appear out of the range for the merged policy are

associated to states with level 0 and are using di↵erent multimodal actions

to suggest the right card.

In the future optic of the test in the real scenario, we get some important

results to take in consideration. The first is that a good training is essential

for the goodness of the final results. The second important result is the

evidence of a similar output from all the policies combination test. This

introduces the possibilities to use the merged policies as base policy in the

training on future users. As consequence a merged policy generated on an

users set that include enough diversity, could be use in o↵-policy algorithm to

drive the learning avoiding problems in the initial exploration and obtaining

an optimal policy for the current user.

Chapter 7

Human World

In the second part of the research we want to supply an additional proof

at the results gained in the virtual simulation and test the usability of the

policies combination algorithm in a process of o↵-policy learning in the optics

of speed up the online learning.

We will first introduce, in section 7.1, the adaptation required to imple-

ment the scenario and to follow the explanation of the procedure (sec 7.2)

used to collect the data. In conclusion we will list and discuss the results in

the sections 7.3 and 7.4.

7.1 Adaptation of implementation

The figure 7.1 illustrates the elements required for the implementation

of the task scenario. From the picture is possible to extract information

about the four components and the interactions between the parts. Starting

from the left we have the real user which unique task is to play memory

on the touch screen and to do it, he can use the help provided by Furhat.

The touch screen is used to display the cards to the user and communicates

the selections to the central logic situated in the server. The central logic

controls everything less the user. It communicates to Furhat which actions

he has to perform, it runs the reinforcement learning algorithm and checks

55

56 7. Human World

Figure 7.1: Elements of the real scenario.

that all the rules of the Memory game are respected.

7.1.1 User

The group of users that has participated to the test are 14 volunteers

from the university with ages between 21 and 35 years old and di↵erent

nationality. Only half of the group already had experience with robots before

the simulation, while only few of them knew how reinforcement learning

works.

It was not possible to find users with disabilities like blindness or absence

of hearing, but we know that half of the participants need the glasses and

only half of this half really uses glasses or other types of lenses.

7.1.2 Central Logic

The central logic is the brain of all the infrastructure. It contains the

reinforcement learning algorithm and the game logic.

The learning part is responsible to select the actions, that Furhat will

7.1 Adaptation of implementation 57

perform, and improve the policy. An important expedient, implemented for

the learning, is a mechanism that identify when an actions is ignored from

the user, based on the reaction time. Every time that the user select the

two cards in a time interval smaller than 1,5 second the performed action is

considered ignored and no reward is given to the agent.

The communications with Furhat may be implemented using IrisTK

[Skantze and Al Moubayed(2012)], a java-based framework for developing

multi-modal interactive systems, but this framework works only in a win-

dows environment, and for this reason we were not able to use it. To supply

to its absence we have manually implemented the communication. In the

Appendix D are reported the detail of the implementation.

The game logic controls also all the dynamics of the game board. It uses a

signal passing mechanism to receive notifications about which card has been

selected and maintains a local representation of the board from which it can

extract information about pairs match, pairs miss and number of picked cards

in the current turn. All this information are used in the di↵erent phases of

the learning algorithm.

7.1.3 Touch Screen

This device is used, in the scenario, to replace the physical cards. The

game board (fig 7.2) is duplicated on the touch screen that allows a natural

and immersive game play.

In the figure 7.2 a screenshot of the virtual board shows the disposition

of the cards. In the picture are visible two details. The first, the highlighted

card, is the one that the system recognized to be observed by the user but

for a technical issue the observed card recognition system has not been imple-

mented, so the first selected card of each turn is also considered as observed

card. The second element is the button situated above the cards. It can be

used by the user after a suggestion that is clearly wrong to give a punish-

ment to the agent and to ask that a new action is performed. The chosen

punishment is equal to -3 and is used to avoid that inconsistent actions were

58 7. Human World

suggested more than one time.

Figure 7.2: Picture of the game board.

7.1.4 Furhat

Furhat is interacting with both the user and the touch screen. Obviously

he interacts with the user in order to give the selected suggestions, but it

also interacts with the game board performing the gaze on the right card.

For a correct implementation of the interaction Furhat needs a camera

that is used to evaluate the geometric triangulation of the point in the scene.

Thanks to that Furhat is able to recognize the face of the user and the

position of the cards.

7.2 Procedure

In the real scenario we have divided the simulation into two phases. The

Phase 1 takes half of the users to train the policies required to generate

the bias policy. Each user plays 2 games of 5 rounds and at the end of the

simulation he has to complete a questionnaire relative to the experience. The

number of games is the minimum required to generate the policies needed

for the user information extraction process, while the reduced number of

7.2 Procedure 59

rounds is done to limit the game time in order to avoid stress in the users.

Q-learning is used as learning algorithm. Like in the virtual simulation the

✏-greedy method is used for the exploration. Each round the ✏ factor is

decreased of 1
5 of the initial value equal to 0.9.

At the user is requested to follow all the suggestions in a critic way, avoid-

ing the selection of the right card after a suggestion considered wrong. This

is very important to avoid bad trained policy that could a↵ect the following

steps.

In the Phase 2 all the users are used. They have to play 1 game of 5

rounds and, in the end, complete the questionnaire. The users of the Phase

1 have some additional questions used for the comparisons between the two

phases.

The agent is running the policy reuse algorithm (sec 5.3) following the

bias policy generated in the phase before. The exploration factor is set in

order to initially favor the use of the past policy and increase the use of

the current policy during the simulation. Indeed the last game is performed

using only the new policy. The ✏ factor, used for the greedy exploration of

the new policy, is set at an initial value of 0.9 and decrease uniformly among

the rounds.

In this phase the users are free to play as they want in order to analyze

natural behavior where for example a full level of attention by the user is not

always guarantee.

The data are collected on five days. The first two days are dedicated

to the Phase 1 on which 8 users has conducted the simulation in time slot

of 1 hour. In the middle, between the two phases, one day has been used

to combine the policies and to test the simulation of the next phase. The

last two days are used to perform the simulation of the Phase 2. Since this

simulation is shorter, slots of 30 minutes were used to collect in the same

time the data related to the double of the users.

60 7. Human World

7.3 Results

Starting from the results relative to the Phase 1, an important information

is that only the 75% of the users has always followed the agent actions and

the 87% of the users has never selects the corrects card when the action was

completely or partially wrong. This happens because the users sometime

has consider only a part of the multimodal actions. Indeed the 50% of the

users has ignored at least one time the speech suggestions included in the

robot actions and only the the 12% of the users has always followed the visual

suggestions. Another data is that during the games only the 87% of the users

has used the gaze in order to find a card, and the unexpected results is that

the the 40% of the users has find an interpretation to the facial expression

that they have used in the scenario.

In situation where speech and visual suggestion were contradictory the

users has react in di↵erent way during the simulations. Most of them has

considered only the speech suggestions or pressed the button for a new ac-

tion, while the others were divided between select a random card or follow

the visual suggestion.

The first numeric results related to the learning that we want to report

are the average performances in the di↵erent games. In all the future graphs

the results represented with line and circle are associated to the Q-learning

algorithm, while the results displayed with line and diamonds are associated

to the policy reuse algorithm.

In the figure 7.3a are compared the average of the required actions of the

first two games for all the users of the phase 1. Similarly in the figure 7.3b

are compared the average actions per round between the two phases. The

line labeled as “Phase 1” is the average of the two game reported in figure

7.3a.

Another important result that can be connected to the previous compar-

ison is that, from the questionnaires, the 75% of the user that has take part

to both the phases has recognize the round 1 of the phase 2 as the round in

7.3 Results 61

(a) (b)

Figure 7.3: Comparison of the average number of actions per round between

the di↵erent game.

which the robot has perform better, while the other 25% has reply with the

last round of Phase 2.

Always from the questionnaires we get the information that half of the

users of the Phase 1 has changed the interpretation of some actions in the

Phase 2. This change is motivated from more experience with the game and

the view of new interpretations during the pause between the two phases.

Even if the results of the Phase 2 appears to be better we can find some

user for which the policy learned at the end of the round 5 of the Phase 2

is worst that the others. This example is reported in the figure 7.4. The

two lines with the circle represent the two games of the Phase 1, while the

line with the diamonds is the representation of the performance of the Phase

2. The bars are used to show how many actions have been selected, in the

Phase 2, from the indicated policy in the specific round.

Analyzing the behavior of all the users, that have taken part in the second

phase, the most important data is that all the users has tried to learn how

to interpret the robot actions after the first wrong suggestion. A positive

results of the second phase is the fact that the 80% of the users has always

62 7. Human World

Figure 7.4: Example of bad training at the end of the Phase 2.

followed the agent suggestions ignoring it only when the position of the card

was already known. An interesting data is that the 90% of these users has

always payed attention to the speech suggestions while only the 40% has

always payed attention to the visual suggestions and if we add the users that

have partially payed attention they reach only the 75%. In this phase only

1 user has used the facial suggestions, but like a positive connotation for the

other action parts.

The users were free to behave as they prefer and we have recorded that

in case of contradictory suggestions more than half of their has followed the

speech suggestions while the others were split between follow the visual sug-

gestions, press the button or take a random cards.

As we have said at the beginning of the research we are interested to

understand if a policy can be combined and work for the involved users, and

later we have also hypothesized that this policy could work also for other

users. The answers at this two questions are in the figures 7.5 and 7.6. The

first shows the graphical representation of two merged policies. One is the

policy gained from the combination of the Deaf and Blind users of the vir-

7.3 Results 63

Figure 7.5: Comparison of the representations of the merged policies.

tual simulation, while the second is the policy obtained from the combination

of all the users that have participated to the Phase 1 of the human world

simulation. The second figure (fig 7.6) represents a comparison of the aver-

age performances gained with the use of the policy reuse algorithm between

the users of the Phase 1, dashed line, and the new users added in the Phase 2.

An important analysis has to be done on how the users interpret the agent

actions. The first unexpected event has been the mistake of some users in

the localization of the position of the card when the line and column number

were known. The user was counting the column starting from the right side

and not the left, as it is normal in the Occidental culture. If this action can

be misunderstood also all the others directional suggestions can be a↵ected

by the same problem.

64 7. Human World

Figure 7.6: Graphical representation of the average performance in the Phase

2.

7.4 Discussion

The first results about the behaviors of the users in the Phase 1 are of

essential importance, because the bias policy has been generated on their

behaviors. The way on which these users have followed the agent actions

condition the learned policy. It is not a big deal if, for example, a user

ignore the visual suggestions, because the agent will learn how to reach the

target using the speech suggestions, but it’s essential that the user plays

with consistency because the online simulation are not too long to correct an

initial wrong learned behavior.

What emerges from the results of the questionnaires of the Phase 1 is

that two users on eight have ignored parts of the agent’s actions. One was

ignoring the wrong actions while the second was not so focused on the robot

and sometimes has played alone. The first behavior is not wrong on a normal

game play, but could lead to unexpected results as associate wrong sugges-

tions to the concept of correct action. In the same way the behavior of the

second user is equivalent to give random feedback, making the policy full of

noisy actions.

As we said before, in our system are privileged the consistent players,

7.4 Discussion 65

because they are going to have similar policies with few di↵erences in the

perceived parts and for this reasons the combining policies algorithm will

give more importance to their learned suggestions.

About the remaining users, we can say that they perform a modest train-

ing. They have payed attention to don’t keep the correct card after a wrong

action, but a common error has been to select the right card when the ex-

act position was explicitly said even if the visual part of the suggestion was

pointing to the opposite side. This has leads to policies that are well per-

forming for user able to hear, but confusing because the right suggestion is

paired with a wrong movement that, in the future, will make the user feel

insecure and with low confidence in the agent.

In the first two graphs (fig 7.3) we can see an evident improvement of

performances for the user involved in the Phase 1, while the performances

are basically invariant for the users of the Phase 2. The improvement of the

users of the Phase 1 means that the agent is learning, but also that the users

are learning how to interpret the agent actions. This facts is evident in figure

7.3a where we can see how better are performing the users in the first round

of the game 2 compared to the game 1. Indeed after the first games the users

were more confident and reactive at the agent actions, while at the beginning

of the simulation they were more focused on all the environment and less on

the di↵erence between the suggestions.

The advantage of being expert of the environment is even more evident

in the figure 7.6 where the user of the Phase 1 were performing, in the first

round, with results close to the perfect match, while the new users, that are

not familiar with the system, have needed the double of picks to complete the

round. These users were able to immediately match the correct card after

suggestions like “tell the exact position”, but were disoriented and unable

to interpret head movements and general voice suggestions. The presence

of inexpert users in the Phase 2 partially explains the constant performance

of the entire group of users. Indeed the initial average performance are the

66 7. Human World

results of a great results of the expert users joint with the results of the rest

of the users. In the end remains only to understand how can we explain the

performances of the last round?

To understand better the results of the Phase 2 we need to examine better

the figure 7.6 where the results of the two groups of users that compose the

Phase 2 are compared. The two groups have opposite trends. The new

users, introduced in this phase, are following a learning curve, improving

almost every round. On the opposite side the users that had taken part also

in the Phase 1 are deteriorating their performance every round.

The learning of the second phase is done using the policy reuse algorithm

that balance the exploration selecting actions between the bias and current

policy. Essentially the agent starts following the bias policy and moves the

action selection to the new policy round after round until when, in the last

round, the actions are selected only from the current policy. The expert

users, that since the first round are performing really well, are unfortunately

visiting a low number of states leaving parts of the current policy untrained.

This leads to the situation where these users, in the last round, are assisted

by partially trained policies that can’t always provide the correct suggestions.

It is important to clarify that this happens because we are using a really short

train and it isn’t a fault of the policy reuse algorithm.

A possible solution is to delay the use of the current policy in order to

hope that the users visit all the states before the last round, but this limit

the adaptation of the current policy to the specific needs of the current user.

Depending on the situation the balance of the policy selection can leads to

initial good performances followed by a partially untrained policy or to initial

mediocre performances followed by a more trained policy.

An other interesting comparison is suggested again by the figure 7.3. Now

the interesting data is that the average performance of the round 1 of the

Phase 2 is better than round 5 of the Phase 1 of each users. We have supposed

7.4 Discussion 67

that the merged policy has to be sub-optimal for the users interested in the

combination, but in the results it appears even better that the policies used

in the combination. First we have to say that the supposition about the sub-

optimality of the merged policy is valid only in the scenario where all the

policy used in the combination are optimal, but this remain an interesting

results.

How is possible that the policies combination has improved the learned

policies? In a normal scenario with optimal policy the policies combina-

tion combine the resulting multimodal actions with the suggestions from the

users recognized more precise in the perception of the corresponding channel

of communication. In a scenario of fast training the combination algorithm

prefers the suggestions supplied by the users more consistent in the actions

interpretation. In the case of users with equivalent level of perception the

actions are summed and the defined algebra favors the actions considered

more specific. This could be considered as an introduction of supervision in

the method that introduce a bias depending on the preference of the task

designer, but in this case allow the specific suggestions to survive at the

combination with random suggestions. In fact it is as consequence of this

implementation choice that the merged policy is performing better than the

other, because it privilege the learned suggestions at the innate random ac-

tions inside the non optimal learned policy.

After the new evidence related to the merged policy is interesting analyze

his composition. In figure 7.5 is reported a graphical representation of two

merged policies. If we consider the policy represented by green plus, generate

combining the Blind and Deaf users of the virtual scenario, as correct, we

can notice many selected actions of the human merged policy di↵ering from

it. These di↵erence can be, in term of action code, small or bigger and both

the cases require a detailed studies. In the case of a small di↵erences, usually

happens for actions that are composed by the same speech suggestion. All

the actions that are saying the exact position of the card are included in the

68 7. Human World

range of the codes 33-44 and the di↵erent code are given by the di↵erent

combination of visual suggestions. Counting only the states where both the

policies have the learned actions in this range, there are at least six states

where the actions can’t be both correct. These are the states where both

the actions are included between 35 and 44. In fact these have di↵erent head

movement, and so the visual part of the suggestion is moving the attention

to di↵erent area of the board and for this reason one of the two actions is

wrong. For the rest of the actions, these out of the range 33-44, we have

personally tested their goodness and we have discover that for the human

merged policy four are completely wrong.

To conclude we can say that the human merged policy is for the 45%

composed by wrong or partially wrong actions. The explanation to all this

wrong suggestions is more than one. As first thing the quality of the train-

ing, because the majority of the users have always paid more attention to

the voice than to the visual suggestions. A second major explanation are

the di↵erent interpretations that users has given to the suggestions. Indeed

the same suggestions have assumed di↵erent meaning depending on the po-

sition of observed card on the board, the selected system of reference and in

combination with other suggestions. For example suggestions pointing to the

border with the observed card on the board have changed their meaning to

all the card on the border. Another examples are the di↵erent interpretation

assumed by the head pointing up between the di↵erent users. For someone

was the card closer to him, but for others was the opposite. The same is

happened for the head down, while a similar situation has been encountered

for the speech suggestions “Maybe left” and “Maybe right”.

All the same interpretation associated to di↵erent actions are not identi-

fied by the user information extraction algorithm that can’t abstract to the

concept thought by the user.

Even if the analysis of the merged policy has revealed some problem

the results are really good and in a way unexpected. The credits of these

7.4 Discussion 69

performances are all for the human brain that is able to learn and interpret

the di↵erent situations. Indeed in all the case of partially wrong actions the

human user is able to understand from the context, which part of the action

is wrong in order to match the right card.

Chapter 8

Conclusion

In a world where the robot are entering in the daily life, their use to as-

sist the human require always new studies to improve their cognitive skills.

We have tried to find a solution to the slow learning connected to the au-

tonomous agents by proposing a solution that try to maintain the learned

task related knowledge in the succession of di↵erent users. We have build

an environment in which recreate the proposed problem and with the use

of the reinforcement learning we have trained an agent in the task of assist

di↵erent users. The information learned in this way has been combined in

a new policy that the agent can use as base in the learning for the future

users that will need assistance. This technique has been tested on virtual

and human scenarios finding out that the idea is a valid solution, but that

can be used in a limited set of environment. That are all the scenarios where

multimodal actions are used and their interpretation are performed with no

ambiguity between the di↵erent users.

This good results can be improved with some small future works. The

first idea is to improve the user info extraction algorithm in order to work at

action level and not comparing the single suggestions. This could allow the

identification of multi-modal suggestion that are normally used by the human

users. At the current state of the art these are recognized as incompatibilities

71

72 8. Conclusion

reducing the quality of the features associated to the user in cause.

A second major works is the use of a preliminary test to understand the

point of reference that the user has decided for the system. This information

permit the agent to convert the learned actions in the system of reference

used by the user and memorize the actions in a standard representation. In

this way the propose process will lose the limitation about the ambiguity in

the performed actions.

An additional improvement of the combination process can be done per-

forming a combination of the policies of each user and use the obtained

merged policy for the combination with the others. This idea can improve

the learned policy in scenarios where the learned policies are not optimal.

Until now all the combination were performed on a random policies between

the policies learned assisting the user, but in the future the policy used for

the combination can be the combination of the policies learned by the user.

This idea come out after the results of the merged policy on the human’s

world simulation, where we have find out how the merged policy was outper-

forming the other learned policy.

This new approach try to solve a problem not so much considered until

now. The hope with this research is to give inspiration for new possible

solution or better implementation of the proposed solution.

List of Figures

3.1 Graphical representation of the policies combination schema. . 14

3.2 Graphical view of the user information extraction schema. . . 15

4.1 Picture of the scenario. It is composed by a user a touch screen

with the matching memory game and a social robot. 17

4.2 Memory deck. 18

4.3 User agent interactions routine. 19

4.4 Graphical view of the spatial states representation. 20

4.5 Spatial state examples. 21

4.6 Spatial state with level examples. 22

4.7 Graphical view of the possible combination between the dif-

ferent suggestions families. 23

5.1 Example of user info. 33

6.1 Command line version of the Memory game. 40

6.2 Example of virtual action. 41

6.3 Example of inconsistent action. 44

6.4 Learning process features analysis. 47

6.5 Features and user information comparisons. 48

6.6 Graphical representation of the policies. 49

7.1 Elements of the real scenario. 56

7.2 Picture of the game board. 58

75

76 LIST OF FIGURES

7.3 Comparison of the average number of actions per round be-

tween the di↵erent game. 61

7.4 Example of bad training at the end of the Phase 2. 62

7.5 Comparison of the representations of the merged policies. . . . 63

7.6 Graphical representation of the average performance in the

Phase 2. 64

List of Algorithms

1 Online Q-learning . 29

2 Online LSPI with ✏-greedy exploration 30

3 User Information Extraction . 32

4 Combine policies algorithm. 35

5 ⇧-reuse method . 37

77

List of Tables

4.1 Action: Speech Suggestion . 23

4.2 Action: Face expression . 24

4.3 Action: Head movement . 24

4.4 Action: Gaze . 25

5.1 Algebra of the hearing suggestions. 36

5.2 Algebra of the visual suggestions. 36

6.1 Sight mapping. 43

B.1 Interpretation: Speech Suggestion 91

B.2 Interpretation: Facial Expression 91

B.3 Interpretation: Head Movement 92

B.4 Interpretation: Gaze . 92

79

Appendix A

Personas

In the following pages the stories of di↵erent personas are presented. From

their routine, fears and virtues a set of features are extracted. The meaning

of the features are explained in the following descriptions:

Focus The bent at follow instructions and the level of attention.

Memory User memory training level.

Sight Quality of the user’s view.

Hearing Quality of the user’s hearing.

The features are represented on a 1 to 6 scale, where 1 is the minimum

and 6 the maximum value.

81

82 A Personas

Ashley Tracy

Thirteen years old Ashley is the second of four brothers. She studies in

the local school where she is also a cheerleader. She doesn’t like to study

and prefers to text with her friends and post pictures on the social network.

Ashley lives with her family and fights very often with her parents, be-

cause she thinks that they give more attentions and privileges to the two

younger sons. For this reason she spends a loot of time close in her room

using the smartphone or writing her diary.

A Personas 83

Helmut Volker

Sixty-two years old Helmut is a retired man that live in the suburbs with

his wife. They have two sons that live by their own. The oldest is Ianna that

works as secretary in a o�ce in a near city. The second Arne is a car seller

for local branch of the wolkswagen. The two sons come often to visit the

parents and when is not possible they call Helmut on his old feature phone.

Every morning Helmut starts the day with a big breakfast while read the

newspaper. After that he goes in the garden to check his vegetable garden

and the other plants. In the afternoon he like to play chess with his wife,

game that he has played during all his life in the free time.

He was a lumberjack for 35 year since he got an accident where he became

cripple and has stopped to work.

84 A Personas

Tatiana Modric

Thirty-four years old Tatiana is a freelance with her own course of yoga,

where she is the main instructor. She lives alone with her two dogs, nirvana

and rog.

She works only 5 hour per day, 4 day at week. In the free time she likes

to walk and run with the dogs, and practice meditation in the park or if the

weather is bad in her house.

Tatiana is single since two years after she has broken with her ex boyfriend.

She has some friend that sees every Sunday morning for breakfast. Usually

on Friday she goes out with some guy that has meet during the week or

with her sister. She really likes her sister and they are very connected. They

are used to go to see ballet together, sport that they have played in their

childhood.

Tatiana doesn’t like to go out for shopping and love to buy everything

online from the most famous website.

A Personas 85

Vincent Cornaros

Twenty-three years old Vincent is a blind student at the university of

physics. He lives with his parents and has no brother or sister.

Vincent has a guide dog which them can walk alone around the city. He

also uses the iPhone in the day life with the help of the voice over technology.

He likes to listen instrumental music such as electronic and progressive.

He is also heated for the role play games and plays it a lot with his group of

friends. They meet every week end and one or two day in the week, based

on the availability of everyone.

86 A Personas

Wasim Taider

Forty-one years old Wasim is a Syrian refuge. He moved from Syria at

the beginning of the fight using all the money saved since that day. Arrived

in Germany he start a new life with his family composed of the wife and 2

daughters.

Now are 3 year that Wasim is in the new country and live in a old flat.

He is the only worker of the familiar unit and the money are never enough.

He work as mechanical fitter all the week and in the week end work like

delivery man in the kebab restaurant near home. He has very few free time

and uses it to relax, served by his entire family.

He has a cheap smartphone that use to maintain the contact with his old

friends that now are around Europe. He finds it di�cult to use because the

characters are to small, but the real problem is that he needs glass, yet he

never wears it in his entire life and is to proud to admit that he needs a pairs.

A Personas 87

Frances Miller

Sixty-seven year-old Frances is the mother of four children and the grand-

mother of twelve. She lives in her own home, bakes a pie once a week so that

she has something to serve for Sunday visitors (usually one of her children

and their immediate family), and has two cats. The cats’ names are Fred and

Wilma, names given to them by four-year old grandson Bobby. She likes to

knit and do needlework, which she either gives away as presents to her family

or donates to the annual sale to raise money for the church she belongs to.

She is a middle-class retiree living on a fixed income. Her mortgage has

been paid o↵ and she has one credit card which she seldom uses. She has been

a customer of the bank for 57 years although has never used an automated

teller machine (ATM) and never intends to. She has no patience for phone

banking and does not own a computer. Every Monday at 10:30 am she will

visit her local bank branch to withdraw enough cash for the week. She prefers

to talk with Selma the branch manager or with Robert, a CSR who was a

high-school friend of her oldest son.

88 A Personas

Blind

Blind user expressly designed for the simulation.

A Personas 89

Deaf

Deaf user expressly designed for the simulation

Appendix B

Suggestion Interpretation

Action Suggested Cards

Say Nothing None1

“It is the right card” The observed card

“Try at row x and

column y”
The card at row x and column y

“Maybe up” The cards above the observed card

“Maybe down” The cards below the observed card

“Maybe left” The cards on the left of the observed card

“Maybe right” The cards on the right of the observed card

Table B.1: Interpretation: Speech Suggestion

Action Suggested Cards

Do Nothing None1

Smile The observed card

Table B.2: Interpretation: Facial Expression

91

92 B Suggestion Interpretation

Action Suggested Cards

Do Nothing None1

Nod The observed card

Turn the head up The cards above the observed card

Turn the head down The cards below the observed card

Turn the head left The cards on the left of the observed card

Turn the head right The cards on the right of the observed card

Turn the head up left The cards above the left of the observed card

Turn the head up right The cards above the right of the observed card

Turn the head down

left
The cards below the left of the observed card

Turn the head down

right
The cards below the right of the observed card

Table B.3: Interpretation: Head Movement

Action Suggested Cards

Do Nothing None1

Gaze the card at row

x and column y

The card at row x and column y plus the cards

UP, DOWN, LEFT and RIGHT2

Table B.4: Interpretation: Gaze

1No Information Set.
2If the card at row x and column y is on a border one or more cards can miss.

Appendix C

Furhat

“Furhat is a robotic platform that combines natural voice and gesture to

create a more social, human experience” — Forbes

Furhat is a robot with a character and a personality, a platform to build

socially aware spoken conversations with computers. It is an a human-like

interface with social intelligence. An interface with personality and inten-

tion. An interface that understands the human social protocol, language,

gesture, and dynamics. An interface that is built from the bottom up on

computational models of engagement, group dynamics, joint-attention, and

with social intentions.

Furhat comes with supports for several video and depth cameras including

Kinect, it has a speech synthesis system and it is the most expressive robot

head in the world. The high quality and great customization of Furhat’s

facial repertoire of facial gesture combined with the video device give the

requirement required for a natural conversation. Thanks to the camera it

is able to follow the face of the user giving an idea of involvement in the

conversation. The facial gesture give the shade of skin and mouth movement

like a real face. The two factors together plus the voice make Furhat a perfect

platform to build social interactions.

93

94 C Communicate with Furhat

Figure C.1: A picture of the robot head Furhat.

Appendix D

Communicate with Furhat

The communication with Furhat can be implemented via the irisTk Frame-

work, but it supports only windows environment. To deal with this problem

we have used a serialized communication over TCP/IP. In this way is also

possible to use programming language di↵erent from java.

First, we need to start a Broker that relays all messages. Thus, all systems

only need to know the address of the Broker and inform the Broker of which

events they subscribe to.

Then, it is possible to connect the system to the broker like this:

socket.connect((host, port))

After the connection of the socket we continue creating two threads, one for

writing to the socket and one for reading from it.

When the threads are running we write

CONNECT [ticket] [myname]\n

on the socket, where [ticket] is the name of the ticket we want to share

events with, and [myname] is the name of our client.

After the connect message we have to wait, reading the socket, until the

receipt of the "CONNECTED\n" message.

Now that we are connected and identified to the broker we have to write

95

96 D Communicate with Furhat

SUBSCRIBE [filter]\n

to tell the broker which events we are interested in (e.g., "**" for all events).

The messages are received in the form EVENT [name] [nBytes]\n fol-

lowed by a serialized event in JSON format. The [nBytes] is a number

which tells us how many bytes the JSON event takes. Thus, we have to

continue to read these bytes and then parse the JSON.

To send events to the broker we have to write to the socket

EVENT [name] [nBytes]\n

followed by the serialized JSON event, where [nBytes] denotes the number

of bytes in the JSON event.

To terminate your client, we have to write "CLOSE\n" and the system will

shut down.

Event JSON Format

We are now going to introduce an example of event for each suggestion

family, but first we will see a general examples.

{

"class" : "iristk.system.Event",

"event_name" : "action.speech",

"event_id" : "my_unique_id_123",

"text" : "Hello there"

}

Figure D.1: Example of serialized JSON event.

Every event has some standard parameters:

event name the name of the event

event id a unique ID for the event

D Communicate with Furhat 97

event sender the name of the module that sent the event

event time a timestamp when the event was created

Particular events require additional parameter that are better explain in the

irisTk documentation [Skantze(2013)].

Speech Event

This event represents an action that can be sent to a synthesizer to add

an utterance to the speech queue.

The "text" parameter contains the text to speak.

{

"abort": "true",

"class": "iristk.system.Event",

"event_id": "MemoryGame." + str(time.time()),

"event_name": "action.speech",

"event_sender": "MemoryGame",

"event_time": str(datetime.now()),

"text": msg

}

Figure D.2: Example of serialized speech event.

With the use of the event action.speech.stop we can say to a synthe-

sizer to stop speaking (and clearing the speech queue).

Gaze Event

This event makes the agent shift gaze to a certain location in 3D space.

Concatenations of multiple gaze events product a head movement.

For this event three additional parameters are used. The first is "location"

used to store the 3D location where the agent should gaze. The parameter

"mode" is used to specify the type or movement. This could be done by both

98 D Communicate with Furhat

the eyes and neck or by only one of the two. Using the default mode the

robot use eyes and neck in a flexible way. The "speed" indicate how fast has

to be the gaze to the 3D location.

{

"class": "iristk.system.Event",

"event_id": "MemoryGame." + str(time.time()),

"event_name": "action.gaze",

"event_sender": "MemoryGame",

"event_time": str(datetime.now()),

"location": {"x": "0", "y": "0", "z": "2"},

"mode": "default",

"speed": "medium"

}

Figure D.3: Example of serialized gaze event.

Gesture Event

The gesture event makes the agent perform a specific gesture.

{

"class": "iristk.system.Event",

"event_id": "MemoryGame." + str(time.time()),

"event_name": "action.gesture",

"event_sender": "MemoryGame",

"event_time": str(datetime.now()),

"name": "smile_open"

}

Figure D.4: Example of serialized gesture event.

D Communicate with Furhat 99

Attend Event

This event is used to move the attendance of the agent to a specific target

or location.

{

"class": "iristk.system.Event",

"event_name" : "action.attend",

"event_sender": self.agent,

"event_time": str(datetime.now()),

"event_id": "MemoryGame." + str(time.time()),

"target": targetId,

"mode": "headpose",

"agent": self.agent,

"speed": "x-fast"

}

Figure D.5: Example of serialized attend event.

The target could be an user from the SystemAgentFlow or an item. The

item can be added to the system in order to record when are detected or

moved.

In the figure D.6 we show an example of how record a card. The "sensor"

parameter is the ID of the camera or sensor that detected the items, while

the "items" takes a record with all the items. The record is structured with

item Id as key and item objects as values like in figure D.7.

100 D Communicate with Furhat

{

"class": "iristk.system.Event",

"event_name" : "sense.item",

"event_sender": "MemoryGame",

"event_time": str(datetime.now()),

"event_id": "MemoryGame." + str(time.time()),

"sensor" : "kinect",

"items" : record

}

Figure D.6: Example of item creation.

record = {

"card1": {

"class": "iristk.situated.Item",

"id": id,

"expire": -1,

"location": {"x": 1, "y": 1, "z": 1},

"shape": {

"class": "iristk.situated.Shape$Box",

"xsize": 0.07, "ysize": 0.01, "zsize": 0.07

}

}

}

Figure D.7: Example of item record.

Bibliography

[AB(2017)] Furhat Robotics AB. This is furhat, 2017. URL

https://www.furhatrobotics.com/furhat/.

[Buşoniu et al.(2010)Buşoniu, Ernst, De Schutter, and Babuška] Lucian

Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška. Online

least-squares policy iteration for reinforcement learning control. In

American Control Conference (ACC), 2010, pages 486–491. IEEE,

2010.

[Fernández and Veloso(2006)] Fernando Fernández and Manuela Veloso.

Probabilistic policy reuse in a reinforcement learning agent. In Proceed-

ings of the fifth international joint conference on Autonomous agents

and multiagent systems, pages 720–727. ACM, 2006.

[Gri�th et al.(2013)Gri�th, Subramanian, Scholz, Isbell, and Thomaz]

Shane Gri�th, Kaushik Subramanian, Jonathan Scholz, Charles Isbell,

and Andrea L Thomaz. Policy shaping: Integrating human feedback

with reinforcement learning. In Advances in Neural Information

Processing Systems, pages 2625–2633, 2013.

[Hemminghaus and Kopp(2017)] Jacqueline Hemminghaus and Stefan

Kopp. Towards adaptive social behavior generation for assistive robots

using reinforcement learning. In Proceedings of the 2017 ACM/IEEE

International Conference on Human-Robot Interaction, pages 332–340.

ACM, 2017.

101

102 D BIBLIOGRAPHY

[Konidaris and Barto(2006)] George Konidaris and Andrew Barto. Au-

tonomous shaping: Knowledge transfer in reinforcement learning. In

Proceedings of the 23rd international conference on Machine learning,

pages 489–496. ACM, 2006.

[Lagoudakis and Parr(2003)] Michail G Lagoudakis and Ronald Parr. Least-

squares policy iteration. Journal of machine learning research, 4(Dec):

1107–1149, 2003.

[Rosenblatt(2000)] Julio K Rosenblatt. Optimal selection of uncertain ac-

tions by maximizing expected utility. Autonomous Robots, 9(1):17–25,

2000.

[Russell and Zimdars(2003)] Stuart J Russell and Andrew Zimdars. Q-

decomposition for reinforcement learning agents. In Proceedings of the

20th International Conference on Machine Learning (ICML-03), pages

656–663, 2003.

[Schulz and Fuglerud(2012)] Trenton Schulz and Kristin Skeide Fuglerud.

Creating personas with disabilities. In International Conference on

Computers for Handicapped Persons, pages 145–152. Springer, 2012.

[Sherstov and Stone(2005)] Alexander A Sherstov and Peter Stone. Improv-

ing action selection in mdp’s via knowledge transfer. In AAAI, volume 5,

pages 1024–1029, 2005.

[Skantze(2013)] Gabriel Skantze. Iristk intelligent real-time interactive sys-

tems toolkit, 2013. URL https://http://iristk.net/.

[Skantze and Al Moubayed(2012)] Gabriel Skantze and Samer Al Moubayed.

Iristk: a statechart-based toolkit for multi-party face-to-face interaction.

In Proceedings of the 14th ACM international conference on Multimodal

interaction, pages 69–76. ACM, 2012.

BIBLIOGRAPHY 103

[Sutton(2016)] Richard S. Sutton. Tile coding soft-

ware – reference manual, version 2.1, 2016. URL

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/RLtoolkit/tiles.html.

[Sutton and Barto(2011)] Richard S Sutton and Andrew G Barto. Reinforce-

ment learning: An introduction. 2011.

[Taylor and Stone(2009)] Matthew E Taylor and Peter Stone. Transfer learn-

ing for reinforcement learning domains: A survey. Journal of Machine

Learning Research, 10(Jul):1633–1685, 2009.

[Thomaz and Breazeal(2008)] Andrea L Thomaz and Cynthia Breazeal.

Teachable robots: Understanding human teaching behavior to build

more e↵ective robot learners. Artificial Intelligence, 172(6-7):716–737,

2008.

[Watkins and Dayan(1992)] Christopher JCH Watkins and Peter Dayan. Q-

learning. Machine learning, 8(3-4):279–292, 1992.

[Wikipedia(2017)] Wikipedia. Concentration, 2017. URL

https://en.wikipedia.org/wiki/Concentration (game).

Statement of authorship

I hereby certify that I wrote this thesis independently and that it has

not been submitted for any other degree. I have not used other than the

stated sources and aids. All direct or indirect sources are acknowledged as

references.

Bologna, December 7, 2017 .

105

