SCUOLA DI SCIENZE
Corso di Laurea Magistrale in INFORMATICA

A Formalization of Unique Solutions of Equations in Process Algebra

Relatore: Chiar.mo Prof. Davide Sangiorgi

Presentata da:
Chun Tian

Sessione II
Anno Accademico 2016/2017

Abstract

In this thesis, a comprehensive formalization of Milner's Calculus of Communicating Systems (also known as CCS) has been done in HOL theorem prover (HOL4), based on an old work in HOL88. This includes all classical properties of strong/weak bisimulation equivalences and observation congruence, a theory of congruence for CCS, various versions of "bisimulation up to" techniques, and several deep theorems, namely the "coarsest congruence contained in \approx ", and three versions of the "unique solution of equations" theorem in Milner's book.

This work is further extended to support recent developments in Concurrency Theory, namely the "contraction" relation and the related "unique solutions of contractions" theorem found by Prof. Davide Sangiorgi, University of Bologna. As a result, a rather complete theory of "contraction" (and a similar relation called "expansion") for CCS is also formalized in this thesis. Further more, a new variant of contraction called "observational contraction" was found by the author during this work, based on existing contraction relation. It's formally proved that, this new relation is preserved by direct sums of CCS processes, and has a more elegant form of the "unique solutions of contractions" theorem without any restriction on the CCS grammar.

The contribution of this thesis project is at least threefold: First, it can be seen as a formal verification of the core results in Prof. Sangiorgi's paper, and it provides all details for the informal proof sketches given in the paper. Second, a large piece of old proof scripts from the time of Hol88 (1990s) has been ported to HOL4 and made available to all its users. Third, it's a proof engineering research by itself on the correct formalization of process algebra, because the work has made extensive uses of some new features (e.g. coinductive relation) provided in recent versions of HOL4 (Kananaskis-11 and later). The uses of HOL4's rich theory libraries is also a highlight of this project, and it has successfully minimized the development efforts in this work. As a result, this project serves as a sample application of HOL4, which seems a natural choice for the formalization of process algebra.

For the author himself, after this thesis project he has become a skilled user of interactive theorem proving techniques, fully prepared at the level of formal methods in his future research activities in Computer Science.

Acknowledgments

The author want to give special thanks to Prof. Davide Sangiorgi for his supervision of this thesis and the initial proposal of the thesis topic on formalizing his recent research results beside the classical ones. Without Prof. Sangiorgi's kind approval and guidances the author wouldn't be able to graduate by doing some formalizations using his favorite software (HOL4).

Thanks to Prof. Monica Nesi (University of L'Aquila) for finding and sending her old HOL88 proof scripts on the old CCS formalization (during 1992-1995) to the author in 2016 and 2017. By studying these proof scripts, the author has actually learnt how to use HOL theorem prover, and the existing work has provided a good working basis for quickly reaching to the formalization of deep theorems in the frontier of Concurrency Theory.

Thanks to Prof. Roberto Gorrieri, who has taught his Concurrent System and Models course twice to the author (in Spring 2016 and 2017), It's all from these courses that the author has learnt Concurrency Theory and CCS. Prof. Gorrieri has also supervised the authors' previous two projects (one for exam, the other for internship) on the porting of the old CCS formalization of Monica Nesi from HOL88 to HOL4. These work now serves as the working basis of this thesis project.

Thanks to Prof. Andrea Asperti, who has taught the general idea of Interactive Theorem Proving (ITP) techniques to the author through several seminars. (Prof. Asperti used to teach formal methods but since 2015 he has changed to teach Machine Learning under the same course title) Although it's based on a different theorem prover (Matita, originally created by himself), the author wouldn't be able to learn HOL4 without necessary background knowledges learnt from Prof. Asperti, who has also approved the authors' exam project on a formalization of Lambek Calculus (mostly ported from Coq).

Also thanks to many people from HOL community (Michael Norrish, Thomas Tuerk, Ramana Kumar, Konrad Slind, etc.) for their kind help on resolving issues and doubts that the author has met during this thesis and previous related projects. All these people are professors and senior researchers in other universities. Without their help this thesis project won't be finished in reasonable time.

At last, thanks to Prof. Mike J. Gordon (University of Cambridge, the creator of HOL Theorem Prover), who has unfortunately passed away in the evening of August 22,2017 . He ever kindly encouraged the author's work in several private emails, and the author initially learnt the existence of the CCS formalization on HOL, from an introduction paper [1] written by Prof. Gordon.

The author also wants to thank his parents and all his friends in China, Italy and other countries, for all their supports in the past years. The author won't be able to start and focus on his degree study (and finally finish it) without their supports.

The paper is written in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ using LNCS template, with theorems generated automatically by HOL's $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ exporting module (EmitTeX) from the working proof scripts. ${ }^{1}$

[^0]
Contents

1 Introduction 11
1.1 Limitations 15
1.2 Related work 16
1.3 Availability 17
2 HOL Theorem Prover 19
2.1 Higher Order Logic 20
2.1.1 Types and Terms 21
2.1.2 The HOL deductive system 22
2.1.3 Standard Theory of HOL 24
2.2 Relations in HOL 25
2.2.1 Notations 25
2.2.2 Ways to define relations 26
2.2.3 Inductive and co-inductive relation definitions 28
2.3 Writing proofs in HOL 30
2.3.1 Forward and backward proofs 30
2.3.2 Bigger examples 36
3 Calculus of Communicating Systems 43
3.1 Labels and Actions 43
3.1.1 Relabeling operator 45
3.2 The CCS Datatype 46
3.3 Transition Semantics 48
3.3.1 Decision procedure for CCS transitions 51
3.4 Strong equivalence 53
3.4.1 Algebraic Laws for strong equivalence 56
3.4.2 The Strong Expansion Law 59
3.5 Weak transitions and the EPS relation 61
3.6 Weak bisimulation equivalence 64
3.7 Observational Congruence 69
3.8 Relationship between Weak Equivalence and Observational Congruence 73
3.9 The theory of (pre)congruence 75
3.10 Coarsest congruence contained in \approx 78
3.10.1 With classical cardinality assumptions 79
3.10.2 Without cardinality assumptions 80
3.10.3 Arbitrary many non-bisimilar processes 82
3.10.4 Finite-state CCS 83
3.10.5 Finitary CCS and general cases 86
4 A Formalization of "bisimulation up to" 87
4.1 Bisimulation up to \sim 88
4.2 Bisimulation up to \approx 89
4.3 Another version of "Bisimulation upto \approx " 95
4.4 Observational bisimulation up to \approx 97
5 Unique Solutions of Equations 99
5.1 Guarded Expressions 100
5.2 Milner's three "unique solution of equations" theorems 101
5.2.1 For strong equivalence 102
5.2.2 For weak equivalence 102
5.2.3 For observational congruence 104
6 Equations, Contractions and Unique Solutions 106
6.1 Expansion 107
6.1.1 Expansion is pre-order 108
6.1.2 Expansion is precongruence 109
6.2 Contraction 110
6.2.1 Contraction is pre-order 111
6.2 .2 Contraction is precongruence 112
6.3 Step and Trace transitions 113
$6.3 .1 \quad n$-step transitions 113
6.3.2 Traces 115
6.3.3 Traces for Expansions and Contractions 119
6.4 Unique solutions of contractions 121
6.5 Observational contraction 125
6.5.1 coarsest precongruence contained in $\succeq_{b i s}$ 129
7 Towards multi-variable equations 131
8 Conclusions 134
8.1 Further directions 134
9 References 136
9.1 CCS Theory 137
9.1.1 Datatypes 137
9.1.2 Definitions 137
9.1.3 Theorems 140
9.2 StrongEQ Theory 152
9.2.1 Definitions 152
9.2.2 Theorems 153
9.3 StrongLaws Theory 155
9.3.1 Definitions 156
9.3.2 Theorems 156
9.4 WeakEQ Theory 162
9.4.1 Definitions 162
9.4.2 Theorems 163
9.5 WeakLaws Theory 173
9.5.1 Theorems 173
9.6 ObsCongr Theory 175
9.6.1 Definitions 175
9.6.2 Theorems 176
9.7 ObsCongrLaws Theory 178
9.7.1 Theorems 178
9.8 Congruence Theory 180
9.8.1 Definitions 181
9.8.2 Theorems 184
9.9 CoarsestCongr Theory 198
9.9.1 Definitions 199
9.9.2 Theorems 199
9.10 BisimulationUpto Theory 201
9.10.1 Definitions 202
9.10.2 Theorems 203
9.11 Trace Theory 209
9.11.1 Definitions 209
9.11.2 Theorems 210
9.12 Expansion Theory 216
9.12.1 Definitions 216
9.12.2 Theorems 217
9.13 Contraction Theory 222
9.13.1 Definitions 222
9.13.2 Theorems 223
9.14 UniqueSolutions Theory 232
9.14.1 Theorems 232

Two-page Summary in Italian

In questo progetto di tesi di laurea, viene proposta una formalizzazione quasi completa del Calculus of Communicating Systems (CCS) di Robin Milner realizzata in HOL theorem prover (HOL4). L'implementazione proposta si basa sul riutilizzo di una formalizzazione già esistente realizzata in HOL88 da Monica Nesi. Tale formalizzazione è stata quindi riadattata per essere riutilizzata in HOL4 per l'aggiunta di nuove funzionalità.

La formalizzazione include proprietà classiche della bisimulazione, sia forte che debole, e la congruenza fondata sull'osservazione. Viene inoltre proposta una teoria di congruenza per CCS. Sono incluse inoltre varie tecniche di "bisimulazione fino a" (bisimulation up to) e numerosi teoremi profondi, come ad esempio:

1. Il lemma di Hennessy:

$$
\vdash p \approx q \Longleftrightarrow p \approx^{c} q \vee p \approx^{c} \tau \ldots q \vee \tau \ldots p \approx^{c} q
$$

2. Il lemma di Deng:

$$
\begin{aligned}
& \vdash p \approx q \Longrightarrow \\
& \quad\left(\exists p^{\prime} \cdot p-\tau \rightarrow p^{\prime} \wedge p^{\prime} \approx q\right) \vee\left(\exists q^{\prime} \cdot q-\tau \rightarrow q^{\prime} \wedge p \approx q^{\prime}\right) \vee \\
& p \approx^{c} q
\end{aligned}
$$

3. Il teorema "coarsest congruence contained in \approx ":
```
\vdash ~ f i n i t e \& s t a t e ~ p ~ \ ~ f i n i t e \& s t a t e ~ q \Longrightarrow ~
    (p *
```

4. Tre versioni del teorema della "unica soluzione degli equazioni" nel libro di Milner [2]:
$\vdash \mathrm{WG} E \Longrightarrow \forall P Q . P \sim E P \wedge Q \sim E Q \Longrightarrow P \sim Q$
$\vdash \mathrm{SG} E \wedge \mathrm{GSEQ} E \Longrightarrow \forall P Q . P \approx E P \wedge Q \approx E Q \Longrightarrow P \approx Q$
$\vdash \operatorname{SG} E \wedge \operatorname{SEQ} E \Longrightarrow \forall P Q \cdot P \approx^{c} E P \wedge Q \approx^{c} E Q \Longrightarrow P \approx^{c} Q$
Successivamente abbiamo esteso questo lavoro a sostegno dello sviluppo della recente Teoria di Concorrente, ossia della relazione contrazione ($\succeq_{\text {bis }}$) e del suo teorema "l'unica soluzione degli equazioni", proposta dal Professore Davide Sangiorgi dell'Universit'a di Bologna:
\vdash WGS $E \Longrightarrow \forall P Q . P \succeq_{b i s} E P \wedge Q \succeq_{b i s} E Q \Longrightarrow P \approx Q$
Durante la dimostrazione della teorema "l'unica soluzione degli equazioni", una teoria completa della relazione "contrazione" (e un'altra relazione "expansione") per CCS è stata sviluppata nel progetto. Inoltre, una nuova versione della relazione "contrazione" è stata proposta dall'autore. La nuova relazione, basata sula relazione "contrazione" di Sangiorgi, si chiama "la contrazione fondato sull'osservazione" (observational contraction, $\succeq_{\text {bis }}^{c}$). Questa nuova relazione ha le proprietà migliore rispetto alla contrazione normale, infatti il suo teorema "l'unica soluzione dei equazioni" è in grado di accettare processi composti da somme dirette:
$\vdash \mathrm{WG} E \Longrightarrow \forall P Q . P \succeq_{b i s}^{c} E P \wedge Q \succeq_{b i s}^{c} E Q \Longrightarrow P \approx Q$
Così non ci sarà bisogno di limitare la grammatica CCS con solo le somme guardinghe, com'è trovato nell'articolo di Sangiorgi e gli altri.

La contribuzione di questa tesi di laurea è al meno triplo:

1. Il lavoro ottimo del professor Sangiorgi viene verificato parzialmente adesso. Coloro che vogliono sapere tutti i dettagli delle dimostrazioni nell'articolo 33 possono leggere la nostra formalizione, se si capisca la logica di higher order (HOL).
2. Una parte grande di codici vecchi da HOL88 (1990s) (scritto dal prof.ssa Monica Nesi) viene trovato, salvato e portato nell'ultima versione di HOL theorem prover. Ora questi codici vivano nel deposito codice di HOL officiale (così è disponibile ai utenti tutti). Non puo perdersi di più.
3. È una ricerca sul modo meglio della formalizzare di process algebra, e il tipico oggeto (CCS). Abbiamo usato tantissimo new feature nell'HOL4 per minimizzare il lavoro della formalizzazione. Sono inclusi la capacità per definire la relazione co-induttiva, e le teorie esistente (relation, list, etc.) nell'HOL4. Molti codici vecchi viene eliminati, mentre tutti i teoremi sono ancora lì.

Per l'autore stesso, questo progetto è da maggior parte una pratica per migliorare le sue capacità di usare il theorem prover e il metodo formale per risolvere i problemi in informatica.

Chapter 1

Introduction

In Concurrency Theory [4, the initial research motivation was the modeling of concurrent and reactive systems. Such systems can usually be abstracted into finite or infinite number of states, together with labelled transitions between pairs of states. From a mathematical view, these states and transitions form a edge-labeled directed graph, in which each edge represents a possible transition of states in the system. As a model, we gives such graphs a special name: Labeled Transition Systems (LTS), which is originally introduced by R. Keller [5].

The mainline research of Concurrency Theory concerns with a particular class of mathematical models for concurrent communicating processes, namely the class of algebraic calculi (process algebra). There're different approaches to the algebraic treatment of processes, the main distinction among them are the constructions by which processes are assembled. Milner's CCS is the simplest treatment with least number of such constructions, while it's still very powerful, in the sense that it's Turing-complete, although Turing-completeness is not enough to ensure the solvability of all the problems in Concurrency Theory. (4)

On the relationship between CCS and LTS, there seems to be two approaches: we can either treat CCS as a compact, algebraic representation of LTS, or treat LTS as the sequential (or interleaving) semantic model of CCST We think the former approach is not quite fair, because LTS itself has no computational power at all, while CCS can do computations due to its ability of synchronizations, even though this power has been limited between pairs of processes.

In this thesis, we have taken the following approach: we put CCS at the central position and define all equivalence concepts on CCS only, while LTS itself doesn't appear explicitly in the formalization. As the result, it's impossible to formalize the theorems involving both CCS and LTS, e.g. the Representability Theorem. But it's should be possible to extend the current work with LTS included as a dedicated type. ${ }^{2}$

[^1]Although titled as "A Formalization of Unique Solutions of Equations in Process Algebra", this thesis project actually contains a quite complete formalization of Milner's Calculus of Communicating Systems (CCS). The precise CCS class is Finitary and Pure CCS (i.e. no Value-Passing) with explicit relabeling operator. The work has covered almost everything in Milner's classical textbook [2], and we have also formalized some recent developments in Concurrency Theory, namely the "contraction" relation and its "unique solution of contractions" theorem, introduced in the paper [3] of Prof. Davide Sangiorgi.

Nowadays many researchers in Concurrency Theory have turned to other more powerful process algebras, e.g. π-calculus and ψ-calculus. Even in scope of CCS, the research interests were shifted to CCS extensions like Multi-CCS and Value-Passing CCS. However, the original theory of pure CCS is easy to understand, thus it's still the main content of many Concurrency Theory courses. On the other side, many more powerful process algebras were based on CCS, thus understanding CCS should be a good step for students who want to study more powerful process algebras in the future.

But even for pure CCS there're still something quite deep when doing its formalization. For example, the use of "Process constants" in CCS didn't appears in tother powerful process algebras like π-calculus [7]. It's actually a challenging work to correctly formalize the "process constants" in CCS. Many authors has completely ignored process constants, while they still claim to successfully formalized CCS. This is the case for the CCS formalization we found using Coq and Isabelle/HOL [8]. What they have formalized is only a sub-language of CCS, in which all theorems for equivalence relations still hold.

The CCS formalization of Monica Nesi [9] has included process constants. In fact, this work has some advanced features beyond theorem proving in the usual sense: besides having proved many theorems, Monica Nesi has also implemented two decision procedures as ML functions: one for generating transitions from any CCS process, the other for automatically checking the equivalences between two processes. Different with similar functionalities in dedicated software, the results generated by theorem provers are trusted, because the outputs are also theorems. This has almost touched the area of CCS-based model checking with self-contained trustness.

In the work of Monica Nesi, there's a creative treatment of process constants. In standard literature, a general CCS process can be defined by the following grammar: (suppose p and q are already CCS processes, a and b are actions)

$$
\begin{equation*}
p::=\text { nil } \quad|\quad \alpha \cdot p \quad| \quad p+q \quad|\quad p \| q \quad| \quad(\nu a) p \quad|\quad p[b / a] \quad| \quad C \tag{1.1}
\end{equation*}
$$

here C is a process constant denoting another CCS process, in which the C itself or

[^2]some other constants may appear. For example:
\[

\left\{$$
\begin{array}{l}
A \stackrel{\text { def }}{=}(\nu a)(b . \text { nil } \mid A) \tag{1.2}\\
B \stackrel{\text { def }}{=} b \cdot B+a \cdot A
\end{array}
$$\right.
\]

But this form cannot be formalized directly, because in theorem provers a process must be represented as single term with all information. The solution of Monica Nesi is to use process variables and a recursion construction instead:

$$
\begin{equation*}
p::=\text { nil }|\alpha \cdot p| p+q|p \| q|(\nu a) p|p[b / a]| \operatorname{var} X \mid \operatorname{rec} X p \tag{1.3}
\end{equation*}
$$

Suppose B is the root process, with the new grammar it's possible to represent this process by the following term:

$$
\begin{equation*}
\operatorname{rec} \mathbb{B}(b .(\operatorname{var} B)+a \cdot(\operatorname{rec} \mathbb{A}(\nu a)(b . \operatorname{nil} \mid \operatorname{var} A))) \tag{1.4}
\end{equation*}
$$

This term contains both previous definitions of constants A and B. With a little more imagination, we can see the similarity between above term and a similar λ calculus term (suppose other CCS operators were available):

$$
\begin{equation*}
\lambda \mathbb{B} \cdot(b \cdot B+a \cdot(\lambda \mathbb{A} \cdot(\nu a)(b . \operatorname{nil} \mid A))) \tag{1.5}
\end{equation*}
$$

Now it comes to the interesting part: given above CCS grammars, the following "process" is also valid:

$$
\begin{equation*}
\operatorname{rec} \mathbb{A} \cdot(a \cdot A+b \cdot C) \tag{1.6}
\end{equation*}
$$

or in the grammar with constants:

$$
\begin{equation*}
A \stackrel{\text { def }}{=} a \cdot A+b . C \tag{1.7}
\end{equation*}
$$

Here the constant C is undefined, but the entire definition is still valid according to the CCS grammar. In standard literature, process terms containing undefined constants do not have fully given semantics, c.f. Definition 3.2 (and the remarks after it) in Gorrieri's book:

Definition 1.0.1. (Defined constant and fully defined term) A process constant A is defined if it possesses a defining equation: $A \stackrel{\text { def }}{=} p$. A process term q is fully defined if all the constants in it are defined.

The requirement that a term must be fully defined is due to the fact that its semantics cannot be fully given otherwise. For instance, term a. A can execute a, but after that we do not know what to do if A is not equipped with a defining equation.

The approach is different in our formalization of CCS: we think every process term has determined semantics, even when it contains undefined constants! The rules are simple: undefined constants have no transitions. In another word, an undefined constant A works like a nil, they simply have no transitions. However, we didn't explicitly define such a rule, instead it's a natural consequence derived from the transition semantics.

It remains to understand what's exactly an undefined process variable. Inspired by [10], we have realized that, an undefined constant is actually a free variable in the process term. Formally speaking, now we took the following approach, which is better than those in current standard literature:

1. CCS terms may contain countable many process variables: A, B, C, \ldots;
2. Whenever such a variable A is wrapper by a rec construction with the same variable, i.e. rec $A \ldots$....., it's a bounded variable, or (process) constant;
3. Other variables are free (process) variables;
4. We call a CCS term with free variables CCS expressions;
5. A CCS term without free variables is CCS process.
6. Free variables have no transitions.
7. Variable substitutions in CCS terms p can only apply to those free variables, and a free variable cannot be substituted with a term q containing free variables having the same name with any surrounding constant.

These rules are very similar with λ-calculus. For example, in $(\lambda x . x+y), x$ is bounded, and y is free. We can substitute y with another lambda-term, but this term shouldn't contain x as free variable (otherwise we may have to rename the bound variable x into x^{\prime}).

With this approach, there's actually a straightforward way to formalize CCS equations with multiple variables, at least for finitely many variables: $\tilde{X}=\tilde{E}[\tilde{X}]$, in which the right side of each single equation $E_{i}[\tilde{X}]$ can be seen as a repeated variable substitution process: $E_{i}\left\{p_{1} / X_{1}\right\}\left\{p_{2} / X_{2}\right\} \ldots\left\{p_{n} / X_{n}\right\}$, where $p_{1}, p_{2}, \ldots, p_{n}$ are solution of the equation as a list of CCS processes (without free variables). Thus in theory it's actually possible to formalize the "unique solution of equations" theorem with equations having multiple variables.

Above approach is currently not fully implemented, although we do have defined functions for retrieving the set of free and bound variables in CCS terms, and multivariable substitutions. In fact, above approach was realized too late during the thesis, thus we chose to only consider single-variable equations, which actually coincide with semantics contexts of CCS as unary λ functions, taking one CCS process and returning another.

This choice has guaranteed the quick complete of this thesis project in reasonable time. But there's one drawback: it's impossible to express (and prove) the "Completeness of contractions" (Theorem 3.13 of [3), because it requires an infinite system of contractions. A formalized theory of "contraction" wouldn't be complete with this completeness theorem, because it's the theorem where the "expansion" (a closely related relation) doesn't hold. But currently we have no choice but to leave it as not formalized.

1.1 Limitations

There's limitation in our formalization: the CCS summation operator is only binary, while in Milner's original CCS definition, infinite sums of processes are supported. As the result, only finite summation can be expressed in our definition of CCS, and the resulting CCS language is finitary.

Infinite sums of processes over a arbitrary infinite set of processes turns out to be impossible for higher order logic, i.e. having the following datatype:
Datatype 'CCS = summ (CCS set) | ...';
The reason was explained by Michael Norrish (the HOL maintainer):
"You can't define a type that recurses under the set "constructor" (your summ constructor has (CCS set) as an argument). Ignoring the num set argument, you would then have an injective function (the summ constructor itself) from sets of CCS values into single CCS values. This ultimately falls foul of Cantor's proof that the power set is strictly larger than the set."

What's certainly allowed in higher order logic is the summation over functions taking numerical indexes (numbers or even ordinals) returning CCS processes, i.e. something like:

```
Datatype 'CCS = summ (num -> CCS) | ...';
```

However, currently the datatype package in HOL4 cannot support this kind of "nesting recursive definitions". In theory it's possible to define the desired datatype manually by constructing a bijection from another existing type, but this work is hard and goes beyond the author's ability ${ }^{3}$ The long-term plan is to implement (by the author) the idea of Andrei Popescu [12] based on Category Theory. It has been implemented in Isabelle/HOL. The author would like to have the same datatype defining ability in HOL4, and once this goal is achieved, the current CCS formalization will be also updated to support infinite sums.

It's also worth noting that, Milner's CCS has several different forms, in which the more comprehensive one was introduced in [10] as the last chapter of the Handbook of Theoretical Computer Science, Volume B. In this paper, Robin Milner has defined the set \mathscr{E} of processes expressions E, F, \ldots (also called terms) as the smallest set including \mathscr{E} and the following expressions-when E, E_{i} are already in \mathscr{E} :

```
\(\alpha . E, \quad\) a Prefix \((\alpha \in A c t)\),
\(\sum_{i \in I} E_{i}\), a Summation,
\(E_{0} \| E_{1}, \quad\) a Composition,
\(E \backslash L, \quad\) a Restriction \((L \subseteq \mathscr{L})\),
\(E[f]\), a Relabeling ( \(f\) is a relabeling function),
\(\operatorname{fix}_{j}\left\{X_{i}=E_{i}: i \in I\right\}, \quad\) a Recursion \((j \in I)\).
```

[^3]In the final form (Recursion) the variables X_{i} are bound variables. For any expression E, its free variables $f v(E)$ are those while occur unbound in E. We say E is closed if $f v(E)=\emptyset$; in this case we say E is a process, and we shall use P, Q, R to range over the processes \mathscr{P}.

In this way, "expressions" (as the core part of an equation) now becomes firstclass definitions in the theory of CCS, and a normal CCS process is nothing but an expression without any free variable. Further more, we quote,"for simplicity purpose we sometimes use an alternative formulation of Recursion: instead of the fix construction we introduce process constants A, B, \ldots into the language. We then admit a set $\tilde{A} \stackrel{\text { def }}{=} \tilde{P}$ of defining equations for the constants." So the process constants are actually defined by processes equations.

Unfortunately, almost all CCS textbooks (including the Milner's own book [2]) have adopted the "simple" approach in which process constants are part of the CCS grammar, and there's no fix construction.

Our work is derived from the work of Monica Nesi, and we didn't touch the definition of her CCS datatype except for the uses of type variables. In this thesis, we focused on the formalization of various versions of the "unique solution of equations/contractions" theorem, limited for the case of single-variable equations, because in this special case an expression is also a context, i.e. lambda functions taking one CCS process returning another. And the concepts of guardedness can also be easily and recursively defined by lambda functions. In this way, we actually ignored all free variables in CCS terms and didn't treat them as equation variables at all. And the resulting "unique solution of equations" theorems have very simple and elegant statements.

The proof scripts (about 20,000 lines) of this thesis is currently available in the 'example/CCS' directory of HOL4 source code repository ${ }^{1}$.

The structure of this thesis paper is as follows: (TODO) In Chapter ..

1.2 Related work

Beside the early CCS formalization by Monica Nesi, the author found only two other CCS formalizations. One is done in Isabelle/HOL (based on Nominal datatypes) in 2010, by Jesper Bengtson as part of his PhD thesis project [8]. He also formalized π-calculus and ψ-calculus, all available in Isabelle's Archive of Formal Proofs (AFP) ${ }^{5}$. Since he has done 3 big formal systems in one project, it's expected that, for each of them only very basic results can be done. The part of CCS has indeed formalized classic properties for strong/weak equivalence and observational congruence, however his CCS grammar doesn't include process constants. And his proved theorems also look quite different with their original forms in CCS textbooks.

The other formalization we found is based on Coq, done by Solange CoupetGrimal in 1995, which is part of the "coq-contribs" archive (Coq's official user con-

[^4]tributed code) ${ }^{6}$. This is actually a formalization of transition systems without any algebraic operator, and all has been covered is still the very basic properties of strong/weak equivalence and observational congruence.

Monica Nesi's early work [9] on pure CCS covered basically the same thing, i.e. classic properties for strong/weak equivalence and observational congruence. However, in her work there's a decision procedure written as ML program (i.e. a function): given any CCS process, this program can generate a theorem which precisely captures all possible (direct) transitions leading from the process. Monica Nesi also described another decision procedure for checking the bisimulation equivalence between two CCS processes. She also formalized Hennessy-Milner Logic (HML), although no decision procedures were implemented. HOL proof scripts are simply ML programs (for HOL88 this was Classic ML, now it's Standard ML), so is the HOL theorem prover itself. So it's very natural for its end users to write ML programs to extend the automatic proof searching abilities during the formalization of related theorems. But this same thing is not obvious for Isabelle, Coq and many other theorem provers, where the language for expressing theorems and proofs are usually domain languages unrelated with the underlying programming language for implementing the theorem prover itself.

As the audience shall see, the coverage of this project is so far the largest among all existing CCS formalizations. And our definitions, proved theorems have almost the same look as in standard CCS textbooks (thus easily understandable for students and professors in Concurrency Theory). Almost all proofs have clear, human readable steps for replay and learning purposes.

1.3 Availability

It's usually very hard to maintain a stable online URL to guarentee the availability of the work done in this thesis project for many years. The author's strategy is to put the entire work into the official code repository of HOL theorem prover, which is currently hosted at GitHub 7] under the folder "examples/CCS". This also means that, every HOL user who has recently installed latest HOL4 from its source code cloned by Git, or is using a formal HOL4 release since Kananaskis 12 (not released at current moment) should have a copy of our proof scripts in his computer under the same sub-folder related HOL top-level folder.

But things may change in the future, and the proof scripts found in HOL's code base may be further upgraded by the author or others. Thus it seems also necessary to maintain a copy which is exactly the same as the one mentioned in this thesis paper. Currently such a copy is also in Github ${ }^{8}$ but the author cannot promise its availability for even next 10 years. Whenever this link is not available any more, please find the "official" version in HOL theorem prover.

[^5]
Chapter 2

HOL Theorem Prover

The HOL interactive theorem prover is a proof assistant for higher-order logic: a programming environment in which logical theorems can be proved, with proof tools implemented. Built-in decision procedures and theorem provers can automatically establish many simple theorems (users may have to prove the hard theorems interactively!) An oracle mechanism gives access to external programs such as SMT and BDD engines. HOL is particularly suitable as a platform for implementing combinations of deduction, execution and property checking.

The approach to mechanizing formal proof used in HOL is due to Robin Milner [13], who also headed the team that designed and implemented the language ML.

HOL has several different major versions in history, the latest version is usually called HOL4. A relationship between HOL4 and other HOL versions and derived systems can be seen from Figure 2.1.

Figure 2.1: HOL4 and its relatives

HOL4 was implemented in Standard ML. This programming language plays three roles here:

1. It serves as the underlying implementation language for the core HOL engine;
2. It's used to implement tactics (and tacticals) for automatic theorem proving;
3. It's used as the command language of the interactive HOL system.

These roles can be done in separated languages. For example, in the Coq proofassistant $\mathbb{1}$, the proof-assistant itself is written in OCaml, but the language for expressing theorems (and their proofs) is another language called Gallina, while the tactic language is again another different language called Ltac. But in HOL-4, all these three languages are the same (except for the inner language of logic, which is derived from Classic ML). This fact also allows us to use HOL-4 as a general programming platform and write an entire model checking software which uses the theorem prover as a library. Such advantage is not possible for most other theorem provers, at least not that straightforward.

2.1 Higher Order Logic

Higher Order Logic (or "HOL Logic") means simply typed λ-calculus plus Hibert choice operator, axiom of infinity, and rank-1 polymorphim (type variables). In this section we briefly introduce the HOL Logic, and please refer to official documents [14] for a complete picture.

The HOL syntax contains syntactic categories of types and terms whose elements are intended to denote respectively certain sets and elements of sets. This model is given in terms of a fixed set of sets \mathcal{U}, which will be called the universe and which is assumed to have the following properties:

Inhab Each element of \mathcal{U} is a non-empty set.
Sub If $X \in \mathcal{U}$ and $\emptyset \neq Y \subseteq X$, then $Y \in \mathcal{U}$.
Prod If $X \in \mathcal{U}$ and $Y \in \mathcal{U}$, then $X \times Y \in \mathcal{U}$. The set $X \times Y$ is the cartesian product, consisting of ordered pairs (x, y) with $x \in X$ and $y \in Y$.

Pow If $X \in \mathcal{U}$, then the powerset $\wp(X)=\{Y: Y \subseteq X\}$ is also an element of \mathcal{U}.
Infty \mathcal{U} contains a distinguished infinite set I.
Choice There is a distinguished element ch $\in \prod_{X \in \mathcal{U}} X$. The element of the product $\prod_{X \in \mathcal{U}} X$ are (dependently typed) functions: the for all $X \in \mathcal{U}, X$ is non-empty by Inhab and $\operatorname{ch}(X) \in X$ witnesses this.

Although HOL also supports non-standard models, above set-theoretic model is the basis of all builtin theories of HOL theorem prover and is usually adopted by HOL users when they claim to have formalized something in HOL.

[^6]The above assumptions on U are strictly weaker than those imposed on a universe of sets by the axioms of ZFC (Zermelo-Frankel set theory with the Axiom of Choice), principally because \mathcal{U} is not required to satisfy any form of the Axiom of Replacement. Thus it's possible to prove the existence of a set \mathcal{U} with the above properties from the axioms of ZFC^{2}, and it's possible in principal to give a completely formal version within ZFC set theory of the semantics of the HOL logic.

On the other side, some mathematics theories cannot be formalized in above standard model of HOL. One notable example is the full theory of ordinal numbers in the von Neumann hierarchy and the cardinal numbers. However, HOL can support the formalization of a large portation of mathematics, including Lebesgue Measures and Probability Theory. We have also strong witenesses seen in another theorem prover in HOL family (i.e. Isabelle/HOL).

There are some notable consequences of above assumptions (Inhab, Sub, Prod, Pow, Infty and Choice). Important one is the concept of functions. In set theory, functions are identified with their graphs, which are certain sets of order pairs. Thus the set $X \rightarrow Y$ of all functions from a set X to a set Y is a subset of $\wp(X \times Y)$; and it is a non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that \mathcal{U} also satisfies

Fun If $X \in \mathcal{U}$ and $Y \in \mathcal{U}$, then $X \rightarrow Y \in \mathcal{U}$.
By iterating Prod, one has that the certasian product of any finite, non-zero number of sets in \mathcal{U} is again in \mathcal{U}. But \mathcal{U} also contains the cartesian product of no sets, which is to say that it contains a one-element set (by virtue of Sub applied to any set in \mathcal{U}-Infty guarantees there is one); for definiteness, a particular one-element set will be singled out:
Unit \mathcal{U} contains a distinguished one-element set $1=\{0\}$.
Similarly, because of Sub and Infty, \mathcal{U} contains two-element sets, one of which will be singled out:

Bool \mathcal{U} contains a distinguished two-element set $2=\{0,1\}$.

2.1.1 Types and Terms

The types of the HOL logic are expressions that denote sets (in the universe \mathcal{U}). HOL's type system is much simpler than those based on dependent types and other type theories. There are four kinds of types in the HOL logic, as illustrated in Fig. 2.2 for its BNF grammar. Noticed that, in HOL the standard atomic types bool and ind denote, respectively, the distinguished two-element set 2 and the distinguished infinite set I.

The terms of the HOL logic are expressions that denote elements of the sets denoted by types. There're four kinds of terms in the HOL logic. There can be described approximately by the BNF grammar in Fig. 2.3.

[^7]

Figure 2.2: HOL's type grammar

Figure 2.3: HOL's term grammar

So HOL is a deductive system for simply typed λ-calculus, as its term syntax has shown, with each term in HOL associated with a unique simple type.

2.1.2 The HOL deductive system

The deductive system of the HOL logic is specified by the following eight rules of inference. (The identifiers in square brackets are the names of the ML functions in the HOL system that implement the corresponding inference rules.)

1. Assumption introduction [ASSUME]

$$
\overline{t \vdash t}
$$

2. Reflexivity [REFL]

$$
\overline{\vdash t=t}
$$

3. Beta-conversion [BETA_CONv]

$$
\overline{\vdash\left(\lambda x . t_{1}\right) t_{2}=t_{1}\left[t_{2} / x\right]}
$$

- Where $t_{1}\left[t_{2} / x\right]$ is the result of substituting t_{2} for x in t_{1}, with suitable renaming of variables to prevent free variables in t_{2} becoming bound after substitution.

4. Substitution [SUBST]

$$
\frac{\Gamma_{1} \vdash t_{1}=t_{1}^{\prime} \quad \cdots \quad \Gamma_{n} \vdash t_{n}=t_{n}^{\prime} \quad \Gamma \vdash t\left[t_{1}, \ldots, t_{n}\right]}{\Gamma_{1} \cup \cdots \cup \Gamma_{n} \cup \Gamma \vdash t\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right]}
$$

- Where $t\left[t_{1}, \ldots, t_{n}\right]$ denotes a term t with some free occurrences of subterms t_{1}, \ldots, t_{n} singled out and $t\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right]$ denotes the result of replacing each selected occurrence of t_{i} by t_{i}^{\prime} (for $1 \leq i \leq n$), with suitable renaming of variables to prevent free variables in t_{i}^{\prime} becoming bound after substitution.

5. Abstraction [ABS]

$$
\frac{\Gamma \vdash t_{1}=t_{2}}{\Gamma \vdash\left(\lambda x . t_{1}\right)=\left(\lambda x . t_{2}\right)}
$$

- Provided x is not free in Γ.

6. Type instantiation [INST_TYPE]

$$
\frac{\Gamma \vdash t}{\Gamma\left[\sigma_{1}, \ldots, \sigma_{n} / \alpha_{1}, \ldots, \alpha_{n}\right] \vdash t\left[\sigma_{1}, \ldots, \sigma_{n} / \alpha_{1}, \ldots, \alpha_{n}\right]}
$$

- Where $t\left[\sigma_{1}, \ldots, \sigma_{n} / \alpha_{1}, \ldots, \alpha_{n}\right]$ is the result of substituting, in parallel, the types $\sigma_{1}, \ldots, \sigma_{n}$ for type variables $\alpha_{1}, \ldots, \alpha_{n}$ in t, and where $\Gamma\left[\sigma_{1}, \ldots, \sigma_{n} / \alpha_{1}, \ldots, \alpha_{n}\right]$ is the result of performing the same substitution across all of the theorem's hypotheses.
- After the instantiation, variables free in the input can not become bound, but distinct free variables in the input may become identified.

7. Discharging an assumption [DISCH]

$$
\frac{\Gamma \vdash t_{2}}{\Gamma-\left\{t_{1}\right\} \vdash t_{1} \Rightarrow t_{2}}
$$

- Where $\Gamma-\left\{t_{1}\right\}$ is the set subtraction of $\left\{t_{1}\right\}$ from Γ.

8. Modus Ponens [MP]

$$
\frac{\Gamma_{1} \vdash t_{1} \Rightarrow t_{2} \quad \Gamma_{2} \vdash t_{1}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}}
$$

In HOL, all the proofs are finally reduced to sequences of applications of above eight primitive inference rules. What's also implicitly given by above rules are the following two foundamental operators:

Equality Equality (= : 'a -> 'a -> bool) is an infix operator.
Implication Implication (\Rightarrow : bool $->$ bool $->$ bool) is the material implication and is an infix operator that is right-associative, i.e. $x \Rightarrow y \Rightarrow z$ parses to the same term as $x \Rightarrow(y \Rightarrow z)$.

Noticed that, unlike in other formal systems like Propositional Logic, logical implication (\Rightarrow) in HOL is not defined by other operators (e.g. $p \rightarrow q:=\neg p \vee q$), instead it's a primitive constant whose meanings are given completely by above eight primitive deduction rules (DISCH and MP, to be precise).

2.1.3 Standard Theory of HOL

It's quite amazing (at least to the author) that, all the rest logical constants of Propositional Logic and First-order Logic (universal and existential quantifiers) can be embeded in λ-calculus, with equality and logical implication:

$$
\begin{aligned}
& \vdash \mathrm{T}=\left(\left(\lambda x_{\text {bool }} \cdot x\right)=\left(\lambda x_{\text {bool }} \cdot x\right)\right) \\
& \vdash \forall=\lambda P_{\alpha \rightarrow \text { bool }} \cdot P=(\lambda x \cdot \mathrm{~T}) \\
& \vdash \exists=\lambda P_{\alpha \rightarrow \text { bool }} \cdot P(\varepsilon P) \\
& \vdash \mathrm{F}=\forall b_{\text {bool }} \cdot b \\
& \vdash \neg=\lambda b \cdot b \Rightarrow \mathrm{~F} \\
& \vdash \wedge=\lambda b_{1} b_{2} \cdot \forall b \cdot\left(b_{1} \Rightarrow\left(b_{2} \Rightarrow b\right)\right) \Rightarrow b \\
& \vdash \vee=\lambda b_{1} b_{2} \cdot \forall b \cdot\left(b_{1} \Rightarrow b\right) \Rightarrow\left(\left(b_{2} \Rightarrow b\right) \Rightarrow b\right)
\end{aligned}
$$

with the following special notations:

Notation	Meaning
$\forall x_{\sigma} \cdot t$	$\forall\left(\lambda x_{\sigma} \cdot t\right)$
$\forall x_{1} x_{2} \cdots x_{n} \cdot t$	$\forall x_{1} \cdot\left(\forall x_{2} \cdot \cdots\left(\forall x_{n} \cdot t\right) \cdots\right)$
$\exists x_{\sigma} \cdot t$	$\exists\left(\lambda x_{\sigma} \cdot t\right)$
$\exists x_{1} x_{2} \cdots x_{n} \cdot t$	$\exists x_{1} \cdot\left(\exists x_{2} \cdot \cdots\left(\exists x_{n} \cdot t\right) \cdots\right)$
$t_{1} \wedge t_{2}$	$\wedge t_{1} t_{2}$
$t_{1} \vee t_{2}$	$\vee t_{1} t_{2}$

Thus in HOL, an universal quantified term like $\forall x . P(x)$ is represented as the functional application of the constant \forall as a λ-function and another λ-function $\lambda x . P(x)$. At first glance, these definitions seem a little strange. However, it can be manually verified that, they're indeed consistent with the usual semantics in Propositional Logic and First-order Logic. For the new constant (ε) used in the definition of existential quantifier (\exists), HOL gives it the following meaning:

Choice If t is a term having type $\sigma \rightarrow$ bool, then @x.t x (or, equivalently, \$@t) denotes some member of the set whose characteristic function is t. If the set is empty, then @x.t x denotes an arbitrary member of the set denoted by σ. The constant @ is a higher order version of Hilbert's ε-operator; it is related to the constant ι in Church's formulation of higher order logic.

However so far above statement is just a wish: its behavior is not given by any primitive deduction rules, nor have we its definition upon other more primitive objects. To actually have the choice operator we need an axiom. There're totally four such axioms in HOL's standard model:

BOOL_CASES_AX	$\vdash \forall b .(b=\mathrm{T}) \vee(b=\mathrm{F})$
ETA_AX	$\vdash \forall f_{\alpha \rightarrow \beta} .(\lambda x . f x)=f$
SELECT_AX	$\vdash \forall P_{\alpha \rightarrow \text { bool }} x . P x \Rightarrow P(\varepsilon P)$
INFINITY_AX	$\vdash \exists f_{\text {ind } \rightarrow \text { ind }}$. One_One $f \wedge \neg($ Onto $f)$

Among these axioms, BOOL_CASES_AX represents the Law of Excluded Middle, ETA_AX is the η-conversion rule in λ-calculus (η-conversion cannot be derived from β-conversion). SELECT_AX gives Hilbert's ε-operator the actual meaning, it has the position as the Axiom of Choice in ZFC. The last axiom INFINITY_AX represents the Axiom of Infinity in ZFC, the two other constants appeared in the axiom have the following definitions:

$$
\begin{aligned}
& \vdash \text { One_One }=\lambda f_{\alpha \rightarrow \beta} \cdot \forall x_{1} x_{2} \cdot\left(f x_{1}=f x_{2}\right) \Rightarrow\left(x_{1}=x_{2}\right) \\
& \vdash \text { Onto }=\lambda f_{\alpha \rightarrow \beta} \cdot \forall y \cdot \exists x \cdot y=f x
\end{aligned}
$$

This is how the concept of "infinity" is formalized: if there's a function $f: I \rightarrow I$ which is one-one but not onto, then the set I has no choice but contains infinite elements. (And starting with this infinite set, the set of natual numbers, real numbers, ... can be built in HOL)

The last primitive definition is for defining new primitive types in HOL:

$$
\begin{aligned}
& \vdash \text { Type_Definition }=\lambda P_{\alpha \rightarrow \text { bool }} \text { rep }_{\beta \rightarrow \alpha} \text {. One_One rep } \wedge \\
& (\forall x . P x=(\exists y \cdot x=r e p y))
\end{aligned}
$$

In HOL, new primitive types are defined by mapping a subset of existing types into a new type. Such mappings must be bijections. The constant Type_Definition is used for asserting such mappings, then new types can be used legally as primitive types like bool and ind. Notable types defined in this way are num (natural numbers), sum (sum types), prod (product types), unit (singleton type), etc.

The next level of types is customized inductive datatypes like structures in Clike languages. HOL's Datatype package was created by Thomas Melham [15], it's not part of the HOL Logic itself but a package for automatically creation of new inductive and recursive datatypes with supporting theorems. In this project, the CCS datatype is defined by this package.

2.2 Relations in HOL

2.2.1 Notations

From the view of mathematics, a n-ary relation R is nothing but a set of n-tuples, and we say a term (or just a sentence) $R x_{1} x_{2} \ldots x_{n}$ is true if and only if $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R$. In particolar, an unary relation is also called a predicate which usually denote the property of objects. Binary relations are usually represented in infix ways, e.g., instead of $R x y$ we write $x R y$. Notable examples of binary relations include equality $(x=y)$, inequality $(x<y)$ and set relations like $A \subset B$ or even $x \in A$.

In general cases, a (binary) relation needs not to be transitive at all, nor each parameter has the same type. From the view of higher order logic, or simple-typed lambda calculus, however, there's a difference between terms like

$$
R x_{1} x_{2} \ldots x_{n}
$$

and

$$
R\left(x_{1}, x_{2}, \ldots, x_{n}\right),
$$

in which the latter one equals to $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R$ in predicate-based set theory [16.

In HOL, the former term has the types like

$$
\alpha \rightarrow \beta \rightarrow \cdots \rightarrow \text { bool },
$$

while the latter term has the types like

$$
(\alpha \# \beta \# \cdots) \rightarrow \text { bool }
$$

where α, β, \ldots represent type variables (for each parameter of the relation) and \# is the operator for building Cartesian product types. The two types are equivalent (but not the same) for precisely defining any relation. The process of converting a relation from the former type to latter type is called curry, and the reverting process is called uncurry.

Relations used in logic, formal methods and theorem proving areas are usually defined in curried forms, because it has extra advantages that, a relation term with parameters partially given could still has a meaningful type. On the other side, mathematicians usually use the uncurried forms. In the rest of this paper, we will ignore the differences between curried and uncurried forms, and the reader should make implicit type translations in context-switching between mathematics and theorem proving talks.

2.2.2 Ways to define relations

To precisely define a relation (which is essentially a set), we can explicitly enumerating all its elements (when the number of them is finite), e.g.

$$
R=\{(1,2),(2,3),(3,4), \ldots\}
$$

or define the set by its characteristic function f (with the proof of the soundness of such functions given first, as required by ZFC), e.g.

$$
R=\{(x, y): f(x, y)=\text { true }\}
$$

But mostly above two ways are not enough, instead, we have to define a relation by a set of rules in the following two forms:

$$
\begin{array}{ccc}
\emptyset & \frac{<\text { hypothesis }>}{R} \begin{array}{llll}
R x_{1} x_{2} \ldots x_{n}
\end{array}
\end{array}
$$

Rules in above left form should be understood as a element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ belongs to the relation (as set) unconditionally (thus we usually call such rules as base rules or axioms), while rules in above right form should be understood in either forward form

$$
\forall x_{1}, x_{2}, \ldots x_{n} .<\text { hypothesis }>\Rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R
$$

and/or backward form
$\forall x_{1}, x_{2}, \ldots x_{n} .\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R \Rightarrow$ the same $<$ hypothesis $>$ in existence form,
depending on different situations. In general, a hypothesis used in the above rules could be any term, in which the relation R itself can also be used, even when it's not fully defined yet. In such cases, we say the relation is defined recursively, and the previous two rule-defining methods cannot handle such relation definitions.

But for relations which must be defined recursively, in general we can't simply define it, say R, in the following way:
$\forall x_{1}, x_{2}, \ldots, x_{n} .\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R$ if and only if $x_{1}, x_{2}, \ldots, x_{n}$ satisfy all the rules.
In other words, the relation R is defined as the closure of all those rules.
The problem is, the resulting relation R of above definition may not be unique (even with axiom of extension (first axiom of ZFC) assumed always), thus the whole definition cannot be used to precisely describe a mathematic object in general.

To see the reasons, we can construct a function $F(R)$ from any rule set. The function takes a relation and returns another relation of the same type. The way to construct such a function is to just replace all occurences of R in the conclusion (i.e. under the line) part, into $F(R)$ and keep the (possible) occurences of R in hypothesis unchanged. So the rules now look like this:

$$
\frac{\emptyset}{F(R) x_{1} \quad x_{2} \quad \ldots x_{n}}
$$

$$
\frac{<\text { hypothesis }>}{F(R) x_{1} \quad x_{2} \quad \ldots x_{n}}
$$

It's important to notice that, the definition of function F (as above rules) is not recursive. Given any R as input (assuming the type correctness, of course), $F(R)$ is simply the set of tuples indicated in all base rules, unioned with all tuples which satisfy the hypothesis of any other rules. In particolar, if $R=F(R)$, then we go back to the previous rules, this is to say, R is closed under those rules if and only if R is a fixed point of the function F.

Now we discuss the characteristics of function F. The first thing to notice is: no matter what hypothesis we have in each rule, the function F defined in this way, is always monotone (or order preserving), i.e. $\forall R_{1} R_{2} . R_{1} \subset R_{2} \Rightarrow F\left(R_{1}\right) \subset F\left(R_{2}\right)$. The reason is simple, if we consider more than tuples in R_{1} with the hypothesis, we can only add more (or at least the same) than tuples in $F\left(R_{1}\right)$ into $F\left(R_{2}\right)$, there's absolutely no chance to eliminate any existing tuples in $F\left(R_{1}\right)$ from $F\left(R_{2}\right)$. (The conclusion is still true if all non-axiom rules were understood in backward)

On the other side, the set \mathcal{L} of all relations R (of the same type) forms a complete lattice, because \mathcal{L} has always a top element (the relation containing all possible tuples) and a bottom element (empty relation). Thus F is an order-preserving selfmaping function on a complete lattice. According to Knester-Tarski Fixed Point Theorem [17], F has always a least fixed point and a greatest fixed point. To see the two fixed points do not coincide in general, it's enough to take a sample relation which satisfy only one rule:

$$
\frac{n+1 \in R}{n \in R}
$$

where n has the type of natural numbers $(0,1, \ldots)$. Then it's trivial to see that, the following function F

$$
\frac{n+1 \in R}{n \in F(R)}
$$

has a least fixed point \emptyset (no numbers) and a greatest fixed point \mathbb{N} (all numbers). Noticed that, it's not true that all relations between the least and greatest fixed points are also fixed points (in current case there's no other fixed points), but in general there may be other fixed points beside the least and greatest ones.

Thus, beside the for-sure existence of fixed points, the number of fixed points and the usefulness between least and greatest fixed points, are totally decided by specific relation defining rules. Most of time, one of least and greatest fixed points is trivial: either the least fixed point is the bottom element or the greatest fixed point is the top element, then only the other one is meaningful to be defined.

2.2.3 Inductive and co-inductive relation definitions

Fixing a rule set, depending on the desired relation object, sometimes we want the least fixed point, sometimes we want the greatest fixed point. Whenever the least fixed point is used, such a relation definition is called inductive relation definition, and the other one is called co-inductive relation definition.

Noticed that, in many relation definitions, the fixed points are not explicitly mentioned, while we still have precise (unique) definition for the desired relation object. For instance, the following defintion of an unary relation (or predicate, or set) is a typical inductive relation definition:

Definition 2.2.1. The set R is the smallest set such that

1. $0 \in R$;
2. forall n, if $n \in R$ then $n+2 \in R$.

It's not hard to imagine that, the set R is the set of all even numbers, i.e. $R=\{0,2,4,6, \ldots\}$.

Instead, if we required a greatest set which is closed under the same rules, we could have the entire set of natural numbers $\{0,1,2, \ldots\}$, even when the axiom rule $0 \in R$ is absent.

Sometimes the greatest and least fixed points coincide, and as a result there's only a single fixed point for certain rules. For instance, let A be a set, the following rules can be used to inductively define all finite lists with elements from A :

$$
\frac{\emptyset}{\text { nil } \in \mathcal{L}}
$$

$$
\frac{s \in \mathcal{L} \quad a \in A}{\langle a\rangle \bullet s \in \mathcal{L}}
$$

According to [18] (p. 36), if above rules were used co-inductively, the resulting relation will be the set all finite and infinite lists. But if we limit the type of lists to only finite lists (e.g. the list data structure defined inductively), then the coinductive defintion and inductive defintion coincide. This fact can be proved in HOL4 by the following scripts:

```
val (List_rules, List_ind, List_cases) = Hol_reln
    '(!l. (l = []) ==> List l) /\
        (!l h t. (l = h::t) /\ List t ==> List l)';
val (coList_rules, coList_coind, coList_cases) = Hol_coreln
    '(!l. (l = []) ==> coList l) /\
        (!l h t. (l = h::t) /\ coList t ==> coList l)';
val List_imp_coList = store_thm (
    "List_imp_coList", '،!l. List l ==> coList l'،,
        HO_MATCH_MP_TAC List_ind
    >> RW_TAC bool_ss [coList_rules]);
val coList_imp_List = store_thm (
    "coList_imp_List", '،!l. coList l ==> List l'،,
        Induct_on 'l'
    >| [ RW_TAC bool_ss [List_rules, coList_rules],
        STRIP_TAC
    >> ONCE_REWRITE_TAC [coList_cases]
    >> ONCE_REWRITE_TAC [List_cases]
    >> REPEAT STRIP_TAC
    >| [ ASM_REWRITE_TAC [],
            SIMP_TAC list_ss []
        >> 't = l' by PROVE_TAC [CONS_11]
        >> PROVE_TAC [] ] ]);
val List_eq_coList = store_thm (
    "List_eq_coList", '،!l. coList l = List l'،,
        PROVE_TAC [List_imp_coList, coList_imp_List]);
```

Here we have defined two unary relations (List and coList), using exactly the same rules (except for the relation names):

```
\vdash ( \forall l . ( l ~ = ~ [ ] ) ~ \Longrightarrow ~ L i s t ~ l ) ~ \wedge ~
    \foralll h t. (l = h::t) ^ List t \Longrightarrow List l
```

Besides the rules, there's also a "case theorem" generated with the relation definition. This theorem is also the same for both List and coList, because it just expressed the same rules from the backward:

```
\vdash \mp@code { L i s t ~ a ~ a ~ \Longleftrightarrow ~ ( ~ } a _ { 0 } = [ ] ) \vee \exists h t . ~ ( ~ ( a 0 = h : : t ) ~ ^ ~ L i s t ~ t ~
```

The only differences between the two relations are the following theorems:

```
List_ind:
    \vdash ( \forall l . \quad ( l = [ ] ) \Longrightarrow L i s t ' ~ l ) ~ \wedge ~
        (\foralll h t. (l = h::t) ^ List' t \Longrightarrow List' l) \Longrightarrow
        \foralla0. List a a \Longrightarrow List' a
coList_coind:
    \vdash(\foralla a .
            coList'}\mp@subsup{a}{0}{}\Longrightarrow(\mp@subsup{a}{0}{}=[])\vee\existsht.(\mp@subsup{a}{0}{}=h::t)\wedge coList't)
        \foralla. coList' a a < coList }\mp@subsup{a}{0}{
```

From the shapes of above two theorems, it's not hard to see that, the purpose of the induction theorem for List is to restrict it to the least possible closure, while the purpose of the co-induction theorem for coList is to restrict it to the greatest possible closure. Thus, for each defined relation, their characteristic can be fully decided by three generated theorems:

1. The original rules;
2. The same rules expressed from backward;
3. The induction or co-induction theorem.

Most of time, it's necessary to define inductive relation, because the induction theorem is necessary to prove many important results, and those results won't be proved if the same rules were defined co-inductively. And if for some reasons the inductive and co-inductive definitions coincide, then in theory both induction coinduction theorems can be used to prove other results. (although they cannot be generated together)

What's more intersting is the following game: for a specific relation defined from a group of rules, if either induction theorem or co-induction theorem were never used to prove any results in the whole theory, we want to know, if the relation becomes larger, when switching from the an inductive defintion to co-inductive defintion. For above List examples, such changes didn't make the resulting relation any larger, since we can prove their equivalence.

2.3 Writing proofs in HOL

In this section, we use some examples to illustrate the general techniques for proving theorems in HOL. CCS syntax and SOS (Structural Operational Semantics) rules appeared in this section will be re-introduced formally in next chapter.

2.3.1 Forward and backward proofs

For simple derivations (as proofs of CCS transition theorems) that we already know the "proof", to formally represent the proof in HOL4, we can directly construct the proof in forward way.

$$
\left(\operatorname{Sum}_{1}\right) \frac{(\text { Pref }) \xrightarrow[{a . b .0 \xrightarrow{a} b .} 0]{a . b .0+b . a .0 \xrightarrow{a} b .0}}{\text { (}}
$$

To proof the derivation theorem:

```
\(\vdash\) In "a"..In"b"..nil + In "b". .In "a"..nil
    -In "a" \(\rightarrow\)
    In "b". .nil
```

the most fundamental way is to use HOL4's standard drivation rule (drule) ISPEC and primitive inference rule MP.

In SOS rule PREFIX, if we specialize the universally quantified variable E to $b .0$, we get a new theorem saying \forall u.u.b. $0 \xrightarrow{u} b .0$:

```
> ISPEC ''prefix (label (name "b")) nil'، PREFIX;
val it =
    |- !u. u..label (name "b")..nil --u-> label (name "b")..nil:
    thm
```

Doing this again on the rest universally quantified variable u, specialized to Action a, then we get again a new theorem $a . b .0 \xrightarrow{a} b .0$ (and saved into a variable t1):

```
> val t1 = ISPEC ''label (name "a")'،
    (ISPEC ''prefix (label (name "b")) nil'، PREFIX);
val t1 =
    |- label (name "a")..label (name "b")..nil
    --label (name "a")->
    label (name "b")..nil:
    thm
```

Now we want to use SUM1 to reach the final theorem. There two ways to do this. The first way is to manually specialize all the four universally quantified variables in the theorem. To make this work easier, HOL4 has provided the drule ISPECL, which takes a list of terms and a theorem, internally it calls ISPEC repeatedly on each universally quantified variables in the theorem:

```
> val t2 = ISPECL ['`prefix (label (name "a"))
    (prefix (label (name "b")) nil)`،,
    '`label (name "a")'،,
    ''prefix (label (name "b")) nil'،,
    '،prefix (label (name "b"))
    (prefix (label (name "a")) nil)،`]
SUM1;
val t2 =
    |- label (name "a")..label (name "b")..nil
    --label (name "a")->
    label (name "b")..nil
    ==>
    label (name "a")..label (name "b")..nil +
```

```
label (name "b")..label (name "a")..nil
--label (name "a")->
label (name "b")..nil:
thm
```

Now if we see theorem t1 as A, then t2 looks like $A \Rightarrow B$. Now we're ready to use HOL4's primitive inference rule MP (Modus Ponens) to get B from A and $A \Rightarrow B$:

```
> MP t2 t1;
val it =
    |- label (name "a")..label (name "b")..nil +
    label (name "b")..label (name "a")..nil
    --label (name "a")->
    label (name "b")..nil:
    thm
```

This is exactly the target theorem we wanted to prove (or verify). Putting above code together, we can write down the following code piece in Standard ML as the procedure to construct out the theorem:

```
local
    val t1 = ISPEC '،label (name "a")،`
        (ISPEC ''prefix (label (name "b")) nil'، PREFIX)
    and t2 = SPECL ['،prefix (label (name "a"))
                            (prefix (label (name "b")) nil)،`,
                            '،label (name "a")'،,
                            ''prefix (label (name "b")) nil'،,
                            ''prefix (label (name "b"))
                            (prefix (label (name "a")) nil)'،]
                SUM1;
in
    val ex1 = save_thm ("ex1", MP t2 t1)
end;
```

In theory, any formalized theorem in HOL4 can be constructed in this primitive way manually. However it's quite inconvenient to supply large amount of specialized parameters to build theorems like above t2. A slightly smarter way is to use MATCH_MP directly on SUM and t1, HOL4's drule MATCH_MP will do Modus Ponens with automatic matching:

```
> val t2 = MATCH_MP SUM1 t1;
val t2 =
    |- !E'.
        label (name "a")..label (name "b")..nil + E'
        --label (name "a")->
        label (name "b")..nil:
    thm
```

This theorem looks almost the same as the target theorm, except for the universally quantified variable E^{\prime}, which takes any CCS term. Now the only thing left is to
specialize it to b.a.0:

```
> ISPEC '،prefix (label (name "b"))
    (prefix (label (name "a")) nil)'، t2;
val it =
    |- label (name "a")..label (name "b")..nil +
    label (name "b")..label (name "a")..nil
    --label (name "a")->
    label (name "b")..nil:
    thm
```

The third way to prove this simple theorem is to prove it from backward. In other words, we first put the final theorem as a goal to prove, then we apply possible theorems to reduce the goal to smaller (easier) sub-goals, until we arrive to basic logic facts.

Using HOL4's interactive proof management facility, we can just write down the target theorem and use command " g " to put it into the proof manager as the initial goal:

```
> g 'TRANS (sum (prefix (label (name "a"))
    (prefix (label (name "b")) nil))
    (prefix (label (name "b"))
                            (prefix (label (name "a")) nil)))
        (label (name "a"))
        (prefix (label (name "b")) nil)';
val it =
    Proof manager status: 1 proof.
1. Incomplete goalstack:
        Initial goal:
        label (name "a")..label (name "b")..nil +
        label (name "b")..label (name "a")..nil
        --label (name "a")->
        label (name "b")..nil
:
    proofs
```

To finish the proof, we need to apply the so-called tacticals, which translates current goal into new sub-goals. A tactical can be considered as the reverse object of its correspond derivation rules (or primitive inference rules). From previous forward proof of the same theorem, we have known that rules SUM1 and PREFIX must be used. For backward proofs, the order of applying them must be reverted too.

To benefit from SUM1 (or other rules generated from Hol_reln), the key tactical here is MATCH_MP_TAC. For any goal A, if we know there's a theorem with forms like $\forall x . B \Rightarrow A$, then MATCH_MP_TAC could translated this goal into single sub-goal B. Now we apply this tactical using command "e":

```
> e (MATCH_MP_TAC SUM1);
```

OK. .

```
1 subgoal:
val it =
label (name "a")..label (name "b")..nil
--label (name "a")->
label (name "b")..nil
:
    proof
```

As we expected, now the new goal is simplier: the outside sum has been removed by rule SUM1. Now we can see this new goal looks just like our axiom PREFIX, with universally quantified variables specialized to certain terms. In another word, it's exactly the same as previous intermediate theorem t1.

To finish the proof, we can either benefit from t1, using tactical ACCEPT_TAC which simply take a theorem and compare it with current goal, and when they're the same, the proof is finished:

```
> e (ACCEPT_TAC t1);
OK..
Goal proved.
|- label (name "a")..label (name "b")..nil
    --label (name "a")->
    label (name "b")..nil
val it =
    Initial goal proved.
|- label (name "a")..label (name "b")..nil +
    label (name "b")..label (name "a")..nil
    --label (name "a")->
    label (name "b")..nil:
    proof
```

Of course, if there's no theorem t1, we can also define it freshly using previous method (call ISPEC or ISPECL on PREFIX) and then apply it with ACCEPT_TAC. But there's another better way: we can ask HOL4 to try to rewrite current goal with PREFIX referenced. In this way, HOL4 will rewrite the goal into T, the logical truth, and the proof is also finished: (before trying this new way, we can use command "b()" to go back to last step)
> b();
val it =
label (name "a")..label (name "b")..nil
--label (name "a")->
label (name "b")..nil
proof
> e (REWRITE_TAC [PREFIX]);

OK .

```
Goal proved.
|- label (name "a")..label (name "b")..nil
    --label (name "a")->
    label (name "b")..nil
val it =
    Initial goal proved.
|- label (name "a")..label (name "b")..nil +
    label (name "b")..label (name "a")..nil
    --label (name "a")->
    label (name "b")..nil:
    proof
```

Rewriting is one of the most common used proof techniques, and the tactical REWRITE_TAC is the most common used rewriting tactical. It can actually take a list of reference theorems, and it will repeatedly rewrite current goal until the rewriting process converge 3^{3} Usually these theorems are equation theorems like $A=B$, and whenever there's a A in the goal, it becomes B. In our case, PREFIX can be seen as $\forall E u . \quad u . E-u \rightarrow E \Longleftrightarrow \mathrm{~T}$, so the rewriting result is T , the logical truth.

In HOL4, a formal proof is just a normal Standard ML code file, the proof script is just a single function call on store_thm. Above proof, although is done by interactive commands, finally we should write it down into a piece of code, and give the theorem a name. Here it is:

```
(* (a.b.0 + b.a.0) --a-> (b.0) *)
val ex1', = store_thm ("ex1,',",
    ''TRANS (sum (prefix (label (name "a"))
                            (prefix (label (name "b")) nil))
            (prefix (label (name "b"))
                            (prefix (label (name "a")) nil)))
            (label (name "a"))
            (prefix (label (name "b")) nil)،`,
        MATCH_MP_TAC SUM1
    >> REWRITE_TAC [PREFIX]);
```

Here, the symbol " \gg " is an abbrevation of HOL's tactical THEN. Sometimes we also use double-backslashs at the end of a line, it's also an abbrevation of THEN. The so-called "tacticals" have the type tactic -> tactic, they're for connecting and combining multiple tactics into a single big one. Thus in above code, the whole proof step is nothing but a single parameter to ML function store_thm.

Goal-directed proofs, when written carefully and friendly, even with some extra code comments, can be human-readable. Actually from above code, we can see clearly the following information:

1. The theorem name;

[^8]2. The theorem contents;
3. The proof script, including the two key theorems (SUM1 and PREFIX).

Given such a formal proof, the convinciblity of the correctness of theorem comes from the following facts:

1. the theorem proving tools (HOL4 here) is a reliable software with minimal, verified logical kernel.
2. our definition of CCS inference rules are clear, simple, and same as in the textbook.
3. there's no other axiom defined and involved in the proving process.
4. by replaying the proof process (or simply watching it), in theory we can construct a corresponding informal proof on pencil and paper. (Thus the only purpose of using software is to finally get this informal proof)
The formal proof of (a.b. $0+$ b.a.0) -b-> (a.0) is similar, the only difference is to use SUM2 instead of SUM1:
```
(* (a.b.0 + b.a.0) --b-> (a.0) *)
val ex2 = store_thm ("ex2",
    ''TRANS (sum (prefix (label (name "a"))
                                (prefix (label (name "b")) nil))
                            (prefix (label (name "b"))
                                (prefix (label (name "a")) nil)))
            (label (name "b"))
            (prefix (label (name "a")) nil)'`,
        MATCH_MP_TAC SUM2
    >> REWRITE_TAC [PREFIX]);
```

From now on, we'll only use backward proof techniques, and when necessary, we still have to construct intermediate theorems in forward way and use them directly as input of some tacticals.

2.3.2 Bigger examples

In last section we have shown that the tactical MATCH_MP_TAC is the main tool to benefit from the inference rules we defined for CCS. However just using MATCH_MP_TAC is not enough to do all kinds of CCS/SOS derivations. Now we formalize a bigger derivation with more rules involved, and by showing the formal proof we introduce some other important tacticals.

$$
\begin{aligned}
& (\text { Pref }) \xrightarrow{\text { (Pref }) \xrightarrow{\bar{a} .0 \xrightarrow{\bar{a}} 0}} \\
& (\mathrm{Com}) \xrightarrow{a . c .0 \xrightarrow{a} c .0} \quad\left(\mathrm{Sum}_{1}\right) \xrightarrow[{\bar{a} .0+c .0 \xrightarrow{\bar{a}}} 0]{\bar{a} \cdot 0} \\
& \quad(\mathrm{Res}) \frac{a . c .0|\bar{a} .0+c .0 \xrightarrow{\tau} c .0| 0}{(\nu c)(a . c .0 \mid \bar{a} .0+c .0) \xrightarrow{\tau}(\nu c)(c .0 \mid 0)}
\end{aligned}
$$

Here is the formal proof of above derivations:

```
val ex3 = store_thm ("ex3",
    '"TRANS (restr { name "c" }
                            (par (prefix (label (name "a"))
                            (prefix (label (name "c")) nil))
                                (sum (prefix (label (coname "a")) nil)
                                    (prefix (label (name "c")) nil))))
            tau
            (restr { name "c" }
                        (par (prefix (label (name "c")) nil) nil))'،,
        MATCH_MP_TAC RESTR
    >> RW_TAC std_ss []
    >> MATCH_MP_TAC COM
    >> EXISTS_TAC ''name "a"،،
    >> CONJ_TAC (* 2 sub-goals here *)
    >- REWRITE_TAC [PREFIX]
    >> MATCH_MP_TAC SUM1
    >> REWRITE_TAC [PREFIX, CCS_COMPL_def]);
```

When doing an informal proof for above theorem, it suffices to show that, inference rules RESTR, COM, and two PREFIXs must be used sequentially. However in the formal proof things are not that simple. Let's see what happened after the first tactical (MATCH_MP_TAC RESTR):

```
1 subgoal:
val it =
?1.
    label (name "a")..label (name "c")..nil ||
    (label (coname "a")..nil + label (name "c")..nil)
    --tau->
    label (name "c")..nil || nil
    /\
    ((tau = tau) \/
        (tau = label l) ハ ~(l IN {name "c"}) ハ ~(COMPL l IN {name "c"}))
:
    proof
```

Here, beside the CCS transition with outter restr removed, we also got an extra part starting with ($\mathrm{tau}=\mathrm{tau}$). This is reasonable, because we can't freely remove the outter restr, unless the current transition action (τ here) wasn't restricted. There's also a bounded existential variable l, but we can safely ignore it in this case.

Before applying next rule COM, we must simplify the current goal and completely remove these extra parts. Fortunately the first part $\tau=\tau$ is always true, so the rest part in the term is not important any more. Here we actually need multiple basic logical theorems, but writing down the detailed proofs are not rewarding to people who is trying to understand the essential things in this proof. Thus we want HOL4 to simplify the current goal using all possible basic logic formulae, which
we don't care about the details. The tactical RW_TAC with the so-called simp set, std_ss (standard simplification rule set) does exactly this trick. With this tactical we successfully simplified current goal into the desired onft ${ }^{4}$.

```
> e (RW_TAC std_ss []);
OK..
1 subgoal:
val it =
label (name "a")..label (name "c")..nil ||
(label (coname "a")..nil + label (name "c")..nil)
--tau->
label (name "c")..nil || nil
:
    proof
```

Next tricky thing happens after applying the rule COM:

```
> e (MATCH_MP_TAC COM);
OK..
1 subgoal:
val it =
?1.
    label (name "a")..label (name "c")..nil
    --label l->
    label (name "c")..nil /\
    label (coname "a")..nil + label (name "c")..nil
    --label (COMPL l)->
    nil
:
    proof
```

Here we got an new goal with existential quatified variable l as the transition label. This is always the case when appling rule COM. If we take a closer look at rule COM

$$
\begin{aligned}
& \vdash E \text {-label } l \rightarrow E_{1} \wedge E^{\prime} \text {-label }(\operatorname{COMPL} l) \rightarrow E_{2} \Longrightarrow \\
& E\left\|E^{\prime}-\tau \rightarrow E_{1}\right\| E_{2}
\end{aligned}
$$

we can see that, the two transition labels, l and \bar{l}, only appear in premiss of the rule. This means, if we went from the conclusion back to the premiss, we must make a guess about the transition labels. And for complex CCS terms, such a guess may required a deep look inside the remain terms. In the terminalogy of sequent calculus, the rule COM is actually a cut, which blocks the automatic inference process. When doing semi-automatic theorem proving, what we need is to make a choice and instantiate the existential variables. In current case, it's easy to see that, to make further simplification of current goals, we must choose the label l to be a. This is how the tactical EXISTS_TAC gets used:

[^9]```
> e (EXISTS_TAC '،name "a"،`);
OK..
1 subgoal:
val it =
label (name "a")..label (name "c")..nil
--label (name "a")->
label (name "c")..nil
 /\
label (coname "a")..nil + label (name "c")..nil
--label (COMPL (name "a"))->
nil
:
 proof
```

Now we got a new sub-goal with forms like $A \wedge B$. But the part $A$ we can easily prove with a simple rewriting using axiom PREFIX. To actually do this, we need to break the current goal into two sub-goals. the tactical CONJ_TAC does exactly this job:

```
> e (CONJ_TAC);
OK..
2 subgoals:
val it =
label (coname "a")..nil + label (name "c")..nil
--label (COMPL (name "a"))->
nil
```

```
label (name "a")..label (name "c")..nil
--label (name "a")->
label (name "c")..nil
```

2 subgoals
proof

Noticed that, when multiple goals appears, the lowest goal on the screen is the current sub-goal. We already know how to prove this sub-goal:

```
> e (REWRITE_TAC [PREFIX]);
OK..
Goal proved.
|- label (name "a")..label (name "c")..nil
 --label (name "a")->
```

```
 label (name "c")..nil
Remaining subgoals:
val it =
label (coname "a")..nil + label (name "c")..nil
--label (COMPL (name "a"))->
nil
 proof
```

To prove the rest goal, first we need to use SUM1 to remove the right part of the sum:

```
> e (MATCH_MP_TAC SUM1);
OK..
1 subgoal:
val it =
label (coname "a")..nil --label (COMPL (name "a"))-> nil
```

    proof
    Then we could do rewriting again using PREFIX, however there's one problem: the transition label is not the same as label (coname "a"), instead, it's label (COMPL (name "a")). COMPL is a function for converting actions and their corresponding co-actions. It has the following definition:

```
(* Define the complement of a label, COMPL: Label -> Label. *)
val CCS_COMPL_def = Define '(COMPL (name s) = (coname s)) /\
(COMPL (coname s) = (name s))';
```

Any definition is equitional theorem, therefore is accepted by HOL's rewriting system. Thus, to finish the whole proof, we need to rewrite the current goal using both PREFIX and CCS_COMPL_def:

```
> e (REWRITE_TAC [PREFIX, CCS_COMPL_def]);
OK..
Goal proved.
|- label (coname "a")..nil --label (COMPL (name "a"))-> nil
val it =
 Initial goal proved.
|- restr {name "c"}
 (label (name "a")..label (name "c")..nil ||
```

```
 (label (coname "a")..nil + label (name "c")..nil))
--tau->
restr {name "c"} (label (name "c")..nil || nil):
proof
```

With these new proving tecniques, we're ready to prove CCS transition theorems using any inference rules.

## Chapter 3

## Calculus of Communicating Systems

In this chapter we describe a formalization of Milner's Calculus of Communicating Systems in HOL theorem prover (HOL4). It covers basic definitions of CCS and its transition behaviors based on Structural Operational Semantics (SOS), the concepts and properties of strong bisimulation equivalence ( $\sim$ ), weak bisimulation equivalence $(\approx)$ and observational congruence ( $\approx^{c}$, also called rooted weak bisimulation equivalence), together with their relationships. We have also formalized the Expansion Law, Hennessy Lemma, Deng Lemma and several versions of the "coarsest congruence contained in $\approx "$ theorem.

The work was initially based on a porting of the old work by Monica Nesi using Hol88 theorem prover, then the author has made some modifications and improvements.

### 3.1 Labels and Actions

In most literature, there's no difference between Actions and Labels. A labeled transition systems (LTS for short) is a triple $T S=(Q, A, \rightarrow)$ in which $A$ is the union of a countable set of input actions $\mathscr{L}$ and output actions (co-actions) $\overline{\mathscr{L}}$ plus a special invisible action $\tau \notin \mathscr{L} \cup \overline{\mathscr{L}}$.

In the formalization of CCS, however, it's better to have two distinct types: the type $\beta$ Label ( $\beta$ is a type variable.) for visible actions, divided by input and output actions, and the type $\beta$ Action is the union of all visible and invisible actions. This is a better approach because some constructions in CCS only accept visible actions as valid parameters, e.g. the restriction operator. And by having a dedicated type for just visible actions we can directly guarantee the exclusion of invisible actions (because otherwise it's a type mismatch).

In HOL4, the type $\beta$ Label can be defined as a simple datatype (using HOL's datatype package) with a type variable $\beta$ representing the underlying label types: (the first type variable $\alpha$ is reserved for other use)

```
Datatype 'Label = name 'b | coname 'b';
```

Defined in this way, it's possible to precisely control the cardinality of labels available for the processes in question. In the earliest formalization by Monica Nesi, the type variable in above definition was forcedly instantiated with HOL's string type ${ }^{1}$ For practical purposes it's enough to use just strings as labels, but for large models generated automatically it's easier to use other label types, e.g. natural number (num).

Noticed that, in HOL every type must have at least one element. Thus no matter how "small" the type $\beta$ is, there's at least two visible actions (one input and one output) available to the process. Some deep theorems (e.g. the full version of "coarsest congruence contained in $\approx$ " must assume the existence of at least one visible action for the given processes, such assumptions can be removed when we're trying to formalize it. Our type $\beta$ Label is inductive but not recursive. What's immediately available from above definitions, is some supporting theorems, for example: (We should keep in mind that, using a datatype is actually using its supporting theorems.)

```
Label_induction:
 \vdash(\forallb.P(name b)) ^(\forallb.P (coname b)) \Longrightarrow
Label_nchotomy:
 \vdash(\existsb.LL = name b) \vee \existsb. LL = coname b
Label_distinct:
 \vdash ~ n a m e ~ a ~ \neq ~ c o n a m e ~ a ' ,
Label_11:
 \vdash(\foralla a'. (name a = name a') \Longleftrightarrow (a= a')) ^
 \foralla a
```

The type $\beta$ Action must contain all elements from the type $\beta$ Label, plus the invisible action $(\tau)$. Previously this was defined as another simple datatype:

```
Datatype 'Action = tau | label Label';
```

But recently the author has realized that, it's actually very natural to use HOL's optionTheory in the definition of Action, because the theory option defines a type operator option that 'lifts' its argument type, creating a type with all of the values of the argument and one other, specially distinguished value. For us, that 'specially distinguished value' is just $\tau$. The new definition of Action type doesn't contain any new logical constants, it's nothing but a type abbreviation plus some overloading on existing constants:

```
type_abbrev ("Action", '،:'b Label option'`);
overload_on ("tau", '`NONE :'b Action'`);
overload_on ("label", '`SOME :'b Label -> 'b Action'`);
```

By type instantiation of existing theorems provided by HOL's optionTheory, now we can easily get the following supporting theorems for the Action type:

[^10]| Action | notation | HOL | HOL (alternative) |
| :---: | :---: | :---: | :---: |
| invisible action | $\tau$ | tau | $\tau$ |
| visible action | $l$ | label 1 | label $l$ |
| input action | $a$ | label (name "a") | In "a"" |
| output action | $\bar{a}$ | label (coname "a") | Out"a" |

Table 3.1: Actions used in CCS

Action_induction:
$\vdash P \tau \wedge(\forall a . P($ label $a)) \Longrightarrow \forall x . P x$
Action_nchotomy:
$\vdash($ opt $=\tau) \vee \exists x$. opt $=$ label $x$
Action_distinct:
$\vdash \tau \neq$ label $x$
Action_11:
$\vdash($ label $x=$ label $y) \Longleftrightarrow(x=y)$
The main operation on the types $\beta$ Label and $\beta$ Action is COMPL for getting their complement actions: (for convenience we also define the complement of $\tau$ as itself)

```
\vdash (\forall s . C O M P L ~ (n a m e ~ s) ~ = ~ c o n a m e ~ s) ~ \wedge ~
 \foralls. COMPL (coname s) = name s
\vdash (\forall l . C O M P L ~ (l a b e l ~ l) ~ = ~ l a b e l ~ (C O M P L ~ l)) ~ \wedge (C O M P L ~ \tau ~ = ~ \tau)
```

As we know $\beta$ Label and $\beta$ Action are different types, the COMPL operator on them are actually overloaded operator of COMPL_LAB and COMPL_ACT, the complement operator for $\beta$ Label and $\beta$ Action.

The key theorem about $\beta$ Label says that, doing complements twice for the same label gets the label itself:

COMPL_COMPL_LAB :
$\vdash$ COMPL (COMPL $l)=l$
There's also a similar theorem for the double-complements of $\beta$ Action.
Table 3.1 listed the notation of various actions:

### 3.1.1 Relabeling operator

In standard literature, Relabeling operator is usually defined as an unary substitution operator _ $[b / a]$, which takes a unary substitution $b / a$ (hence, $a \neq b$ ), and a process $p$ to construct a new process $p[b / a]$, whose semantics is that of $p$, where action $a(\bar{a})$ is turned into $b(\bar{b})$. And multi-label relabeling can be done by appending more unary substitution operators to the existing process after relabeling. The order of multiple relabelings is relevant, especially when new labels introduced in previous relabeling operation were further relabeled.

In our formalization, following the work of Monica Nesi, we support multi-label relabeling in single operation, and instead of using a list of substitutions, we have defined a new primitive type called " $\beta$ Relabeling". $\beta$ Relabeling is a is a bijection into a subset of functions $\beta$ Label $\rightarrow \beta$ Label, which is called the representation of the type " $\beta$ Relabeling". Not all functions of type" $\beta$ Label $\rightarrow \beta$ Label" are valid representations of " $\beta$ Relabeling", but only functions which satisfy the following property:

```
\vdash \mp@code { I s _ R e l a b e l i n g ~ f } \Longleftrightarrow \forall s . f (c o n a m e ~ s) ~ = ~ C O M P L ~ (f ~ (n a m e ~ s))
```

Noticed that, any identify function of type $\beta$ Label $\rightarrow \beta$ Label also satisfies above property. Thus, beside specific substitutions we wanted, all relabeling functions are total: they must be able to handle all other labels too (just return the same label as input). (As we'll see later, such requirements could reduce the two rules for relabelling into just one).

But usually it's more convenient to represent relabeling functions as a list of substitutions of type ( $\beta$ Label $\times \beta$ Label) list. The operator RELAB can be used to define such a relabeling function. For instance, the term

RELAB [(name "b", name "a"); (name "d",name"c")]
can be used in place of a relabeling operator $[b / a, d / c]$, because its type is " $\beta$ Relabeling". And it must be understood that, all relabeling functions are total functions: for all other labels except a and c, the substitution will be themselves (another way to express "No relabeling").

Finally, having the relabeling facility defined as a multi-label relabeling function and as part of CCS syntax, we can completely avoid the complexity of the Syntactic Substitution (c.f. p. 171 of [4]) which has a complicated recursive definition ${ }^{2}$ and heavily depends on some other recursive functions like $f n(\cdot)$ (free names) and $b n(\cdot)$ (bound names) for CCS processes (in our project, these functions are defined but not used).

### 3.2 The CCS Datatype

The core datatype " $(\alpha, \beta)$ CCS" in this formalization is defined as an inductive datatype in HOL, based on its Datatype package, as shown in Fig. 3.1.

Comparing with the original work, now the type of CCS processes has been extended with two type variables: $\alpha$ and $\beta . \alpha$ is the type of process constants, and $\beta$ is the type of actions. In HOL, such a higher order type is represented as " $(\alpha, \beta)$ CCS". If both type variables were instantiated as string, the resulting type "(string, string) CCS" is equivalent with the CCS datatype in the old CCS formalization.

[^11]```
val _ = Datatype 'CCS = nil
    | var 'a
    prefix ('b Action) CCS
    | sum CCS CCS
    par CCS CCS
    restr (('b Label) set) CCS
    relab CCS ('b Relabeling)
    rec 'a CCS';
```

Figure 3.1: CCS Datatype

As we have explained, there's no infinite sums: the sum operator is simply binary. Since the CCS datatype is inductively defined and has no infinite sum operator, it must be Finitary.

We have added some minimal grammar support using HOL's pretty printer, to represent CCS processes in more readable forms (this was not available in the old work). Table 3.2 has listed the notation of typical CCS processes and major operators supported by above definition:

Operator	Notation	HOL	HOL (alternative)	
nil	$\mathbf{0}$	nil	nil	
Rrefix	$a . b .0$	prefix a (prefix b nil)	$a \ldots b \ldots$ nil	
Sum	$p+q$	sum p q	$p+q$	
Parallel	$p \mid q$	par p q	$p \\| q$	
Restriction	$(\nu L) p$	restr L p	$\nu L p$	
Constant	$A=a . A$	rec A (prefix a (var A))	rec $A(a . . \operatorname{var} A)$	

Table 3.2: Syntax of CCS operators
For Relabeling, as we described in the last section, to express " $p[b / a]$ ", it must be written as relab p (RELAB [(name "b", name "a")]), which is a little long literally.

For CCS processes defined by one or more constants, in our formalization in HOL4, all constants must be written into single term. (This is necessary for theorem proving, because otherwise there's no way to store all information into single variable in CCS-related theorems) The syntax for defining new constants is rec and the syntax to actually use a constant is var. To see how these operators are actually used, consider the following CCS process (the famous coffee machine model from [4):

$$
\begin{aligned}
& \left.V M \stackrel{\text { def }}{=} \text { coin.(ask-esp. } V M_{1}+\text { ask-am. } V M_{2}\right) \\
& V M_{1} \stackrel{\text { def }}{=} \text { esp-coffee. } V M \\
& V M_{2} \stackrel{\text { def }}{=} \overline{\operatorname{am}-c o f f e e} . V M
\end{aligned}
$$

In our formalization in HOL4, the above CCS process can be represented as the following single term:

```
'`rec "VM"
    (In "coin"
    ..
    (In "ask-esp" .. (rec "VM1" (Out "esp-coffee"..var "VM")) +
        In "ask-am" .. (rec "VM2" (Out "am-coffee"..var "VM"))))،`
```

That is, for the first time a new constant appears, use rec with the name of constants as string to "declare" it; when any constant appears again, use var to access it.

Finally, although not part of the formal definition, the if-then-else construct from value-passing CCS is automatically supported by HOL. This is because, for any boolean value b and two terms t_{1} and t_{2} of type α, the term if b then t_{1} else t_{2} has also the type α. Thus the conditional term can legally appears inside other CCS processes as a sub-process. We'll see in next section that it's necessary for handling transitions of CCS processes containing constants.

3.3 Transition Semantics

The transition semantics of CCS processes were defined by the following Structural Operational Semantics (SOS for short) rules:

$$
\begin{aligned}
& \text { (Perf) } \overline{\mu \cdot p \xrightarrow{\mu} p} \\
& \left(\operatorname{Par}_{1}\right) \frac{p \xrightarrow{\mu} p^{\prime}}{p\left|q \xrightarrow{\mu} p^{\prime}\right| q} \\
& \text { (Rec) } \frac{q[\operatorname{rec} x . q / x] \xrightarrow{\mu} r}{\operatorname{rec} x . q \xrightarrow{\mu} r} \\
& \left(\operatorname{Par}_{2}\right) \frac{q \xrightarrow{\mu} q^{\prime}}{p|q \xrightarrow{\mu} p| q^{\prime}} \\
& \left(\operatorname{Sum}_{1}\right) \frac{p \xrightarrow{\mu} p^{\prime}}{p+q \xrightarrow{\mu} p^{\prime}} \\
& \left(\operatorname{Par}_{3}\right) \frac{p \xrightarrow{\alpha} p^{\prime} \quad q \xrightarrow{\bar{\alpha}} q^{\prime}}{p\left|q \xrightarrow{\tau} p^{\prime}\right| q^{\prime}} \\
& \left(\operatorname{Sum}_{2}\right) \frac{q \xrightarrow{\mu} q^{\prime}}{p+q \xrightarrow{\mu} q^{\prime}} \\
& \text { (Res) } \frac{p \xrightarrow{\mu} p^{\prime}}{(\nu a) p \xrightarrow{\mu}(\nu a) p^{\prime}} \mu \neq a, \bar{a}
\end{aligned}
$$

Besides, we have a rule for relabeling:

$$
(\text { Rel }) \frac{p \xrightarrow{\mu} p^{\prime}}{p[f] \xrightarrow{f(\mu)}\left(p^{\prime}[f]\right.}
$$

In some literatures [4], the rule Par_{3} is called "Com" (communication), and the rule "Rec" (in a different form based on separated agent definitions) is also called "Cons" (constants). (Here we have preserved the rule names in the HOL88 work, because it's easier to locate for their names in the proof scripts.)

From the view of theorem prover (or just first-order logic), these inference rules are nothing but an inductive definition on 3-ary relation TRANS (with compact representation - ()->) of type (α, β) transition, generated by HOL4's function Hol_reln [19]. Then we break them into separated theorems as primitive inference rules ${ }^{3}$,

```
PREFIX: \vdash u..E -u->E
REC: }\quad\vdash\mathrm{ CCS_Subst E (rec X E) X -u 
SUM1: }\quad\vdashE-u->\mp@subsup{E}{1}{}\LongrightarrowE+\mp@subsup{E}{}{\prime}-u->\mp@subsup{E}{1}{
SUM2: }\quad\vdashE-u->\mp@subsup{E}{1}{}\Longrightarrow\mp@subsup{E}{}{\prime}+E-u->\mp@subsup{E}{1}{
PAR1: }\quad\vdashE-u->\mp@subsup{E}{1}{}\LongrightarrowE|\mp@subsup{E}{}{\prime}-u->\mp@subsup{E}{1}{|}|\mp@subsup{E}{}{\prime
PAR2: }\quad\vdashE-u->\mp@subsup{E}{1}{}\Longrightarrow\mp@subsup{E}{}{\prime}|E-u->\mp@subsup{E}{}{\prime}|\mp@subsup{E}{1}{
```

PAR3:
$\vdash E-$ label $l \rightarrow E_{1} \wedge E^{\prime}-$ label (COMPL $\left.l\right) \rightarrow E_{2} \Longrightarrow$ $E\left\|E^{\prime}-\tau \rightarrow E_{1}\right\| E_{2}$

RESTR:

```
\(\vdash E-u \rightarrow E^{\prime} \wedge\)
    \(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge\) COMPL \(l \notin L) \Longrightarrow\)
    \(\nu L E-u \rightarrow \nu L E^{\prime}\)
```


RELABELING:

$$
\vdash E-u \rightarrow E^{\prime} \Longrightarrow \text { relab } E \text { rf -relabel rf } u \rightarrow \text { relab } E^{\prime} r f
$$

Noticed that, in the rule REC, a recursive function CCS_Subst was used. It has the following definition which depends on the conditional clause (if .. then .. else ..):

```
\vdash(\forallE ' X. CCS_Subst nil E' X = nil) ^
    (\forallu E E' X. CCS_Subst (u..E) E' X = u..CCS_Subst E E' X) ^
    (\forall}\mp@subsup{E}{1}{
        CCS_Subst ( }\mp@subsup{E}{1}{+}\mp@subsup{E}{2}{\prime})\mp@subsup{E}{}{\prime}X
        CCS_Subst E E E E}X+\mathrm{ CCS_Subst E2 E' X) ^
    (}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{2}{}\quad\mp@subsup{E}{}{\prime}X
        CCS_Subst ( }\mp@subsup{E}{1}{|}|\mp@subsup{E}{2}{})\mp@subsup{E}{}{\prime}X
        CCS_Subst E E1 E' X || CCS_Subst E2 E' X) ^
    (}\forallLE E' X.
        CCS_Subst (\nu L E) E' X = \nuL (CCS_Subst E E'X)) ^
    (}\forallEf\mp@subsup{E}{}{\prime}X\mathrm{ .
        CCS_Subst (relab E f) E' X =
        relab (CCS_Subst E E' X) f) ^
    (}\forallY E' X
        CCS_Subst (var Y) E' X = if Y = X then E' else var Y) ^
```

[^12]```
\forallY E E X X.
 CCS_Subst (rec Y E) E' X =
 if Y = X then rec Y E else rec Y (CCS_Subst E E' X)
```

The idea of CCS_Subst is very close to the variable substitution for $\lambda$-terms: it only replaced those free variables with the same name as the input variable.

In HOL4, any inductive relation defined by command Hol_reln will return with three (well, actually four) theorems: 1) the rules, 2) the induction (and strong induction) theorem and 3) the "cases" theorem. Only with all these theorems, the relation can be precisely defined. For example, to prove certain CCS transitions are impossible, the following long "cases" theorem (which asserts that the relation is a fixed point) must be used:

```
\(\vdash a_{0}-a_{1} \rightarrow a_{2} \Longleftrightarrow\)
 \(\left(a_{0}=a_{1} . . a_{2}\right) \vee\left(\exists E E^{\prime} .\left(a_{0}=E+E^{\prime}\right) \wedge E-a_{1} \rightarrow a_{2}\right) \vee\)
 \(\left(\exists E E^{\prime} .\left(a_{0}=E^{\prime}+E\right) \wedge E-a_{1} \rightarrow a_{2}\right) \vee\)
 \(\left(\exists E E_{1} E^{\prime} .\left(a_{0}=E \| E^{\prime}\right) \wedge\left(a_{2}=E_{1} \| E^{\prime}\right) \wedge E-a_{1} \rightarrow E_{1}\right) \vee\)
 \(\left(\exists E E_{1} E^{\prime} .\left(a_{0}=E^{\prime} \| E\right) \wedge\left(a_{2}=E^{\prime} \| E_{1}\right) \wedge E-a_{1} \rightarrow E_{1}\right) \vee\)
 (\(\exists \mathrm{E} \quad \mathrm{l} E_{1} E^{\prime} E_{2}\).
 \(\left(a_{0}=E \| E^{\prime}\right) \wedge\left(a_{1}=\tau\right) \wedge\left(a_{2}=E_{1} \| E_{2}\right) \wedge\)
 \(E\)-label \(l \rightarrow E_{1} \wedge E^{\prime}\)-label (COMPL \(\left.l\right) \rightarrow E_{2}\)) \(\vee\)
 (\(\exists E E^{\prime} l\).
 \(\left(a_{0}=\nu L E\right) \wedge\left(a_{2}=\nu L E^{\prime}\right) \wedge E-a_{1} \rightarrow E^{\prime} \wedge\)
 \(\left(\left(a_{1}=\tau\right) \vee\left(a_{1}=\right.\right.\) label \(\left.\left.\left.l\right) \wedge l \notin L \wedge \operatorname{COMPL} l \notin L\right)\right) \vee\)
 (\(\exists E\) u \(E^{\prime} r f\).
 (\(a_{0}=\) relab \(\left.E r f\right) \wedge\left(a_{1}=\right.\) relabel \(\left.r f u\right) \wedge\)
 \(\left(a_{2}=\right.\) relab \(\left.\left.E^{\prime} r f\right) \wedge E-u \rightarrow E^{\prime}\right) \vee\)
 \(\exists E X .\left(a_{0}=\right.\) rec \(\left.X E\right) \wedge\) CCS_Subst \(E(\) rec \(X E) X-a_{1} \rightarrow a_{2}\)
```

Here are some results proved using above "cases" theorem (i. e. they cannot be proved with only the SOS inference rules):

```
NIL_NO_TRANS: }\quad\vdash\neg(nil -u->E
VAR_NO_TRANS: }\quad\vdash\neg(\mathrm{ var }X\quad-u->E
```

TRANS_IMP_NO_NIL:

$$
\vdash E-u \rightarrow E^{\prime} \Longrightarrow E \neq \mathrm{nil}
$$

TRANS_SUM_EQ:

$$
\vdash E+E^{\prime}-u \rightarrow E^{\prime \prime} \Longleftrightarrow E-u \rightarrow E^{\prime \prime} \vee E^{\prime}-u \rightarrow E^{\prime \prime}
$$

TRANS_PAR_EQ:

$$
\begin{aligned}
\vdash & E \| E^{\prime}-u \rightarrow E^{\prime \prime} \Longleftrightarrow \\
& \left(\exists E_{1} \cdot\left(E^{\prime \prime}=E_{1} \| E^{\prime}\right) \wedge E-u \rightarrow E_{1}\right) \vee \\
& \left(\exists E_{1} \cdot\left(E^{\prime \prime}=E \| E_{1}\right) \wedge E^{\prime}-u \rightarrow E_{1}\right) \vee \\
& \exists E_{1} E_{2} l .
\end{aligned}
$$

```
\((u=\tau) \wedge\left(E^{\prime \prime}=E_{1} \| E_{2}\right) \wedge E-l a b e l l \rightarrow E_{1} \wedge\)
\(E^{\prime}\)-label (COMPL \(\left.l\right) \rightarrow E_{2}\)
```


## TRANS_RESTR_EQ:

```
\(\vdash \nu L E-u \rightarrow E^{\prime} \Longleftrightarrow\)
 \(\exists E^{\prime \prime} l\) 。
 \(\left(E^{\prime}=\nu L E^{\prime \prime}\right) \wedge E-u \rightarrow E^{\prime \prime} \wedge\)
 \(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge\) COMPL \(l \notin L)\)
```


### 3.3.1 Decision procedure for CCS transitions

It's possible to use SOS inference rules and theorems derived from them for proving theorems about the transitions between any two CCS processes. However, what's more useful is the decision procedure which automatically decide all possible transitions and formally prove them.

For any CCS process, there is a decision procedure as a recursive function, which can completely decide all its possible (one-step) transitions. In HOL, this decision procedure can be implemented as a normal Standard ML function CCS_TRANS_CONV of type term -> theorem, the returned theorem fully characterize the possible transitions of the input CCS process.

For instance, we know that the process $(a .0 \mid \bar{a} .0)$ have three possible transitions:

1. $(a .0 \mid \bar{a} .0) \xrightarrow{a}(0 \mid \bar{a} .0)$;
2. $(a .0 \mid \bar{a} .0) \xrightarrow{\bar{a}}(a .0 \mid 0)$;
3. $(a .0 \mid \bar{a} .0) \xrightarrow{\tau}(0 \mid 0)$.

To completely decide all possible transitions, if done manually, the following work should be done:

1. Prove there exists transitions from (a.0| $\bar{a} .0$ ) (optionally);
2. Prove each of above three transitions using SOS inference rules;
3. Prove there's no other transitions, using the "cases" theorems generated from the TRANS relation.

Instead, if we use the function CCS_TRANS_CONV with the root process:

```
> CCS_TRANS_CONV
```

    'spar (prefix (label (name "a")) nil)
    (prefix (label (coname "a")) nil)،'
    As the result, the following theorem is returned: From this theorem, we can see there're only three possible transitions and there's no others. Therefore it contains all information expressed by previous manually proved 5 theorems (in theory we can also try to manually prove this single theorem, but it's not easy since the steps required will be at least the sum of all previous proofs).

As a further example, if we put a restriction on label "a" and check the process ( $\nu a)(a .0 \mid \bar{a} .0)$ instead, there will be only one possible transition:

It's possible to extract a list of possible transitions together with the actions, into a list. This work can be done automatically by the function strip_trans. Finally, if both the theorem and the list of transitions are needed, the function CCS_TRANS and its compact-form variant CCS_TRANS' can be used. For the previous example process (a.0| $\bar{a} .0$ ), calling CCS_TRANS' on it in HOL's interactive environment has the following results:

```
> CCS_TRANS '،In "a"..nil || Out "a"..nil``;
val it =
 (I- !u E.
 In "a"..nil || Out "a"..nil --u-> E <=>
 ((u = In "a") /\ (E = nil || Out "a"..nil) \/
 (u = Out "a") /\ (E = In "a"..nil || nil)) \/
 (u = tau) /\ (E = nil || nil),
 [('،In "a"`،,
 ''nil || Out "a"..nil'`),
 (،'Out "a"'،,
 ''In "a"..nil || nil'`),
 ('،'t'،,
 ''nil || nil'،)]):
 thm * (term * term) list
```

The main function CCS_TRANS_CONV is implemented in about 500 lines of Standard ML code, and it depends on many dedicated tactics written for CCS, and functions to access the internal structure of CCS-related theorem and terms. We have tried our best to make sure the correctness of this function, but certain bugs are still inevitable However, since it's implemented in theorem prover, and the return value of this function is a theorem, what we can guarantee is the following things:

Whenever the function terminates with a theorem returned, as long as the theorem has "correct" forms, the CCS transitions indicated in the returned theorem is indeed all possible transitions from the input process. No matter if there're bugs in our program.

In another words, any remain bug in the program can only stop the whole function from returning a result, but as long as the result is returned, it cannot be wrong! This sounds like a different kind of trusted computing than the normal senses. In general, for any algorithm implemented in any normal programming languages, since the output is just a primitive value or data structure which can be arbitrary constructed or changed due to potential bugs in the software, the only way to trust these

[^13]results, is to have the entire program carefully modeled and verified. But in our case, the Standard ML program code is not verified, but the result (once appears) can still be fully ${ }^{5}$ trusted, simply because it's a theorem derived from HOL.

### 3.4 Strong equivalence

The concept of bisimulation and bisimulation equivalence (bisimilarity) and their variants have the central position in Concurrency Theory. One major approach in model checking is to check the bisimulation equivalence between the specification and implementation of the same system. Besides, it's well known that, strong equivalence as a relation, must be defined co-inductively. (And in fact, strong equivalence is one of the most well-studied co-inductive relation in computer science. [18]) In this section, we study the definition of strong and weak bisimulation and (bisimulation) equivalences, and their possible formalizations in HOL.

Recall the standard definition of strong bisimulation and strong equivalence (c.f. p. 43 of [4]):

Definition 3.4.1. ((Strong) bisimulation and (strong) bisimulation equivalence) Let $T S=(Q, A, \rightarrow)$ be a transition system. A bisimulation is a relation $R \subset Q \times Q$ such that $R$ and its inverse $R^{-1}$ are both simulation relations. More explicitly, a bisimulation is a relation $R$ such that if $\left(q_{1}, q_{2}\right) \in R$ then for all $\mu \in A$

- $\forall q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}, \exists q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$,
- $\forall q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}, \exists q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$.

Two states $q$ and $q^{\prime}$ are bisimular (or bisimulation equivalent), denoted $q \sim q^{\prime}$, if there exists a bisimulation $R$ such that $\left(q, q^{\prime}\right) \in R$.

Noticed that, although above definition is expressed in LTS, it's also applicable to CCS in which each process has the semantic model as a rooted LTS. Given the fact that, all states involved in above definition are target states of direct or indirect transition of the initial pair of states, above definition can be directly used for CCS.

[^14]In HOL88, there's no direct way to define co-inductive relation. However, it's possible to follow above definition literally and define bisimulation first, then define the bisimulation equivalence on top of bisimulation. Here are the definitions translated from HOL88 to HOL4:

```
\(\vdash\) STRONG_BISIM Bsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Bsm \(E E^{\prime} \Longrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}-u \rightarrow E_{2} \wedge B s m E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E-u \rightarrow E_{1} \wedge B s m E_{1} E_{2}\)
\(\vdash E \sim E^{\prime} \Longleftrightarrow \exists B s m\). Bsm \(E E^{\prime} \wedge\) STRONG_BISIM Bsm
```

From the second definition, we can see that, $q \sim q^{\prime}$ if there exists a bisimulation containing the pair $\left(q, q^{\prime}\right)$. This means that $\sim$ is the union of all bisimulations, i.e.,

$$
\sim=\bigcup\{R \subset Q \times Q: R \text { is a bisimulation }\} .
$$

The other way to define strong equivalence is through the fixed point of the following function $F$ : (c.f. p. 72 of [4)

Definition 3.4.2. Given an $\operatorname{LTS}(Q, A, \rightarrow)$, the function $F: \wp(Q \times Q) \rightarrow \wp(Q \times Q)$ (i.e., a transformer of binary relations over $Q$ ) is defined as follows. If $R \subset Q \times Q$, then $\left(q_{1}, q_{2}\right) \in F(R)$ if and only if for all $\mu \in A$

- $\forall q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}, \exists q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$,
- $\forall q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}, \exists q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in R$.

And we can see by comparing the definition of above function and the definition of bisimulation that (no formal proofs):

1. The function $F$ is monotone, i.e. if $R_{1} \subset R_{2}$ then $F\left(R_{1}\right) \subset F\left(R_{2}\right)$.
2. A relation $R \subset Q \times Q$ is a bisimulation if and only if $R \subset F(R)$.

Then according to Knaster-Tarski Fixed Point theorem, strong bisimilarity $\sim$ is the greatest fixed point of $F$. And this is also the definition of co-inductive relation defined by the same rules.

In HOL4, since the release Kananaskis-11, there's a new facility for defining coinductive relation. The entry command is Hol_coreln, which has the same syntax as $\mathrm{Hol} \_$reln for definining inductive relations. Using Hol_coreln, it's possible to define the bisimulation equivalence directly in this way: (here we has chosen a new relation name STRONG_EQ) ${ }^{6}$

The first theorem is the original rules appearing in the definition. Roughly speaking, it's kind of rules for building a bisimulation relation in forward way, however

[^15]this is impossible because of the lack of base rules (which exists in most inductive relation). And it's not original in this case, since it can be derived from the last theorem STRONG_EQ_cases (RHS $\Rightarrow$ LHS).

The second theorem is the co-induction principle. It says, for what ever relation which satisfies those rules, it must be contained in strong equivalence. In another word, it make sure the target relation is the maximal relation containing all others.

The purpose of the last theorem (also called "cases" theorem), is to make sure the target relation is indeed a fixed point of the function $F$ built by the given rules. However, it doesn't give any information about the size of such a fixed point. In general, if the greatest fixed point and least fixed point doesn't coincide, without the restriction by co-induction theorem, the rest two theorems will not give a precise definition for that relation. For strong equivalence, we already know that, the least fixed point of $F$ is empty relation $\emptyset$, and the great fixed point is the strong equivalence $\sim$. And in fact, the "cases" theorem has "defined" a relation which lies in the middle of the greatest and least fixed point. To see why this argument is true, we found this theorem as an equation could be used as a possible definition of strong equivalence: (c.f. p. 49 of [4])

Definition 3.4.3. Define recursively a new behavioral relation $\sim^{\prime} \in Q \times Q$ as follows: $q_{1} \sim^{\prime} q_{2}$ if and only if for all $\mu \in A$

- $\forall q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}, \exists q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}$ and $q_{1}^{\prime} \sim^{\prime} q_{2}^{\prime}$,
- $\forall q_{2}^{\prime}$ such that $q_{2} \xrightarrow{\mu} q_{2}^{\prime}, \exists q_{1}^{\prime}$ such that $q_{1} \xrightarrow{\mu} q_{1}^{\prime}$ and $q_{1}^{\prime} \sim^{\prime} q_{2}^{\prime}$.

This is exactly the same as above "cases" theorem if the theorem were used as a definition of strong equivalence. Robin Milner calls this theorem the " property $\left(^{*}\right)$ " of strong equivalence. (c.f. p. 88 of [2]) But as Prof. Gorrieri's book [4] already told with examples: "this does not identify a unique relation, as many different relations satisfy this recursive definition.", and the fact that any mathematical (or logic) definitions must precisely specify the targeting object (unless the possible covered range itself is a targeting object).

But why the recursive definition failed to define a largest bisimulation (i.e. strong equivalence)? The textbooks didn't give a clear answer, but in the view of theorem proving, now it's quite clear: such a recursive definition can only restrict the target relation into the range of all fixed points, while it's the co-induction theorem who finally restricts the target relation to the greatest solution. Without any of them, the solution will not be unique (thus not a valid mathematical definition).

Based on the definition of STRONG_EQUIV and SOS inference rules for the TRANS relation, we have proved a large set of theorems concerning the strong equivalence of CCS processes. Below is a list of fundamental congruence theorems for strong equivalence:

STRONG_EQUIV_SUBST_PREFIX:
$\vdash E \sim E^{\prime} \Longrightarrow \forall u . u . E \sim u . . E^{\prime}$

```
STRONG_EQUIV_PRESD_BY_SUM:
```

$$
\vdash E_{1} \sim E_{1}^{\prime} \wedge E_{2} \sim E_{2}^{\prime} \Longrightarrow E_{1}+E_{2} \sim E_{1}^{\prime}+E_{2}^{\prime}
$$

```
STRONG_EQUIV_PRESD_BY_PAR:
```

$$
\vdash E_{1} \sim E_{1}^{\prime} \wedge E_{2} \sim E_{2}^{\prime} \Longrightarrow E_{1}\left\|E_{2} \sim E_{1}^{\prime}\right\| E_{2}^{\prime}
$$

## STRONG_EQUIV_SUBST_RESTR:

$\vdash E \sim E^{\prime} \Longrightarrow \forall L . \nu L E \sim \nu L E^{\prime}$

## STRONG_EQUIV_SUBST_RELAB:

$\vdash E \sim E^{\prime} \Longrightarrow \forall r f$. relab $E r f \sim$ relab $E^{\prime} r f$
Noticed that, the strong bisimulation equivalence is co-inductively defined, and two processes are strong equivalent if there's a bisimulation containing them. Thus, to prove two processes are strong equivalent, it's enough to find a bisimulation containing them. To prove the they're not strong equivalent, it's enough to try to construct a bisimulation starting from them and the proof is finished whenever the attempt fails. In any case, there's no need to do induction on the data type of involved CCS processes.

### 3.4.1 Algebraic Laws for strong equivalence

Here are the strong laws proved for the sum operator: (noticed that, the lack of some parentheses is because we have defined the sum and parallel operators as leftassociative)

```
STRONG_SUM_IDEMP: }\vdashE+E~
STRONG_SUM_COMM: }\quad\vdashE+\mp@subsup{E}{}{\prime}~\mp@subsup{E}{}{\prime}+
STRONG_SUM_IDENT_L:
STRONG_SUM_IDENT_R: }\quad\vdashE+\mathrm{ nil }~
STRONG_SUM_ASSOC_R: }\quad\vdashE+\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime}~E+(\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime}
STRONG_SUM_ASSOC_L: }\quad\vdashE+(\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime})~E+E\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime
STRONG_SUM_MID_IDEMP: }\quad\vdashE+\mp@subsup{E}{}{\prime}+E~\mp@subsup{E}{}{\prime}+
STRONG_LEFT_SUM_MID_IDEMP: }\vdashE+\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime}+\mp@subsup{E}{}{\prime}~E+E\mp@subsup{E}{}{\prime\prime}+\mp@subsup{E}{}{\prime
```

Not all above theorems are primitive (in the sense of providing a minimal axiomatization set for proving all other strong algebraic laws). The first several theorems must be proved by constructing bisimulation relations and then verifying the definitions of strong bisimulation and strong equivalence, and their formal proofs were written in goal-directed ways. Instead, the last three ones were all constructed in forward way by applications of previous proven algebraic laws, without directly using any SOS inference rules and the definition of strong equivalence. Such constructions were based on two useful ML functions S_SYM and S_TRANS which builds new strong laws from the symmetry and transitivity of strong equivalence:

```
(* Define S_SYM such that, when given a theorem A
```

```
 |- STRONG_EQUIV t1 t2,
 returns the theorem A /- STRONG_EQUIV t2 t1. *)
fun S_SYM thm = MATCH_MP STRONG_EQUIV_SYM thm;
(* Define S_TRANS such that, when given the theorems thm1 and
 thm2, applies
 STRONG_EQUIV_TRANS on them, if possible. *)
fun S_TRANS thm1 thm2 =
 if rhs_tm thm1 = lhs_tm thm2 then
 MATCH_MP STRONG_EQUIV_TRANS (CONJ thm1 thm2)
 else
 failwith
 "transitivity\sqcupof
```

For instance, to construct the proof of STRONG_SUM_MID_IDEMP, the following code was written:

```
(* STRONG_SUM_MID_IDEMP:
 I- !E E'. STRONG_EQUIV (sum (sum E E') E) (sum E' E)
 *)
val STRONG_SUM_MID_IDEMP = save_thm (
 "STRONG_SUM_MID_IDEMP",
 GEN '`E: CCS``
 (GEN ''E': CCS'`
 (S_TRANS
 (SPEC '`E: CCS``
 (MATCH_MP STRONG_EQUIV_SUBST_SUM_R
 (SPECL [``E: CCS``, '`E': CCS'`] STRONG_SUM_COMM)))
 (S_TRANS
 (SPECL [``E`: CCS``, '`E: CCS``, '`E: CCS``]
 STRONG_SUM_ASSOC_R)
 (SPEC '`E': CCS'،
 (MATCH_MP STRONG_EQUIV_SUBST_SUM_L
 (SPEC ('E: CCS`` STRONG_SUM_IDEMP)))))));
```

Here are the strong laws we have proved for the par operator:

```
STRONG_PAR_IDENT_R: }\quad\vdashE||nil ~ E
STRONG_PAR_COMM: }\quad\vdashE|E|~\mp@subsup{E}{}{\prime}~\mp@subsup{E}{}{\prime}|
STRONG_PAR_IDENT_L:
STRONG_PAR_ASSOC: }\quad\vdashE|E\mp@subsup{E}{}{\prime}|\mp@subsup{E}{}{\prime\prime}~E|(\mp@subsup{E}{}{\prime}|\mp@subsup{E}{}{\prime\prime}
```

STRONG_PAR_PREF_TAU:
$\vdash u . . E \| \tau \ldots E^{\prime} \sim u .\left(E \| \tau \ldots E^{\prime}\right)+\tau \ldots\left(u \ldots E \| E^{\prime}\right)$
STRONG_PAR_TAU_PREF:

$$
\vdash \tau \ldots E \| u . . E^{\prime} \sim \tau \ldots\left(E \| u . . E^{\prime}\right)+u \ldots\left(\tau \ldots E \| E^{\prime}\right)
$$

STRONG_PAR_TAU_TAU:

```
\vdash\tau..E|\tau..E'~ ~ . (E| |.. E') + \tau..(\tau..E| | E')
STRONG_PAR_PREF_NO_SYNCR:
 \vdash l \neq ~ C O M P L ~ l ' ~ \Longrightarrow
 \forallE E'.
 label l..E || label l'..E'~
 label l..(E| label l'..E') + label l'..(label l..E| | E')
STRONG_PAR_PREF_SYNCR:
 \vdash(l = COMPL l') \Longrightarrow
 \forallE E'.
 label l..E | label l'..E' ~
 label l..(E || label l'..E') +
 label l'..(label l..E || E') + \tau..(E | E E')
And the strong laws for the restriction operator:
```

```
STRONG_RESTR_NIL: }\quad\vdash\nuL nil ~ nil
```

STRONG_RESTR_NIL: }\quad\vdash\nuL nil ~ nil
STRONG_RESTR_SUM: }\quad\vdash\nuL(E+E\mp@subsup{E}{}{\prime})~\nuLE + \nuL E
STRONG_RESTR_SUM: }\quad\vdash\nuL(E+E\mp@subsup{E}{}{\prime})~\nuLE + \nuL E
STRONG_RESTR_PREFIX_TAU: }\vdash\nuL(\tau..E)~\tau..\nuLE
STRONG_RESTR_PREFIX_TAU: }\vdash\nuL(\tau..E)~\tau..\nuLE
STRONG_RESTR_PR_LAB_NIL:
STRONG_RESTR_PR_LAB_NIL:
\vdashl\inL\vee COMPL l \inL\Longrightarrow \#E. \nu L (label l..E) ~ nil
\vdashl\inL\vee COMPL l \inL\Longrightarrow \#E. \nu L (label l..E) ~ nil
STRONG_RESTR_PREFIX_LABEL:
STRONG_RESTR_PREFIX_LABEL:
\vdashl\#L^ COMPL l \# L\Longrightarrow
\vdashl\#L^ COMPL l \# L\Longrightarrow
\forallE. \nu L (label l..E) ~ label l..\nu L E
\forallE. \nu L (label l..E) ~ label l..\nu L E
The strong laws for the relabeling operator:

```
```

STRONG_RELAB_NIL:

```
STRONG_RELAB_NIL:
 relab nil rf ~ nil
STRONG_RELAB_SUM:
 relab (E + E') rf ~ relab E rf + relab E'rf
STRONG_RELAB_PREFIX:
 relab (u..E) (RELAB labl) ~
 relabel (RELAB labl) u..relab E (RELAB labl)
 The strong laws for the recursion operator (for constants):
STRONG_UNFOLDING:
 rec X E ~ CCS_Subst E (rec X E) X
STRONG_PREF_REC_EQUIV:
 \vdash u..rec s (v..u..var s) ~ rec s (u..v..var s)
```

```
STRONG_REC_ACT2:
```

$\vdash \operatorname{rec} s(u . . u . . \operatorname{var} s) \sim \operatorname{rec} s(u . . \operatorname{var} s)$
All above three theorems for recursion operator were fundamental (in the sense that, they cannot be proved by just using other strong laws).

Finally, all above strong laws could be used either manually or as part of the decision procedure for automatically deciding strong equivalences between two CCS process. However such a decision procedure is not done in the current project.

### 3.4.2 The Strong Expansion Law

Another big piece of proof work in this project is the representation and proof of the following expansion law (sometimes also called the interleaving law:

Proposition 3.4.1. (Expansion Law) Let $p=\sum_{i=1}^{n} \mu_{i} \cdot p_{i}$ and $q=\sum_{j=1}^{m} \mu_{j}^{\prime} \cdot q_{j}$. Then

$$
\begin{equation*}
p \mid q \sim \sum_{i=1}^{n} \mu_{i} \cdot\left(p_{i} \mid q\right)+\sum_{j=1}^{m} \mu_{j}^{\prime} \cdot\left(p \mid q_{j}\right)+\sum_{i, j: \overline{M_{i}}=\mu_{j}^{\prime}} \tau \cdot\left(p_{i} \mid q_{j}\right) \tag{3.1}
\end{equation*}
$$

Some characteristics made the formal proof very special and different from all other theorems that we have proved so far. First of all, arithmetic numbers (of type num) were involved for the first time, and now our CCS theory depends on elementary mathematical theories provided by HOL, namely the prim_recTheory and arithmeticTheory. Although arithmetic operations like $+,-, \cdot, /$ were not involved (yet), but we do need to compare number values and use some related theorems.

Also two CCS accessors were defined and used to access the internal structure of CCS processes, namely PREF_ACT for getting the initial action and PREF_PROC for getting the rest of process without the first action. Together there's predicate Is_Prefix for testing if a CCS is a prefixed process:

```
\(\vdash\) PREF_ACT \((u . . E)=u\)
\(\vdash\) PREF_PROC \((u . . E)=E\)
\(\vdash\) Is_Prefix \(E \Longleftrightarrow \exists u E^{\prime} . E=u \ldots E^{\prime}\)
```

They are needed because we're going to represent $\mu_{i} \cdot p_{i}$ as the value of a function: $f(i)$ in which $f$ has the type num $\rightarrow(\alpha, \beta)$ CCS. And in this way, to get $\mu_{i}$ and $p_{i}$ we have to use accessors: "PREF_ACT ( $f i$ )" and "PREF_PROC ( $f i$ )".

The next job is to represent a finite sum of CCS processes. This is done by the following recursive function SIGMA:

```
SIGMA f 0 = f 0
SIGMA f (SUC n) = SIGMA f n + f (SUC n)
```

Thus if there's a function $f$ of type num $\rightarrow(\alpha, \beta)$ CCS, we should be able to represent $\sum_{i=1}^{n} f(i)$ by HOL term "SIGMA $f n$ ".

Now if we took a deeper look at the last summation of the right side of the expansion law, i.e. $\sum_{i, j: \overline{\mu_{i}}=\mu_{j}^{\prime}} \tau \cdot\left(p_{i} \mid q_{j}\right)$, we found that such a "sum" cannot be represented directly, because there're two index $i, j$ and their possible value pairs used in the sum depends on the synchronization of corresponding actions from each $p_{i}$ and $q_{j}$. What we actually need is a recursively defined function taking all the $p_{i}$ and $q_{j}$ and return the synchronized process in forms like $\sum \tau \cdot\left(p_{i} \mid q_{j}\right)$.

But this is still too complicated, instead we first define functions to synchronize just one process with another group of processes. This work is achieved by the function SYNC of type $\beta$ Action $\rightarrow(\alpha, \beta)$ CCS $\rightarrow($ num $\rightarrow(\alpha, \beta)$ CCS $) \rightarrow$ num $\rightarrow(\alpha, \beta)$ CCS:

```
\vdash(\forallu Pf.
 SYNC u P f 0 =
 if (u = \tau) V (PREF_ACT (f 0) = \tau) then nil
 else if LABEL u = COMPL (LABEL (PREF_ACT (f 0))) then
 \tau..(P| PREF_PROC (f 0))
 else nil) ^
 \forallu Pfn.
 SYNC u P f (SUC n) =
 if (u=\tau) V (PREF_ACT (f (SUC n)) = \tau) then
 SYNC u P f n
 else if
 LABEL u = COMPL (LABEL (PREF_ACT (f (SUC n))))
 then
 \tau..(P | PREF_PROC (f (SUC n))) + SYNC u P f n
 else SYNC u P f n
```

Then the synchronization of two group of processes can be further defined by another recursive function ALL_SYNC of type (num $\rightarrow(\alpha, \beta)$ CCS) $\rightarrow$ num $\rightarrow$ (num $\rightarrow(\alpha, \beta)$ CCS) $\rightarrow$ num

```
\vdash}(\forallf\mp@subsup{f}{}{\prime}m
 ALL_SYNC f 0 f
 SYNC (PREF_ACT (f 0)) (PREF_PROC (f 0)) f' m) ^
 \forallf n f
 ALL_SYNC f (SUC n) f
 ALL_SYNC }fn\mp@subsup{f}{}{\prime}m
 SYNC (PREF_ACT (f (SUC n))) (PREF_PROC (f (SUC n))) f' m
```

Some lemmas about SIGMA and the two synchronization functions were proved first:

SIGMA_TRANS_THM_EQ:

$$
\vdash \operatorname{SIGMA} f n-u \rightarrow E \Longleftrightarrow \exists k . k \leq n \wedge f k-u \rightarrow E
$$

```
\vdash \text { SYNC u P f m-v }
 \exists l.
 j s m ^ (u = label l) ^
 (PREF_ACT (f j) = label (COMPL l)) ^ (v = \tau) ^
 (Q = P| PREF_PROC (f j))
ALL_SYNC_TRANS_THM_EQ:
 \vdash \mp@code { A L L _ S Y N C ~ f ~ n ~ f ' ~ m ~ - u \rightarrow E ~ \Longleftrightarrow }
 \existsk k
 k\leqn^k
 (PREF_ACT (}\mp@subsup{f}{}{\prime}\mp@subsup{k}{}{\prime})= label (COMPL l)) ^ (u=\tau) ^
 (E = PREF_PROC (f k)| PREF_PROC (fl}\mp@subsup{|}{}{\prime}\mp@subsup{k}{}{\prime}
```

Finally, we have proved the Expansion Law in the following form:

## STRONG_EXPANSION_LAW:

```
\(\vdash(\forall i . i \leq n \Longrightarrow\) Is_Prefix \((f i)) \wedge\)
 \(\left(\forall j, j \leq m \Longrightarrow\right.\) Is_Prefix \(\left.\left(f^{\prime} j\right)\right) \Longrightarrow\)
 SIGMA \(f n \|\) SIGMA \(f^{\prime} m \sim\)
 SIGMA (\(\lambda i\). PREF_ACT (\(f i\))..(PREF_PROC (\(f i\)) \| SIGMA \(f^{\prime} m\)))
 \(n+\)
 SIGMA (\(\lambda j\). PREF_ACT \(\left.\left(f^{\prime} j\right) . .\left(\operatorname{SIGMA} f n \| \operatorname{PREF} _\operatorname{PROC}\left(f^{\prime} j\right)\right)\right)\)
 \(m+\) ALL_SYNC \(f n f^{\prime} m\)
```


### 3.5 Weak transitions and the EPS relation

In this part, the main purpose is to define the weak equivalence co-inductively first and then prove the traditional definition (like STRONG_EQUIV) as a theorem. Using HOL's coinductive relation module (Hol_coreln), it's much easier to get the same set of theorems like those for strong equivalence. These works are not part of the old CCS formalization in Hol88.

There're multiple ways to define the concept of weak transitions used in the definition of weak bisimulation. In early approach like Milner's book, the first step is to define a EPS relation, which indicates that between two processes there's nothing but zero or more $\tau$ transitions. In HOL, this can be defined through a non-recursive inductive relation and the RTC (reflexive transitive closure) on top of it:

Definition 3.5.1. (EPS) For any two CCS processes $E, E^{\prime} \in Q$, define relation $E P S \subseteq Q \times Q$ as the reflexive transitive closure (RTC) of single- $\tau$ transition between $E$ and $\left.E^{\prime}\left(E \xrightarrow{\tau} E^{\prime}\right) \cdot\right]^{7}$
$\vdash \mathrm{EPS}=\left(\lambda E E^{\prime} . E-\tau \rightarrow E^{\prime}\right)^{*}$

[^16]Intuitively speaking, $E \stackrel{\epsilon}{\Rightarrow} E^{\prime}$ (Math notion: $E \xlongequal{\epsilon} E^{\prime}$ ) means there're zero or more tau-transitions from $p$ to $q$.

Sometimes it's necessary to consider different transition cases when $p \stackrel{\epsilon}{\Rightarrow} q$ holds, or induct on the number of tau transitions between $p$ and $q$. With such a definition, beside the obvious reflexive and transitive properties, a large amount of "cases" and induction theorem already proved in HOL's relationTheory are immediately available to us:

Proposition 3.5.1. (The "cases" theorem of the EPS relation)

1. Taking one $\tau$-transition at left:
[EPS_cases1]

$$
\vdash x \stackrel{\epsilon}{\Rightarrow} y \Longleftrightarrow(x=y) \vee \exists u \cdot x-\tau \rightarrow u \wedge u \stackrel{\epsilon}{\Rightarrow} y
$$

2. Taking one $\tau$-transition at right:
[EPS_cases2]

$$
\vdash x \stackrel{\epsilon}{\Rightarrow} y \Longleftrightarrow(x=y) \vee \exists u \cdot x \stackrel{\epsilon}{\Rightarrow} u \wedge u-\tau \rightarrow y
$$

3. Three cases of EPS transition:
[EPS_cases]

$$
\vdash E \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longleftrightarrow E-\tau \rightarrow E^{\prime} \vee\left(E=E^{\prime}\right) \vee \exists E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge E_{1} \stackrel{\epsilon}{\Rightarrow} E^{\prime}
$$

Proposition 3.5.2. (The induction and strong induction principles of the EPS relation)

1. Induction from left:
[EPS_ind]
$\vdash(\forall x \cdot P x x) \wedge\left(\begin{array}{lll}\forall & y & z \cdot x-\tau \rightarrow y \wedge P y z \Longrightarrow P\end{array}\right) \Longrightarrow$
$\forall x y \cdot x \stackrel{\epsilon}{\Rightarrow} y \Longrightarrow P x y$
2. Induction from right:
[EPS_ind_right]

$$
\begin{aligned}
& \left.\vdash(\forall x \cdot P x x) \wedge\left(\begin{array}{lll}
\forall & y & z . P
\end{array}\right) y \wedge y-\tau \rightarrow z \Longrightarrow P x z\right) \Longrightarrow \\
& \forall x y \cdot x \underset{\Longrightarrow}{\Rightarrow} y \Longrightarrow P x y
\end{aligned}
$$

3. Strong induction from left:
[EPS_strongind]

$$
\begin{aligned}
& \vdash(\forall x \cdot P x \underset{x}{ }(\forall \wedge(\forall x y z \cdot x-\tau \rightarrow y \wedge y \stackrel{\epsilon}{\Rightarrow} z \wedge P y z \Longrightarrow P x z) \Longrightarrow \\
& \quad \forall x y \cdot x \stackrel{\epsilon}{\Rightarrow} y \Longrightarrow P x y
\end{aligned}
$$

4. Strong induction from right:
$\left.\vdash(\forall x . P \quad x \quad x) \wedge\left(\begin{array}{lll}\forall x & y & z . P\end{array}\right) y \wedge x \Rightarrow y \wedge y-\tau \rightarrow z \Longrightarrow P x z\right) \Longrightarrow$ $\forall x y \cdot x \stackrel{\epsilon}{\Rightarrow} y \Longrightarrow P x y$
```
\(\vdash\left(\forall E E^{\prime} . E-\tau \rightarrow E^{\prime} \Longrightarrow P E E^{\prime}\right) \wedge(\forall E . P E E) \wedge\)
 \(\left(\begin{array}{lllllllllll}\forall E & E_{1} & E^{\prime}\end{array} \quad P \quad E \quad E_{1} \wedge P l \begin{array}{llll} & E^{\prime} & \Longrightarrow P & E\end{array} E^{\prime}\right) \Longrightarrow\)
 \(\forall x y \cdot x \stackrel{\epsilon}{\Rightarrow} y \Longrightarrow P x y\)
```

Then we define the weak transition between two CCS processes upon the EPS relation:

Definition 3.5.2. For any two CCS processes $E, E^{\prime} \in Q$, define "weak transition" relation $\Longrightarrow \subseteq Q \times A \times Q$, where A can be $\tau$ or a visible action: $E \xrightarrow{a} E^{\prime}$ if and only if there exists two processes $E_{1}$ and $E_{2}$ such that $E \xlongequal{\epsilon} E_{1} \xrightarrow{a} E_{2} \xlongequal{\epsilon} E^{\prime}$ :

WEAK_TRANS :
$\vdash E=u \Rightarrow E^{\prime} \Longleftrightarrow \exists E_{1} E_{2} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge E_{1}-u \rightarrow E_{2} \wedge E_{2} \stackrel{\epsilon}{\Rightarrow} E^{\prime}$
Using above two definitions and the "cases" and induction theorems, a large amount of properties about EPS and WEAK_TRANS were proved:

Proposition 3.5.3. (Properties of EPS and WEAK_TRANS)

1. Any transition also implies a weak transition:

$$
\vdash E-u \rightarrow E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}
$$

[TRANS_IMP_WEAK_TRANS]
2. Weak $\tau$-transition implies EPS relation:

$$
\vdash E=\tau \Rightarrow E_{1} \Longleftrightarrow \exists E^{\prime} . E-\tau \rightarrow E^{\prime} \wedge E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{1}
$$

[WEAK_TRANS_TAU]
3. $\tau$-transition implies EPS relation:

$$
\vdash E-\tau \rightarrow E^{\prime} \Longrightarrow E \xlongequal{\epsilon} E^{\prime}
$$

[TRANS_TAU_IMP_EPS]
4. Weak $\tau$-transition implies an $\tau$ transition followed by EPS transition:

```
WEAK_TRANS_TAU_IMP_TRANS_TAU:
 \vdash E = \tau \Rightarrow E ^ { \prime } \Longrightarrow \exists E _ { 1 } . E - \tau \rightarrow E _ { 1 } \wedge E _ { 1 } \stackrel { \epsilon } { \Rightarrow } E ^ { \prime }
```

5. EPS implies $\tau$-prefixed EPS:

$$
\vdash E \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longrightarrow \tau \ldots E \stackrel{\epsilon}{\Rightarrow} E^{\prime}
$$

[TAU_PREFIX_EPS]
6. Weak $\tau$-transition implies $\tau$-prefixed weak: $\tau$-transition:

$$
\vdash E=u \Rightarrow E^{\prime} \Longrightarrow \tau \ldots E=u \Rightarrow E^{\prime}
$$

[TAU_PREFIX_WEAK_TRANS]
7. A weak transition wrapped by EPS transitions is still a weak transition:

EPS_WEAK_EPS:

$$
\vdash E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge E_{1}=u \Rightarrow E_{2} \wedge E_{2} \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}
$$

8. A weak transition after a $\tau$-transition is still a weak transition:

$$
\vdash E-\tau \rightarrow E_{1} \wedge E_{1}=u \Rightarrow E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime} \quad \text { [TRANS_TAU_AND_WEAK] }
$$

9. Any transition followed by an EPS transition becomes a weak transition:

$$
\vdash E-u \rightarrow E_{1} \wedge E_{1} \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime} \quad \text { [TRANS_AND_EPS] }
$$

10. An EPS transition implies either no transition or a weak $\tau$-transition:

$$
\vdash E \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longrightarrow\left(E=E^{\prime}\right) \vee E=\tau \Rightarrow E^{\prime} \quad \text { [EPS_IMP_WEAK_TRANS] }
$$

11. Two possible cases for the first step of a weak transition:
```
WEAK_TRANS_cases1:
 \vdash E = u \Rightarrow E _ { 1 } \Longrightarrow
 (\exists\mp@subsup{E}{}{\prime}.E-\tau->\mp@subsup{E}{}{\prime}\wedge\mp@subsup{E}{}{\prime}=u=>\mp@subsup{E}{1}{})\vee\exists\mp@subsup{E}{}{\prime}.E-u->\mp@subsup{E}{}{\prime}\wedge E
```

12. The weak transition version of SOS inference rule $\left(S u m_{1}\right)$ and (Sum 2 ):

$$
\begin{aligned}
& \vdash E=u \Rightarrow E_{1} \Longrightarrow E+E^{\prime}=u \Rightarrow E_{1} \\
& \vdash E=u \Rightarrow E_{1} \Longrightarrow E^{\prime}+E=u \Rightarrow E_{1}
\end{aligned}
$$

[WEAK_SUM1]

### 3.6 Weak bisimulation equivalence

The concepts of weak bisimulation and weak bisimulation equivalence (a.k.a. observational equivalence) and their properties were used all over this project. Several basic results (Deng lemma, Hennessy lemma, "Coarsest congruence contained in weak equivalence") were formally proved in this project, they all talk about the relationship between weak bisimulation equivalence and rooted weak bisimulation equivalence (a.k.a. observational congruence, we'll use this shorted names in the rest of the paper). Also, since observational congruence is not recursively defined but relies on the definition of weak equivalence, the properties of weak equivalence were heavily used in the proof of properties of observational congruence.

On the other side, it's quite easy to derive almost all the algebraic laws for weak equivalence (and observational congruence) from strong algebraic laws, because strong equivalence implies weak equivalence (and also observational congruence). This also reflects the fact that, although strong equivalence and its algebraic laws were relative less useful in real-world model checking, they do have contributions for deriving more useful algebraic laws. And from the view of theorem proving it totally make sense: if we try to prove any algebraic law for weak equivalence directly,
the proof will be quite long and difficult, and the handling of tau-transitions will be a common part in all these proofs. But if we use the strong algebraic laws as lemmas, the proofs were actually divided into two logical parts: one for handling the algebraic law itself, the other for handling the $\tau$-transitions.

The definition of weak bisimulation is the same as in 4], except for the use of EPS in case of $\tau$-transitions:

Definition 3.6.1. (Weak bisimulation)

```
\(\vdash\) WEAK_BISIM Wbsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Wbsm E \(E^{\prime} \Longrightarrow\)
 (\(\forall l\).
 \(\left(\forall E_{1}\right.\).
 \(E\)-label \(l \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2} . E^{\prime}=\) label \(\left.l \Rightarrow E_{2} \wedge W b s m E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}-\) label \(l \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=\) label \(l \Rightarrow E_{1} \wedge\) Wbsm \(\left.E_{1} E_{2}\right) \wedge\)
 \(\left(\forall E_{1} . E-\tau \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge\right.\) Wbsm \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge W b s m E_{1} E_{2}\)
```

Weak bisimulation has some common properties:
Proposition 3.6.1. Properties of weak bisimulation

1. The identity relation is a weak bisimulation:
$\vdash$ WEAK_BISIM $\left(\begin{array}{ll}\lambda & y . x=y)\end{array}\right.$
[IDENTITY_WEAK_BISIM]
2. The converse of a weak bisimulation is still a weak bisimulation:
$\vdash$ WEAK_BISIM $W b s m \Longrightarrow$ WEAK_BISIM $W b s m^{T}$ [IDENTITY_WEAK_BISIM]
3. The composition of two weak bisimulations is a weak bisimulation:
```
 WEAK_BISIM Wbsm
 WEAK_BISIM (Wbsm}2\mp@subsup{\mp@code{or}}{r}{}Wbs\mp@subsup{m}{1}{}
```

    [COMP_WEAK_BISIM]
    4. The union of two weak bisimulations is a weak bisimulation:
```
FEAK_BISIM Wbsm
 WEAK_BISIM (Wbsm
```

There're two ways to define weak bisimulation equivalence in HOL4, one is to define it as the union of all weak bisimulations:

Definition 3.6.2. (Alternative definition of weak equivalence) For any two CCS processes $E$ and $E^{\prime}$, they're weak bisimulation equivalent (or weak bisimilar) if and only if there's a weak bisimulation relation between $E$ and $E^{\prime}$ :

WEAK_EQUIV:
$\vdash E \approx E^{\prime} \Longleftrightarrow \exists$ Wbsm. Wbsm $E E^{\prime} \wedge$ WEAK_BISIM Wbsm
This was the definition used by Monica Nesi in Hol88 in which there was no direct support for defining co-inductive relations. The new method we have used in this project, is to use HOL4's new co-inductive relation defining facility Hol_coreln to define weak bisimulation equivalence:

```
val (WEAK_EQUIV_rules, WEAK_EQUIV_coind, WEAK_EQUIV_cases)
 = Hol_coreln '
 (!(E :('a, 'b) CCS) (E' :('a, 'b) CCS).
 (!1.
 (!E1. TRANS E (label l) E1 ==>
 (?E2. WEAK_TRANS E' (label l) E2 /\
 WEAK_EQUIV E1 E2)) /\
 (!E2. TRANS E' (label l) E2 ==>
 (?E1. WEAK_TRANS E (label l) E1 /\
 WEAK_EQUIV E1 E2))) /\
 (!E1. TRANS E tau E1 ==>
 (?E2. EPS E' E2 /\ WEAK_EQUIV E1 E2)) /\
 (!E2. TRANS E' tau E2 ==>
 (?E1. EPS E E1 /\ WEAK_EQUIV E1 E2))
 ==> WEAK_EQUIV E E')';
```

The disadvantage of this new method is that, the rules used in above definition actually duplicated the definition of weak bisimulation, while the advantage is that, HOL4 automatically proved an important theorem and returned it as the third return value of above definition. This theorem is also called "the property (*)" (in Milner's book [2]:

Proposition 3.6.2. (The property ( ${ }^{*}$ ) for weak bisimulation equivalence)
WEAK_PROPERTY_STAR:

```
 \vdash a _ { 0 } \approx a _ { 1 } \Longleftrightarrow
 (}\foralll\mathrm{ .
```



```
 * 2. a - -label l }->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}=label l=>\mp@subsup{E}{1}{}\wedge\mp@subsup{E}{1}{}\approx\mp@subsup{E}{2}{})
```




It's known that, above property cannot be used as an alternative definition of weak equivalence, because it doesn't capture all possible weak equivalences. But it turns out that, for the proof of most theorems about weak bisimilarities this property is enough to be used as a rewrite rule in their proofs. And, if we had used the old
method to define weak equivalence, it's quite difficult to prove above property $(*)$. In previous project, the property $\left({ }^{*}\right)$ for strong equivalence was proved based on the old method, then in this project we have completely removed these code and now both strong and weak bisimulation equivalences were based on the new method. On the other side, the fact that Monica Nesi can define co-inductive relation without using Hol_coreln has shown that, the core HOL Logic doesn't need to be extended to support co-inductive relation, and all what Hol_coreln does internally is to use the existing HOL theorems to construct the related proofs.

Using the alternative definition of weak equivalence, it's quite simple to prove that, the weak equivalence is an equivalence relation:

Proposition 3.6.3. (Weak equivalence is an equivalence relation)

```
\vdash equivalence WEAK_EQUIV
[WEAK_EQUIV_equivalence]
or
\vdash \approx E [WEAK_EQUIV_REFL]
\vdashE\approxE E'
\vdashE\approxE名^E\mp@subsup{E}{}{\prime}\approx\mp@subsup{E}{}{\prime\prime}\LongrightarrowE\approx\mp@subsup{E}{}{\prime\prime}\quad[WEAK_EQUIV_TRANS]
```

The substitutability of weak equivalence under various CCS process operators were then proved based on above definition and property $(*)$. However, as we know weak equivalence is not a congruence, in some of these substitutability theorems we must added extra assumptions on the processes involved, i.e. the stability of CCS processes:

Definition 3.6.3. (Stable processes (or agents)) A process (or agent) is said to be stable if there's no $\tau$-transition coming from it's root:
$\vdash$ STABLE $E \Longleftrightarrow \forall u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow u \neq \tau$
Notice that, the stability of a CCS process doesn't imply the $\tau$-free of all its sub-processes. Instead the definition only concerns on the first transition leading from the process (root).

Among other small lemmas, we have proved the following properties of weak bisimulation equivalence:

Proposition 3.6.4. Properties of weak bisimulation equivalence)

1. Weak equivalence is substitutive under prefix operator:

$$
\vdash E \approx E^{\prime} \Longrightarrow \forall u \cdot u \ldots E \approx u . . E^{\prime} \quad \text { [WEAK_EQUIV_SUBST_PREFIX] }
$$

2. Weak equivalence of stable agents is preserved by binary summation:

$$
\begin{aligned}
\vdash & E_{1} \approx E_{1}^{\prime} \wedge \text { STABLE } E_{1} \wedge \text { STABLE } E_{1}^{\prime} \wedge \\
& E_{2} \approx E_{2}^{\prime} \wedge \text { STABLE } E_{2} \wedge \\
& \text { STABLE } E_{2}^{\prime} \Longrightarrow \\
& E_{1}+E_{2} \approx E_{1}^{\prime}+E_{2}^{\prime}
\end{aligned}
$$

3. Weak equivalence is preserved by guarded binary summation:
```
WEAK_EQUIV_PRESD_BY_GUARDED_SUM:
 \vdash \vdash _ { 1 } \approx E _ { 1 } ^ { \prime } \wedge E _ { 2 } \approx E _ { 2 } ^ { \prime } \Longrightarrow a _ { 1 } . . E _ { 1 } + a _ { 2 } \ldots E _ { 2 } \approx a _ { 1 } \ldots E _ { 1 } ^ { \prime } + a _ { 2 } . . E _ { 2 } ^ { \prime }
```

4. Weak equivalence of stable agents is substitutive under binary summation on the right:
```
WEAK_EQUIV_SUBST_SUM_R:
```

    \(\vdash E \approx E^{\prime} \wedge\) STABLE \(E \wedge\) STABLE \(E^{\prime} \Longrightarrow \forall E^{\prime \prime} . E+E^{\prime \prime} \approx E^{\prime}+E^{\prime \prime}\)
    5. Weak equivalence of stable agents is substitutive under binary summation on the left:
```
WEAK_EQUIV_SUBST_SUM_L:
\vdash E = ~ E ^ { \prime } \wedge \text { STABLE E ^ STABLE E' } \Longrightarrow \forall E ^ { \prime \prime } . E ^ { \prime \prime } + E \approx E ^ { \prime \prime } + E ^ { \prime }
```

6. Weak equivalence is preserved by parallel operator:
```
WEAK_EQUIV_PRESD_BY_PAR:
 \vdash E _ { 1 } \approx E _ { 1 } ^ { \prime } \wedge E _ { 2 } \approx E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } \| E _ { 2 } \approx E _ { 1 } ^ { \prime } \| E _ { 2 } ^ { \prime }
```

7. Weak equivalence is substitutive under restriction operator:
```
WEAK_EQUIV_SUBST_RESTR:
 \vdash \mp@code { \vdash } \approx E ^ { \prime } \Longrightarrow \forall L . \nu L E \approx \nu L E ' ,
```

8. Weak equivalence is substitutive under relabelling operator:
```
WEAK_EQUIV_SUBST_RELAB:
 \vdash E \approx \approx E ^ { \prime } \Longrightarrow \forall r f . ~ r e l a b ~ E ~ r f ~ \approx ~ r e l a b ~ E ' r f f
```

Finally, we have proved that, strong equivalence implies weak equivalence:
Theorem 3.6.1. (Strong equivalence implies weak equivalence)

$$
\vdash E \sim E^{\prime} \Longrightarrow E \approx E^{\prime} \quad \text { [STRONG_IMP_WEAK_EQUIV] }
$$

Here we omit all the algebraic laws for weak equivalence, because they were all easily derived from the corresponding algebraic laws for strong equivalence, except for the following $\tau$-law:

Theorem 3.6.2. The $\tau$-law for weak equivalence)
$\vdash \tau \ldots E \approx E$
[TAU_WEAK]

### 3.7 Observational Congruence

The concept of rooted weak bisimulation equivalence (also namsed observation congruence) is an "obvious fix" to convert weak bisimulation equivalence into a congruence. Its definition is not recursive but based on the definition of weak equivalence:

Definition 3.7.1. (Observation congruence) Two CCS processes are observation congruence if and only if for any transition from one of them, there's a responding weak transition from the other, and the resulting two sub-processes are weak equivalence:

```
\vdash \mp@code { \vdash ~ 汻 ~ E ' \Longleftrightarrow }
 \forallu.
```



```
 \forallE2. E' -u->E E \Longrightarrow \exists E E . E =u=> E1 ^ E1 }\approx\mp@subsup{E}{2}{\prime}\quad\mathrm{ [OBS_CONGR]
```

By observing the differences between the definition of observation equivalence (weak equivalence) and congruence, we can see that, observation equivalence requires a little more: for each $\tau$-transition from one process, the other process must response with at least one $\tau$-transition. Thus what's immediately proven is the following two theorems:

Theorem 3.7.1. (Observation congruence implies observation equivalence)
$\vdash E \approx^{c} E^{\prime} \Longrightarrow E \approx E^{\prime} \quad[O B S$ _CONGR_IMP_WEAK_EQUIV]
Theorem 3.7.2. (Observation equivalence on stable agents implies observation congruence)

WEAK_EQUIV_STABLE_IMP_CONGR:
$\vdash E \approx E^{\prime} \wedge$ STABLE $E \wedge$ STABLE $E^{\prime} \Longrightarrow E \approx^{c} E^{\prime}$
Surprisingly, it's not trivial to prove that, the observation equivalence is indeed an equivalence relation. The reflexivity and symmetry are trivial:

Proposition 3.7.1. (The reflexivity and symmetry of observation congruence)
$\vdash E \approx^{c} E$
[OBS_CONGR_REFL]
$\vdash E \approx^{c} E^{\prime} \Longrightarrow E^{\prime} \approx^{c} E$
[OBS_CONGR_SYM]

But the transitivity is hard to prove $8^{8}$ Our proof here is based on the following lemmas:

Lemma 3.7.1. If two processes $E$ and $E^{\prime}$ are observation congruence, then for any EPS transition coming from E, there's a corresponding EPS transition from $E^{\prime}$, and the resulting two subprocesses are weakly equivalent:

[^17]OBS_CONGR_EPS:
$\vdash E \approx^{c} E^{\prime} \Longrightarrow \forall E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \Longrightarrow \exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge E_{1} \approx E_{2}$
Proof. By (right) induction ${ }^{9}$ on the number of $\tau$ in the EPS transition of $E$. In the base case, there's no $\tau$ at all, the $E$ transits to itself. And in this case $E$ ' can respond with itself, which is also an EPS transition:


For the induction case, suppose the proposition is true for zero or more $\tau$ transitions except for the last step, that's, $\forall E, \exists E 1, E 2$, such that $E \stackrel{\epsilon}{\Rightarrow} E_{1}, E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2}$ and $E_{1} \approx E_{2}$. Now by definition of weak equivalence, if $E_{1}-\tau \rightarrow E_{1}^{\prime}$ then there exists $E 2^{\prime}$ such that $E_{2} \xlongequal{\epsilon} E_{2}^{\prime}$ and $E_{1}^{\prime} \approx E_{2}^{\prime}$. Then by transitivity of EPS, we have $E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge E_{2} \stackrel{\epsilon}{\Rightarrow} E_{2}^{\prime} \Longrightarrow E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2}^{\prime}$, thus $E_{2}^{\prime}$ is a valid response required by observation congruence:


Lemma 3.7.2. If two processes $E$ and $E^{\prime}$ are observation congruence, then for any weak transition coming from $E$, there's a corresponding weak transition from $E^{\prime}$, and the resulting two subprocesses are weakly equivalent:

$$
\vdash E \approx^{c} E^{\prime} \Longrightarrow \forall u E_{1} . E=u \Rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=u \Rightarrow E_{2} \wedge E_{1} \approx E_{2}
$$

Proof. (sketch Consider the two cases when the action is $\tau$ or not $\tau$. For all weak $\tau$ transitions coming from $E$, the observation congruence requires that there's at least one $\tau$ following $E^{\prime}$ and the resulting two sub-processes, say $E_{1}^{\prime}$ and $E_{2}$ are weak equivalence. Then the desired responses can be found by using a similar existence lemma for weak equivalence:


[^18]For all the non- $\tau$ weak transitions from $E$, the proof follows from previous lemma and a similar existence lemma for weak equivalence. The following figure is a sketch for the proof of this case:


In the previous figure, the existence of $E_{2}^{\prime}$ follows by previous lemma, the existence of $E_{2}^{\prime \prime}$ follows by the definition of weak equivalence, and the existence of $E_{2}^{\prime \prime \prime}$ follows by the next existence lemma of weak equivalence.

The existence lemma for weak equivalences that we mentioned in previous proof is the following one:

Lemma 3.7.3. EPS_TRANS_AUX:

```
\(\vdash E \stackrel{\epsilon}{\Rightarrow} E_{1} \Longrightarrow\)
 \(\forall W b s m E^{\prime}\).
 WEAK_BISIM Wbsm \(\wedge\) Wbsm \(E E^{\prime} \Longrightarrow \exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge\) Wbsm \(E_{1} E_{2}\)
```

Now we prove the transitivity of Observation Congruence $\left(\approx^{c}\right)$ :
Theorem 3.7.3. (Transitivity of Observation Congruence)

$$
\vdash E \approx^{c} E^{\prime} \wedge E^{\prime} \approx^{c} E^{\prime \prime} \Longrightarrow E \approx^{c} E^{\prime \prime}
$$

Proof. Suppose $E \approx^{c} E^{\prime}$ and $E^{\prime} \approx^{c} E^{\prime \prime}$, we're going to prove $E \approx^{c} E^{\prime \prime}$ by checking directly the definition of observation congruence.

For any $u$ and $E_{1}$ which satisfy $E-u \rightarrow E_{1}$, by definition of observation congruence, there exists $E_{2}$ such that $E^{\prime}=u \Rightarrow E_{2}$ with $E_{1} \approx E_{2}$. By above Lemma 2, there exists another $E_{3}$ such that $E^{\prime \prime}=u \Rightarrow E_{3}$ with $E_{2} \approx E_{3}$. By the already proven transitivity of weak equivalence, $E_{1} \approx E_{3}$, thus $E_{3}$ is the required process which satisfies the definition of observation congruence. This proves the first part. The other part is completely symmetric.


Then we have proved the congruence (substitutivity) of observational congruence under various CCS process operators:

Proposition 3.7.2. (The substitutivity of Observational Congruence)

1. Observation congruence is substitutive under the prefix operator:
```
OBS_CONGR_SUBST_PREFIX:
 \vdashE *}\mp@subsup{}{}{c}\mp@subsup{E}{}{\prime}\Longrightarrow\forallu.u..E \mp@subsup{\approx}{}{c}u..\mp@subsup{E}{}{\prime
```

2. Observation congruence is substitutive under binary summation:
```
OBS_CONGR_PRESD_BY_SUM
 \vdash E _ { 1 } \approx ^ { c } E _ { 1 } ^ { \prime } \wedge E _ { 2 } \approx ^ { c } E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } + E _ { 2 } \approx ^ { c } E _ { 1 } ^ { \prime } + E _ { 2 } ^ { \prime }
```

3. Observation congruence is preserved by parallel composition:
```
OBS_CONGR_PRESD_BY_PAR:
 \vdash E _ { 1 } \approx ^ { c } E _ { 1 } ^ { \prime } \wedge E _ { 2 } \approx ^ { c } E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } \| E _ { 2 } \approx ^ { c } E _ { 1 } ^ { \prime } \| E _ { 2 } ^ { \prime }
```

4. Observation congruence is substitutive under the restriction operator:
```
OBS_CONGR_SUBST_RESTR:
```


5. Observation congruence is substitutive under the relabeling operator:

```
OBS_CONGR_SUBST_RELAB:
 \vdash \mp@code { \vdash ~ * ~ } { } ^ { c } E ^ { \prime } \Longrightarrow \forall r f . ~ r e l a b ~ E ~ r f ~ * ~ c ~ r e l a b ~ E ' r f f
```

Finally, like the case for weak equivalence, we can easily prove the relationship between strong equivalence and observation congruence:

Theorem 3.7.4. (Strong equivalence implies observation congruence)

$$
\vdash E \sim E^{\prime} \Longrightarrow E \approx^{c} E^{\prime} \quad \text { [STRONG_IMP_OBS_CONGR] }
$$

With this result, all algebraic laws for observation congruence can be derived from the corresponding algebraic laws of strong equivalence. Here we omit these theorems, except for the following four $\tau$-laws:

Theorem 3.7.5. (The $\tau$-laws for observational congruence)

$$
\begin{aligned}
& \vdash u \ldots \tau \ldots E \approx^{c} u \ldots E \\
& \vdash E+\tau \ldots E \approx^{c} \tau \ldots E \\
& \vdash u \ldots\left(E+\tau \ldots E^{\prime}\right)+u \ldots E^{\prime} \approx^{c} u \ldots\left(E+\tau \ldots E^{\prime}\right) \\
& \vdash E+\tau \ldots\left(E^{\prime}+E\right) \approx^{c} \tau \ldots\left(E^{\prime}+E\right)
\end{aligned}
$$

### 3.8 Relationship between Weak Equivalence and Observational Congruence

The relationship between weak equivalence and observation congruence was an interesting research topic, and there're many deep lemmas related. In this project, we have proved two such deep lemmas. The first one is the following Deng Lemma (for weak bisimularity ${ }^{10}$ :

Theorem 3.8.1. (Deng lemma for weak bisimilarity) If $p \approx q$, then one of the following three cases holds:

1. $\exists p^{\prime}$ such that $p-\tau \rightarrow p^{\prime}$ and $p^{\prime} \approx q$, or
2. $\exists q^{\prime}$ such that $q-\tau \rightarrow q^{\prime}$ and $p \approx q^{\prime}$, or
3. $p \approx^{c} q$.

Formally:

$$
\begin{aligned}
& \vdash p \approx q \Longrightarrow \\
& \quad\left(\exists p^{\prime} \cdot p-\tau \rightarrow p^{\prime} \wedge p^{\prime} \approx q\right) \vee\left(\exists q^{\prime} \cdot q-\tau \rightarrow q^{\prime} \wedge p \approx q^{\prime}\right) \vee \\
& \quad p \approx^{c} q
\end{aligned}
$$

Proof. Actually there's no need to consider thee difference cases. Using the logical tautology $(\neg P \wedge \neg Q \Longrightarrow R) \Longrightarrow P \vee Q \vee R$, the theorem can be reduced to the following goal:

Prove $p \approx^{c} q$, with the following three assumptions:

1. $p \approx q$
2. $\neg \exists p^{\prime} . \quad p-\tau \rightarrow p^{\prime} \wedge p^{\prime} \approx q$
3. $\neg \exists q^{\prime} . \quad q-\tau \rightarrow q^{\prime} \wedge p \approx q^{\prime}$

Now we check the definition of observation congruence: for any transition from $p$, say $p-u \rightarrow E_{1}$, consider the cases when $u=\tau$ and $u \neq \tau$ :

1. If $u=\tau$, then by $p \approx q$ and the definition of weak equivalence, there exists $E_{2}$ such that $q \stackrel{\epsilon}{\Rightarrow} E_{2}$ and $E_{1} \approx E_{2}$. But by assumption we know $q \neq E 2$, thus $q \stackrel{\epsilon}{\Rightarrow} E_{2}$ contains at least one $\tau$-transition, thus is actually $q=\tau \Rightarrow E_{2}$, which is required by the definition of observation congruence for $p \approx q$.


[^19]2. If $u=L$, then the requirement of observation congruence is directly satisfied.

The other direction is completely symmetric.

Now we prove the famous Hennessy Lemma:
Theorem 3.8.2. (Hennessy Lemma) For any processes $p$ and $q, p \approx q$ if and only if $\left(p \approx^{c} q\right.$ or $p \approx^{c} \tau \ldots q$ or $\left.\tau \ldots p \approx^{c} q\right)$ :

$$
\vdash p \approx q \Longleftrightarrow p \approx^{c} q \vee p \approx^{c} \tau \ldots q \vee \tau \ldots p \approx^{c} q
$$

[HENNESSY_LEMMA]
Proof. The "if" part (from right to left) can be easily derived by applying:

- OBS_CONGR_IMP_WEAK_EQUIV,
- TAU_WEAK,
- WEAK_EQUIV_SYM, and
- WEAK_EQUIV_TRANS

We'll focus on the hard "only if" part (from left to right). The proof represent here is slightly simplier than the one in [4], but the idea is the same. The proof is based on creative case analysis:

1. If there exists an $E$ such that $p-\tau \rightarrow E \wedge E \approx q$, we can prove $p \approx^{c} \tau \ldots q$ by expanding $p \approx q$ by WEAK_PROPERTY_STAR. The other needed theorems are the definition of weak transition, EPS_REFL, SOS rule PREFIX and TRANS_PREFIX, TAU_PREFIX_WEAK_TRANS and TRANS_IMP_WEAK_TRANS.
2. If there's no $E$ such that $p-\tau \rightarrow E \wedge E \approx q$, we can further check if there exist an $E$ such that $q-\tau \rightarrow E \wedge p \approx E$, and in this case we can prove $\tau \ldots p \approx^{c} q$ in the same way as the above case.
3. Otherwise we got exactly the same condition as in Deng Lemma (after the initial goal reduced in the previous proof), and in this case we can directly prove that $p \approx^{c} q$.

This formal proof has basically shown that, for most informal proofs in Concurrency Theory which doesn't depend on external mathematics theories, the author has got the ability to express it in HOL theorem prover.

### 3.9 The theory of (pre)congruence

One of the highlight of this project is the formal proofs for various versions of the "coarsest congruence contained in weak equivalence",

Proposition 3.9.1. (Coarsest congruence contained in $\approx$ ) For any processes $p$ and $q$, we have $p \approx^{c} q$ if and only if $\forall r . p+r \approx q+r$.

At first glance, the name of above theorem doesn't make much sense. To see the nature of above theorem more clearly, here we represent a rather complete theory about the congruence of CCS. It's based on contents from [21].

To formalize the concept of congruence, we need to define "semantic context" first. There're multiple solutions, here we have chosen a simple solution based on $\lambda$-calculus:

Definition 3.9.1. (Semantic context of CCS) The semantic context (or one-hole context) of CCS is a function $C[\cdot]$ of type " $(\alpha, \beta)$ context" recursively defined by following rules:

```
CONTEXT (}\lambdat.t
CONTEXT (}\lambdat.p
CONTEXT e \Longrightarrow CONTEXT (}\lambdat.a..e t
CONTEXT }\mp@subsup{e}{1}{}\wedge\mathrm{ CONTEXT }\mp@subsup{e}{2}{}\Longrightarrow\mathrm{ CONTEXT (}\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t\mathrm{)
CONTEXT e}\mp@subsup{e}{1}{}\wedge CONTEXT e e C CONTEXT (\lambdat. e e t t| e e t
CONTEXT e \Longrightarrow CONTEXT (}\lambdat.\nuL(et)
CONTEXT e\Longrightarrow CONTEXT (}\lambdat\mathrm{ . relab (e t) rf) [CONTEXT_rules]
```

By repeatedly applying above rules, one can imagine that, any CCS term with zero or more "holes" at any depth, becomes a $\lambda$-function, and by calling the function with another CCS term, the holes were filled by that term.

The notable property of semantic context is that, the functional combination of two contexts is still a context:

Proposition 3.9.2. (The combination of one-hole contexts) If both $c_{1}$ and $c_{2}$ are two semantic contexts, then $c_{1} \circ c_{2}{ }^{11}$ is still a one-hole context:

CONTEXT_combin:
$\vdash$ CONTEXT $c_{1} \wedge$ CONTEXT $c_{2} \Longrightarrow$ CONTEXT $\left(c_{1} \circ c_{2}\right)$
Proof. By induction on the first context $c_{1}$.
Now we're ready to define the concept of congruence (for CCS):
Definition 3.9.2. (Congruence of CCS) An equivalence relation $\approx^{12}$ on a specific space of CCS processes is a congruence iff for every $n$-ary operator $f$, one has $g_{1} \approx h_{1} \wedge \cdots g_{n} \approx h_{n} \Rightarrow f\left(g_{1}, \ldots, g_{n}\right) \approx f\left(h_{1}, \ldots, h_{n}\right.$. This is the case iff for every semantic context $C[\cdot]$ on has $g \approx h \Rightarrow C[g] \approx C[h]$ :
${ }^{11}\left(c_{1} \circ c_{2}\right) t:=c_{1}\left(c_{2} t\right)$.
${ }^{12}$ The symbol $\approx$ here shouldn't be understood as weak equivalence.

```
congruence_def:
congruence }R\Longleftrightarrow\mathrm{ equivalence }R\wedge\mathrm{ precongruence }
```

If we remove the requirement that the relation must be equivalence, we got a similar definition of pre-congruence:
precongruence_def:
precongruence $R \Longleftrightarrow$
$\forall x y$ ctx. CONTEXT ctx $\Longrightarrow R x y=R$ (ctx $x$ ) ( $\operatorname{ctx} y$ )
We can easily prove that, strong equivalence and observation congruence is indeed a congruence following above definition, using the substitutability and preserving properties of these relations:

Theorem 3.9.1. Strong Equivalence ( $\sim$ ) and Observation Congruence $\left(\approx^{C}\right)$ are both congruence according to the above definition:

STRONG_EQUIV_congruence:
$\vdash$ congruence STRONG_EQUIV
OBS_CONGR_congruence:
$\vdash$ congruence OBS_CONGR
For relations which is not congruence, it's possible to "convert" them into congruence:

Definition 3.9.3. (Constructing congruences from equivalence relation) Given an equivalence relation $\sim{ }^{13}$, define $\sim^{c}$ by:

CC $R=\left(\lambda g h . \forall c\right.$. CONTEXT $c \Longrightarrow R\left(\begin{array}{ll}c & \left.g)\left(\begin{array}{ll}c & h\end{array}\right)\right) ~\end{array}\right.$
This new operator on relations has the following three properties:
Proposition 3.9.3. For all equivalence relation $R, R^{c}$ is a congruence:
$\vdash$ equivalence $R \Longrightarrow$ congruence (CC $R$ )
[CC_congruence]
Proof. By construction, $\sim^{c}$ is a congruence. For if $g \sim^{c} h$ and $D[\cdot]$ is a semantic context, then for every semantic context $C[\cdot]$ also $C[D[\cdot]]$ is a semantic context, so $\forall C[\cdot] .(C[D[g]] \sim C[D[h]])$ and hence $D[g] \sim^{c} D[h]$.

Proposition 3.9.4. For all $R, R^{c}$ is finer than $R$ :
$\vdash \operatorname{CC} R \subseteq_{r} R$
[CC_is_finer]
Proof. The trivial context guarantees that $g \sim^{c} h \Rightarrow g \sim h$, so $\sim^{c}$ is finer than

[^20]Proposition 3.9.5. For all $R, R^{c}$ is the coarsest congruence finer than $R$, that is, for any other congruence finer than $R$, it's finer than $R^{c}$ :

$$
\vdash \text { congruence } R^{\prime} \wedge R^{\prime} \subseteq_{r} R \Longrightarrow R^{\prime} \subseteq_{r} \text { CC } R
$$

[CC_is_coarsest]

Proof. If $\approx$ is any congruence finer than $\sim$, then

$$
\begin{equation*}
g \approx h \Rightarrow \forall C[\cdot] .(C[g] \approx C[h]) \Rightarrow \forall C[\cdot] .(C[g] \sim C[h]) \Rightarrow g \sim^{c} h \tag{3.2}
\end{equation*}
$$

Thus $\approx$ is finer than $\sim^{c}$. (i.e. $\sim^{c}$ is coarser than $\approx$, then the arbitrariness of $\approx$ implies that $\sim^{c}$ is coarsest.)

As we know weak equivalence is not a congruence, and one way to " fix " it, is to use observation congruence which is based on weak equivalence but have special treatments on the first transitions. The other way is to build a congruence from existing weak equivalence relation, using above approach based on one-hole contexts. Such a congruence has a new name:

Definition 3.9.4. (Weak bisimulation congruence) The coarsest congruence that is finer than weak bisimulation equivalence is called weak bisimulation congruence (notation: $\sim_{w}^{c}$ ):
$\vdash$ WEAK_CONGR = CC WEAK_EQUIV
[WEAK_CONGR]
or
WEAK_CONGR_THM:
$\vdash$ WEAK_CONGR $=(\lambda g h . \forall c . \operatorname{CONTEXT} c \Longrightarrow c g \approx c h)$
So far, the weak bisimulation congruence $\sim_{w}^{c}$ defined above is irrelevant with rooted weak bisimulation (a.k.a. observation congruence) $\approx^{c}$, which has the following standard definition also based on weak equivalence:

## OBS_CONGR:

```
\(\vdash E \approx^{c} E^{\prime} \Longleftrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=u \Rightarrow E_{2} \wedge E_{1} \approx E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge E_{1} \approx E_{2}\)
```

But since observational congruence is congruence, it must be finer than weak bisimulation congruence:

Lemma 3.9.1. Observational congruence implies weak bisimulation congruence:
OBS_CONGR_IMP_WEAK_CONGR:
$\vdash p \approx^{c} q \Longrightarrow$ WEAK_CONGR $p q$
On the other side, by consider the trivial context and sum contexts in the definition of weak bisimulation congruence, we can easily prove the following result:

Lemma 3.9.2. Weak bisimulation congruence implies sum equivalence:

```
WEAK_CONGR_IMP_SUM_EQUIV:
 \vdash \mp@code { W E A K _ C O N G R ~ p ~ q ~ \Longrightarrow ~ S U M _ E Q U I V ~ p ~ q }
```

Noticed that, in above theorem, the sum operator can be replaced by any other operator in CCS, but we know sum is special because it's the only operator in which the weak equivalence is not preserved after substitutions.

From above two lemmas, we can easily see that, weak equivalence is between the observation congruence and an unnamed relation $\{(p, q): \forall r . p+r \approx q+r\}$ (we can temporarily call it "sum equivalence", because we don't if it's a congruence, or even if it's contained in weak equivalence). If we could further prove that "sum equivalence" is finer than observation congruence, then all three congruences (observation congruence, weak equivalence and the "sum equivalence" must all coincide, as illustrated in the following figure:


This is why the proposition at the beginning of this section is called "coarsest congruence contained in weak equivalence", it's actually trying to prove that the "sum equivalence" is finer than "observation congruence" therefore makes "weak bisimulation congruence" $\left(\sim_{w}^{c}\right)$ coincide with "observation congruence" $\left(\approx^{c}\right)$.

### 3.10 Coarsest congruence contained in $\approx$

The easy part (left $\Longrightarrow$ right) is already proven in previous section by combining

- OBS_CONGR_IMP_WEAK_CONGR, and
- WEAK_CONGR_IMP_SUM_EQUIV,
or it can be proved directly, using:
- OBS_CONGR_IMP_WEAK_EQUIV, and
- OBS_CONGR_SUBST_SUM_R

Theorem 3.10.1. (The easy part "Coarsest congruence contained in $\approx$ ")

$$
\vdash p \approx^{c} q \Longrightarrow \forall r \cdot p+r \approx q+r
$$

[COARSEST_CONGR_LR]
Thus we only focus on the hard part (right $\Longrightarrow$ left) in the rest of this section.

### 3.10.1 With classical cardinality assumptions

A classic restriction is to assume cardinality limitations on the two processes, so that didn't use up all possible labels. Sometimes this assumption is automatically satisfied, for example: the CCS is finitrary and the set of all actions is infinite. But in our setting, the CCS datatype contains twi type variables, and if the set of all possible labels has only finite cardinalities, this assumtion may not be satisfied.

In 2 (Proposition 3 in Chapter 7, p. 153), Robin Milner simply calls this important theorem as "Proposition 3":

Proposition 3.10.1. (Proposition 3 of observation congruence) Assume that $\mathcal{L}(P) \cup$ $\mathcal{L}(Q) \neq \mathcal{L}$. Then $P \approx^{c} Q$ iff, for all $R, P+R \approx Q+R$.

And in [4] (Theorem 4.5 in Chapter 4, p. 185), Prof. Roberto Gorrieri calls it "Coarsest congruence contained in $\approx$ " (so did us in this paper):

Theorem 3.10.2. (Coarsest congruence contained in $\approx)$ Assume that $\operatorname{fn}(p) \cup f n(q) \neq$ $\mathscr{L}$. Then $p \approx^{c} q$ if and only if $p+r \approx q+r$ for all $r \in \mathscr{P}$.

Both $\mathcal{L}(\cdot)$ and $\mathrm{fn}(\cdot)$ used in above theorems mean the set of "non- $\tau$ actions" (i.e. labels) used in a given process.

We analyzed the proof of above theorem and have found that, the assumption that the two processes didn't use up all available labels. Instead, it can be weakened to the following stronger version, which assumes the following properties instead:

Definition 3.10.1. (Processes having free actions) A CCS process is said to have free actions if there exists an non- $\tau$ action such that it doesn't appear in any transition or weak transition directly leading from the root of the process:

```
free_action_def:
 \vdash ~ f r e e \& a c t i o n ~ p \Longleftrightarrow \exists a . ~ \forall ~ p ' . ~ \neg (p = l a b e l ~ a \Rightarrow ~ p ')
```

Theorem 3.10.3. (Stronger version of "Coarsest congruence contained in $\approx$ ", only the hard part) Assuming for two processes $p$ and $q$ have free actions, then $p \approx^{c} q$ if $p+r \approx q+r$ for all $r \in \mathscr{P}:$

COARSEST_CONGR_RL:
$\vdash$ free_action $p \wedge$ free_action $q \Longrightarrow(\forall r . p+r \approx q+r) \Longrightarrow p \approx^{c} q$
This new assumption is weaker because, even $p$ and $q$ may have used all possible actions in their transition graphs, as long as there's one such free action for their first-step weak transitions, therefore the theorem still holds. Also noticed that, the two processes do not have to share the same free actions, this property focuses on single process.

Proof. (Proof of the stronger version of "Coarsest congruence contained in $\approx$ ") The kernel idea in this proof is to use that free action, say $a$, and have $p+a .0 \approx q+a .0$ as the working basis. Then for any transition from $p+a .0$, say $p+a .0 \xlongequal{u} E_{1}$, there must be a weak transition of the same action $u$ (or EPS when $u=\tau$ ) coming from
$q+a .0$ as the response. We're going to use the free-action assumptions to conclude that, when $u=\tau$, that EPS must contain at least one $\tau$ (thus satisfied the definition of observation congruence):


Indeed, if the EPS leading from $q+a .0$ actually contains no $\tau$-transition, that is, $q+a .0=E_{2}$, then $E_{1}$ and $E_{2}$ cannot be weak equivalence: for any $a$-transition from $q+a .0, E 1$ must response with a weak $a$-transition as $E_{1} \xlongequal{a} E_{1}^{\prime}$, but this means $p \stackrel{a}{\Longrightarrow} E_{1}^{\prime}$, which is impossible by free-action assumption on $p$ :


Once we have $q+a .0 \xlongequal{\tau} E 2$, the first $\tau$-transition must comes from $q$, then it's obvious to see that $E_{2}$ is a valid response required by observation congruence of $p$ and $q$ in this case.

When $p \xrightarrow{L} E_{1}$, we have $p+a .0 \xrightarrow{L} E_{1}$, then there's an $E_{2}$ such that $q+a .0 \stackrel{L}{\longrightarrow}$ $E_{2}$. We can further conclude that $q \stackrel{L}{\Longrightarrow} E_{2}$ because by free-action assumption $L \neq a$. This finishes the first half of the proof, the second half (for all transition coming from $q$ ) is completely symmetric.

Combining the easy and hard parts, the following theorem is proved:
Theorem 3.10.4. (Coarsest congruence contained in $\approx$ )
COARSEST_CONGR_THM:
$\vdash$ free_action $p \wedge$ free_action $q \Longrightarrow\left(p \approx^{c} q \Longleftrightarrow \forall r . p+r \approx q+r\right)$

### 3.10.2 Without cardinality assumptions

In 2005, Rob J. van Glabbeek published a paper [21] showing that "the weak bisimulation congruence can be characterized as rooted weak bisimulation equivalence, even without making assumptions on the cardinality of the sets of states or actions of the process under consideration". That is to say, above "Coarsest congruence contained in $\approx$ " theorem holds even for two arbitrary processes! The idea is actually from Jan Willem Klop back to the 80s, but it's not published until that 2005 paper. This proof is not known to Robin Milner in [2]. The author carefully investigated this paper and formalized the proof in it.

The main result is the following version of the hard part of "Coarsest congruence contained in $\approx "$ theorem under new assumptions:
Theorem 3.10.5. (Coarsest congruence contained in $\approx$, new assumptions) For any two CCS processes $p$ and $q$, if there exists another stable (i.e. first-step transitions are never $\tau$-transition) process $k$ which is not weak bisimlar with any sub-process follows from $p$ and $q$ by one-step weak transitions, then $p \approx^{c} q$ if $p+r \approx q+r$ for all $r \in \mathscr{P}$.
$\vdash(\exists k$.
STABLE $k \wedge\left(\forall p^{\prime} u \cdot p=u \Rightarrow p^{\prime} \Longrightarrow \neg\left(p^{\prime} \approx k\right)\right) \wedge$ $\left.\forall q^{\prime} \quad u \cdot q=u \Rightarrow q^{\prime} \Longrightarrow \neg\left(q^{\prime} \approx k\right)\right) \Longrightarrow$
$(\forall r . p+r \approx q+r) \Longrightarrow$
$p \approx^{c} q$
Proof. Assuming the existence of that special process $k$, and take an arbitrary non- $\tau$ action, say $a$ (this is always possible in our setting, because in higher order logic any valid type must contain at least one value), we'll use the fact that $p+a . k \approx q+a . k$ as our working basis. For all transitions from $p$, say $p \xrightarrow{u} E_{1}$, we're going to prove that, there must be a corresponding weak transition such that $q \xlongequal{u} E_{2}$, and $E_{1} \approx E_{2}$ (thus $p \approx^{c} q$. There're three cases to consider:

1. $\tau$-transitions: $p \xrightarrow{\tau} E_{1}$. By SOS rule $\left(\operatorname{Sum}_{1}\right)$, we have $p+a . k \xrightarrow{\tau} E_{1}$, now by $p+a . k \approx q+a . k$ and the property $\left(^{*}\right)$ of weak equivalence, there exists an $E_{2}$ such that $q+a . k \xlongequal{\epsilon} E_{2}$. We can use the property of $k$ to assert that, such an EPS transition must contains at least one $\tau$-transition. Because if it's not, then $q+a . k=E_{2}$, and since $E_{1} \approx E_{2}$, for transition $q+a . k \xrightarrow{a} k, E_{1}$ must make a response by $E_{1} \stackrel{a}{\Longrightarrow} E_{1}^{\prime}$, and as the result we have $p \xrightarrow{a} E_{1}^{\prime}$ and $E_{1}^{\prime} \approx k$, which is impossible by the special choice of $k$ :

2. If there's a $a$-transition coming from $p$ (means that the arbitrary chosen action $a$ is normally used by processes $p$ and $q$ ), that is, $p \xrightarrow{a} E_{1}$, also $p+a . k \xrightarrow{a} E_{1}$, by property $\left(^{*}\right)$ of weak equivalence, there exists $E_{2}$ such that $q+a . k \xlongequal{a} E_{2}$ :


We must further divide this weak transition into two cases based on its first step:
(a) If the first step is a $\tau$-transition, then for sure this entire weak transition must come from $q$ (otherwise the first step would be an $a$-transition from $a . k)$. And in this case we can easily conclude $q \xlongequal{a} E_{2}$ without using the property of $k$ :

(b) If the first step is an $a$-transition, we can prove that, this $a$-transition must come from $h$ (then the proof finishes for the entire $a$-transition case). Because if it's from the $a . k$, since $k$ is stable, then there's no other coice but $E_{2}=k$ and $E_{1} \approx E_{2}$. This is again impossible for the special choice of $k$ :

3. For other $L$-transitions coming from $p$, where $L \neq a$ and $L \neq \tau$. As a response to $p+a . k \xrightarrow{L} E_{1}$, we have $q+a . k \xrightarrow{L} E_{2}$ and $E_{1} \approx E_{2}$. It's obvious that $q \stackrel{L}{\Longrightarrow} E_{2}$ in this case, no matter what the first step is (it can only be $\tau$ and $L)$ and this satisfies the requirement of observation congruence natually:


The other direction (for all transitions coming from $q$ ) is completely symmetric. Combining all the cases, we have $p \approx^{c} q$.

Now it remains to prove the existence of the special process mentioned in the assumption of above theorem.

### 3.10.3 Arbitrary many non-bisimilar processes

Strong equivalence, weak equivalence, observation congruence, they're all equivalence relations on CCS process space. General speaking, each equivalence relation
must have partitioned all processes into several disjoint equivalence classes: processes in the same equivalence class are equivalent, and processes in different equivalence class are not equivalent.

The assumption in previous Theorem 3.10.5 requires the existence of a special CCS process, which is not weak equivalence to any sub-process leading from the two root processes by weak transitions. On worst cases, there may be infinite such subprocesses $\int^{[14}$ Thus there's no essential differences to consider all states in the process group instead.

Then it's natural to ask if there are infinite equivalence classes of CCS processes. If so, then it should be possible to choose one which is not equivalent with all the (finite) states in the graphs of the two given processes. It turns out that, after Jan Willem Klop, it's possible to construct such processes, in which each of them forms a new equivalence class, we call them "Klop processes" in this paper:

Definition 3.10.2. (Klop processes) For each ordinal $\lambda$, and an arbitrary chosen non- $\tau$ action $a$, define a CCS process $k_{\lambda}$ as follows:

1. $k_{0}=0$,
2. $k_{\lambda+1}=k_{\lambda}+a . k_{\lambda}$ and
3. for $\lambda$ a limit ordinal, $k_{\lambda}=\sum_{\mu<\lambda} k_{\mu}$, meaning that $k_{\lambda}$ is constructed from all graphs $k_{\mu}$ for $\mu<\lambda$ by identifying their root.

Unfortunately, it's impossible to express infinite sums in our CCS datatype setting ${ }^{15}$ without introducing new axioms. Therefore we have followed a two-step approach in this project: first we consider only the finite-state CCS (no need for axioms), then we turn to the general case.

### 3.10.4 Finite-state CCS

If both processes $p$ and $q$ are finite-state CCS processes, that is, the number of reachable states from $p$ and $q$ are both finite. And in this case, the following limited version of Klop processes can be defined as a recursive function (on natural numbers) in HOL4:

Definition 3.10.3. (Klop processes as recursive function on natural numbers)

```
KLOP a 0 = nil
KLOP a (SUC n) = KLOP a n + label a..KLOP a n [KLOP_def]
```

By induction on the definition of Klop processes and SOS inference rules ( $\mathrm{Sum}_{1}$ ) and ( $\mathrm{Sum}_{2}$ ), we can easily prove the following properties of Klop functions:

[^21]Proposition 3.10.2. (Properties of Klop functions and processes)

1. All Klop processes are stable:
$\vdash \operatorname{STABLE}(\operatorname{KLOP} a n)$
[KLOP_PROPO]
2. All transitions of a Klop process must lead to another smaller Klop process, and any smaller Klop process must be a possible transition of a larger Klop process:
[KLOP_PROP1]
$\vdash \operatorname{KLOP} a n$-label $a \rightarrow E \Longleftrightarrow \exists m . m<n \wedge(E=\operatorname{KLOP} a m)$
3. The weak transition version of above property:
[KLOP_PROP1']
$\vdash \operatorname{KLOP} a n=$ label $a \Rightarrow E \Longleftrightarrow \exists m . m<n \wedge(E=\operatorname{KLOP} a m)$
4. All Klop processes are distinct according to strong equivalence:
$\vdash m<n \Longrightarrow \neg(\operatorname{KLOP} a m \sim \operatorname{KLOP} a n)$
[KLOP_PROP2]
5. All Klop processes are distinct according to weak equivalence:
$\vdash m<n \Longrightarrow \neg(\operatorname{KLOP} a m \approx \operatorname{KLOP} a n)$
[KLOP_PROP2']
6. Klop functions are one-one:
$\vdash$ ONE_ONE (KLOP a) KLOP_ONE_ONE
Once we have a recursive function defined on all natural numbers $0,1, \ldots$, we can map them into a set containing all these Klop processes, and the set is countable infinite. On the other side, the number of all states coming from two finite-state CCS processes $p$ and $q$ is finite. Choosing from an infinite set for an element distinct with any subprocess leading from $p$ and $q$, is always possible. This result is purely mathematical, completely falling into basic set theory:

Lemma 3.10.1. Given an equivalence relation $R$ defined on a type, and two sets $A, B$ of elements in this type, $A$ is finite, $B$ is infinite, and all elements in $B$ are not equivalent, then there exists an element $k$ in $B$ which is not equivalent with any element in $A$ :

```
\vdash ~ e q u i v a l e n c e ~ R \Longrightarrow
 FINITE }A\wedge\mathrm{ INFINITE }B
 (\forallx y. x \in B ^ y \in B^ 人 f=y\Longrightarrow 驴 x y) \Longrightarrow
 \existsk. k\inB\wedge\foralln. n\inA\Longrightarrow\negR n k
```

                        [INFINITE_EXISTS_LEMMA]
    Proof. We built an explicit mapping $f$ from $A$ to $B{ }^{16}$, for all $x \in A, y=f(x)$ if $y \in B$ and $y$ is equivalent with $x$. But it's possible that no element in $B$ is equivalent with $x$, and in this case we just choose an arbitrary element as $f(x)$. Such a mapping is to make sure the range of $f$ always fall into $B$.

Now we can map $A$ to a subset of $B$, say $B_{0}$, and the cardinality of $B_{0}$ must be equal or smaller than the cardinality of $A$, thus finite. Now we choose an element $k$ from the rest part of $B$, this element is the desire one, because for any element $x \in A$, if it's equivalent with $k$, consider two cases for $y=f(x) \in B_{0}$ :

1. $y$ is equivalent with $x$. In this case by transitivity of $R$, we have two distinct elements $y$ and $k$, one in $B_{0}$, the other in $B \backslash B_{0}$, they're equivalent. This violates the assumption that all elements in $B$ are distinct.
2. $y$ is arbitrary chosen because there's no equivalent element for $x$ in $B$. But we already know one: $k$.

Thus there's no element $x$ (in $A$ ) which is equivalent with $k$.
To reason about finite-state CCS, we also need to define the concept of "finitestate":

Definition 3.10.4. (Definitions related to finite-state CCS)

1. Define reachable as the RTC of a relation, which indicates the existence of a transition between two processes:

$$
\begin{equation*}
\text { Reach }=\left(\lambda E E^{\prime} \cdot \exists u \cdot E-u \rightarrow E^{\prime}\right)^{*} \tag{Reach_def}
\end{equation*}
$$

2. The "nodes" of a process is the set of all processes reachable from it:
```
FNODES }p={q| Reach p q}
```

[NODES_def]
3. A process is finite-state if the set of nodes is finite:

```
\vdash \mp@code { f i n i t e _ s t a t e ~ p \Longleftrightarrow ~ F I N I T E ~ (N O D E S ~ p) }
[finite_state_def]
```

Among many properties of above definitions, we mainly rely on the following "obvious" property on weak transitions:

Proposition 3.10.3. If $p$ weakly transit to $q$, then $q$ must be in the node set of $p$ :
$\vdash p=u \Rightarrow q \Longrightarrow q \in \operatorname{NODES} p$
[WEAK_TRANS_IN_NODES]

[^22]Using all above results, now we can easily prove the following finite version of "Klop lemma":

Lemma 3.10.2. (Klop lemma, the finite version) For any two finite-state CCS p and $q$, there exists another process $k$, which is not weak equivalent with any subprocess weakly transited from $p$ and $q$ :

```
KLOP_LEMMA_FINITE:
 \vdash}\forallpq
 finite_state p ^ finite_state q\Longrightarrow
 \exists
 STABLE k}\wedge(\forall\mp@subsup{p}{}{\prime}u.p=u=>\mp@subsup{p}{}{\prime}\Longrightarrow\neg(\mp@subsup{p}{}{\prime}\approxk))
 \forall\mp@subsup{q}{}{\prime}}u.q=u=>\mp@subsup{q}{}{\prime}\Longrightarrow\neg(\mp@subsup{q}{}{\prime}\approxk
```

Combining above lemma with Theorem 3.10.5 and Theorem 3.10.1, we can easily prove the following theorem for finite-state CCS:

Theorem 3.10.6. (Coarsest congruence contained in $\approx$ for finite-state CCS)

```
\vdash ~ f i n i t e \& s t a t e ~ p \wedge ~ f i n i t e \& s t a t e ~ q \Longrightarrow ~
 (p *
```

[COARSEST_CONGR_FINITE]

### 3.10.5 Finitary CCS and general cases

For Finitrary CCS with potential infinite states, the proof of "Coarsest congruence contained in $\approx "$ is currently not known. Currently we tend to believe the proof doesn't exist, i.e. Observational Congruence may not be the coarsest congruence contained in weak equivalence if Finitary CCS is considered.

For more general cases in which CCS's sum operator is allowed to take infinite (not only countable but also arbitrary largee) number of processes. The proof of "Coarsest congruence contained in $\approx$ ", according to Rob J. van Glabbeek's paper [21], indeed exists. However, this proof involves arbitrary large ordinals which is not supported in Higher Order Logic (not the software, but the logic itself).

The limitation also happens in HOL's datatype package: infinite sums are not directly supported. However, if we're allowed to add one axiom to enable infinite sums of CCS processes without touching the existing CCS datatype definition, we can actually precisely formalize the proof with the same steps as in [21]. For such a work, please refer to the author's "internship" project report [22] with proof scripts available at ${ }^{17}$. This work is not included into this thesis simply because an axiom is introduced, which may potentially break the consistency of HOL.

[^23]
## Chapter 4

## A Formalization of "bisimulation up to"

"Bisimulation up to" is a powerful proof technique for proving many difficult results in process algebra. Generally speaking, it's a technique for reducing the size of the relation needed to define a bisimulation. By definition, two processes are bisimilar if there exists a bisimulation relation containing them as a pair. However, in practice this definition is hardly ever followed plainly; instead, to reduce the size of the relations exhibited one prefers to define relations which are bisimulations only when closed up under some specific and priviledged relation, so to relieve the proof work needed. We call this an "up-to" technique. It is a pretty general device which allows a great variety of prssibilities.

According to [23], the variety of the up-to techniques is useful because it allows us each time to make the most convenient choice, depending upon the equilibrium we want between the size of the relation to exhibit and the fineness of the closure relation(s).

In this thesis project, we have basically followed the path of Robin Milner, by using "Bisimulaition up to strong equivalence" to prove the "Unique solutions of equations" theorem (for the strong equivalence case). But all the rest versions of "Unique solutions of equations" theorems didn't use any "Bisimulation up to" techniques. This is mostly because the errors in the original version of Milner's 1989 book [2], which has lead to the failures when applying "Weak bisimulation up to" techniques in the proof of unique solutions theorem. Instead, in next chapter we'll present new proofs, which is slightly longer than the version in Milner's book, but has no dependencies on any "Bisimulation up to" techniques, therefore the overall proof size is smaller. In this chapter, we have still formalized all versions of "Bisimulation up to" mentioned in Milner's book, its errata, and [23], plus one more variants for observational congruence (but it's too restrictive for proving the corresponding unique solutions theorem).

### 4.1 Bisimulation up to $\sim$

Following [2], the concept of "Bisimulation up to $\sim$ " starts with a generalization of the notion of strong bisimulation, which is often more useful in applications. The following definition and proposition put the idea on a firm basis. Henceforward we shall oftern write $P \mathcal{R} Q$ to mean $(P, Q) \in \mathcal{R}$, for any binary relation $\mathcal{R}$. Note also that $\sim \mathcal{S} \sim$ is a composition of binary relations, so that $P \sim \mathcal{S} \sim Q$ means that for some $P^{\prime}$ and $Q^{\prime}$ we have $P \sim P^{\prime}, P^{\prime} \mathcal{S} Q^{\prime}$ and $Q^{\prime} \sim Q$.

Definition 4.1.1. (Bisimulation up to $\sim) \mathcal{S}$ is a "bisimulation up to $\sim$ " if $P S Q$ implies, for all $\alpha \in$ Act,

1. Whenever $P \xrightarrow{\alpha} P^{\prime}$ then, for some $Q^{\prime}, Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim \mathcal{S} \sim Q^{\prime}$,
2. Whenever $Q \xrightarrow{\alpha} Q^{\prime}$ then, for some $P^{\prime}, P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \sim \mathcal{S} \sim Q^{\prime}$.

Or formally,
STRONG_BISIM_UPTO:
$\vdash$ STRONG_BISIM_UPTO Bsm $\Longleftrightarrow$
$\forall E E^{\prime}$.
Bsm E $E^{\prime} \Longrightarrow$
$\forall u$.
$\left(\forall E_{1}\right.$.
$E-u \rightarrow E_{1} \Longrightarrow$
$\exists E_{2}$.
$E^{\prime}-u \rightarrow E_{2} \wedge$
(STRONG_EQUIV $\circ_{r} B s m \circ_{r}$ STRONG_EQUIV) $E_{1} E_{2}$ ) ^
$\forall E_{2}$.

```
 \(E^{\prime}-u \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\).
 \(E-u \rightarrow E_{1} \wedge\) (STRONG_EQUIV \(\circ_{r} B s m \circ_{r}\) STRONG_EQUIV) \(E_{1} E_{2}\)
```

Pictorially, clause (1) says that if $P S Q$ and $P{ }^{\alpha \prime}$ then we can fill in the following diagram:

"Bisimulation up to $\sim$ " has the following basic properties:
Proposition 4.1.1. Properties of "strong bisimulation up to $\sim$ "

1. Identity relation is a "strong bisimulation up to $\sim$ ":
2. The converse of a "strong bisimulation up to $\sim$ " is still "strong bisimulation up to $\sim$ ":

CONVERSE_STRONG_BISIM_UPTO:
$\vdash$ STRONG_BISIM_UPTO Wbsm $\Longrightarrow$ STRONG_BISIM_UPTO $\mathrm{Wbsm}{ }^{T}$

And we have proved the following lemma, which establishes the relationship between "strong bisimulation up to $\sim$ " and "strong bisimulation":

Lemma 4.1.1. If $\mathcal{S}$ is a "bisimulation up to $\sim$ ", then $\sim \mathcal{S} \sim$ is a strong bisimulation:

```
STRONG_BISIM_UPTO_LEMMA:
```

    \(\vdash\) STRONG_BISIM_UPTO Bsm \(\Longrightarrow\)
    STRONG_BISIM (STRONG_EQUIV \(\circ_{r} B s m \circ_{r}\) STRONG_EQUIV)
    Proof. The idea is to fix two process $E$ and $E^{\prime}$, which satisfies $E \sim \circ B s m \circ E^{\prime}$, then check it for the definition of strong bisimulation: for all $E_{1}$ such that $E-u \rightarrow E_{1}$, there exists $E_{2}^{\prime \prime}$ such that $E^{\prime}-u \rightarrow E_{2}^{\prime \prime}$ (the other side is totally symmetric), as shown in the following graph:


During the proof, needed lemmas are the definition of "bisimulation up to $\sim$ " (for expanding " $y^{\prime} \operatorname{Bsm} y$ " into " $E_{2} \sim y^{\prime \prime \prime} \operatorname{Bsm} y^{\prime \prime} \sim E_{2}^{\prime}$ "), plus the property $\left(^{*}\right)$ and transitivity of strong equivalence.

Based on above lemma, we then easily proved the following proposition:
Theorem 4.1.1. If $\mathcal{S}$ is a "bisimulation up to $\sim$ ", then $\mathcal{S} \subseteq \sim$ :
STRONG_BISIM_UPTO_THM:
$\vdash$ STRONG_BISIM_UPTO $B s m \Longrightarrow B s m ~ \subseteq_{r}$ STRONG_EQUIV
Hence, to prove $P \sim Q$, we only have to find a strong bisimulation up to $\sim$ which contains $(P, Q)$.

### 4.2 Bisimulation up to $\approx$

The concept of bisimulation up to $\approx$ is a modified version of Milner's original definition presented in modern textbooks and originally in [23].

Definition 4.2.1. (Bisimulation up to $\approx) \mathcal{S}$ is a "bisimulation up to $\approx$ " if $P S Q$ implies, for all $\alpha \in$ Act,

1. Whenever $P \xrightarrow{\alpha} P^{\prime}$ then, for some $Q^{\prime}, Q \xrightarrow{\hat{\alpha}} Q^{\prime}$ and $P^{\prime} \sim \mathcal{S} \approx Q^{\prime}$,
2. Whenever $Q \xrightarrow{\alpha} Q^{\prime}$ then, for some $P^{\prime}, P \xrightarrow{\hat{\alpha}} P^{\prime}$ and $P^{\prime} \approx \mathcal{S} \sim Q^{\prime}$.

Or formally,

```
WEAK_BISIM_UPTO:
 \(\vdash\) WEAK_BISIM_UPTO Wbsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Wbsm \(E E^{\prime} \Longrightarrow\)
 (\(\forall\) l.
 \(\left(\forall E_{1}\right.\).
 \(E\)-label \(l \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) STRONG_EQUIV) \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}\)-label \(l \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\).
 \(E=\) label \(l \Rightarrow E_{1} \wedge\)
 (STRONG_EQUIV \(\circ_{r} W b s m \circ_{r}\) WEAK_EQUIV) \(\left.E_{1} E_{2}\right) \wedge\)
 \(\left(\forall E_{1}\right.\).
 \(E-\tau \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge\) (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) STRONG_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge\) (STRONG_EQUIV \(\circ_{r}\) Wbsm \(\circ_{r}\) WEAK_EQUIV) \(E_{1} E_{2}\)
```

A few things must be noticed:

1. In HOL4, the big "O" notion as relation composition has different orders with usual Math notion: the right-most relation takes the input argument first, which is actually the case for function composition: $(f \circ g)(x)=f(g(x))$. Thus in all HOL-generated terms like
(WEAK_EQUIV $\circ_{r}$ Wbsm $\circ_{r}$ STRONG_EQUIV) $E_{1} E_{2}$
in this paper, it should be understood like " $E_{1} \sim y \mathrm{Wbsm} y^{\prime} \approx E_{2}$ ". (There was no such issues for the strong bisimulation cases, because we had $\sim$ on both side)
2. The original definition in Milner's book [2], in which he used $\approx \mathcal{S} \approx$ in all places in above definition, has been found (by his student, now Prof. Davide Sangiogi) as problematic. The reason has been explained in Gorrieri's book [4] (page 65), that the resulting relation may not be a subset of $\approx$ ! Thus we have used the definition from Gorrieri's book, with the definition in Sangiorgi's book [18] (page 115) doubly confirmed.
3. Some authors (e.g. Prof. Davide Sangiorgi) uses the notions like $P \stackrel{\hat{\mu}}{\Rightarrow} P^{\prime}$ to represent special case that, $P \stackrel{\epsilon}{\Rightarrow} P^{\prime}$ when $\mu=\tau$ (i.e. it's possible that $P=$ $Q)$. Such notions are concise, but inconvenient to use in formalization work, because the EPS transition, in many cases, has very different characteristics. Thus we have above long definition but easier to use when proving all needed results.

Two basic properties to help understanding "bisimulation up to $\approx$ ":
Lemma 4.2.1. (Properties of bisimulation up to $\approx$ )

1. The identity relation is "bisimulation up to $\approx$ ":
$\vdash$ WEAK_BISIM_UPTO (=)
[IDENTITY_WEAK_BISIM_UPTO]
2. The converse of a "bisimulation up to $\approx "$ is still "bisimulation up to $\approx$ ":

CONVERSE_WEAK_BISIM_UPTO:
$\vdash$ WEAK_BISIM_UPTO Wbsm $\Longrightarrow$ WEAK_BISIM_UPTO Wbsm ${ }^{T}$
Now we want to prove the following main lemma:
Lemma 4.2.2. If $\mathcal{S}$ is a "bisimulation up to $\approx$ ", then $\approx \mathcal{S} \approx$ is a bisimulation.

```
WEAK_BISIM_UPTO_LEMMA:
```

$\vdash$ WEAK_BISIM_UPTO Wbsm $\Longrightarrow$
WEAK_BISIM (WEAK_EQUIV $\circ_{r}$ Wbsm $\circ_{r}$ WEAK_EQUIV)
Proof. Milner's books simply said that the proof is "analogous" to the same lemma for strong bisimulation. This is basically true, from left to right (for visible transitions):


There's a little difficulty, however. Given $y \approx E^{\prime}$ and $y \stackrel{l}{\Rightarrow} E_{2}^{\prime}$, the existence of $E_{2}^{\prime \prime}$ doesn't follow directly from the definition or property $(*)$ of weak equivalence. Instead, we have to prove a lemma (to be presented below) to finish this last step.

More difficulties appear from right to left:


The problem is, given $y^{\prime} \operatorname{Bsm} y$ and $y \stackrel{l}{\Rightarrow} E_{1}$, the existence of $E_{1}^{\prime}$ doesn't follow directly from the definition of "bisimulation up to $\approx$ ", instead this result must be proved (to be presented below) and the proof is non-trivial.

The other two cases concerning $\tau$-transitions:

in which the EPS transition bypass of weak equivalence (from $E_{2}^{\prime}$ to $E_{2}^{\prime \prime}$ ) must be proved, and

in which the EPS transition bypass for "bisimulation up to $\approx$ " (from $E_{1}$ to $E_{1}^{\prime}$ ) must be proved as a lemma.

As a summary of all "difficulties", here is a list of lemmas we have used to prove the previous lemma. Each lemma has also their "companion lemma" concerning the other directions (here we omit them):

Lemma 4.2.3. (Useful lemmas concerning the first weak transitions from $\sim, \approx$ and "bisimulation up to $\approx$ ")

1. STRONG_EQUIV_EPS:

$$
\vdash E \sim E^{\prime} \Longrightarrow \forall E_{1} . E \xlongequal{\epsilon} E_{1} \Longrightarrow \exists E_{2} . E^{\prime} \xlongequal{\epsilon} E_{2} \wedge E_{1} \sim E_{2}
$$

2. WEAK_EQUIV_EPS:
$\vdash E \approx E^{\prime} \Longrightarrow \forall E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \Longrightarrow \exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge E_{1} \approx E_{2}$
3. WEAK_EQUIV_WEAK_TRANS_label:
$\vdash E \approx E^{\prime} \Longrightarrow$
$\forall l E_{1} . E=$ label $l \Rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=$ label $l \Rightarrow E_{2} \wedge E_{1} \approx E_{2}$
4. WEAK_EQUIV_WEAK_TRANS_tau: $\vdash E \approx E^{\prime} \Longrightarrow \forall E_{1} . E=\tau \Rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge E_{1} \approx E_{2}$
5. WEAK_BISIM_UPTO_EPS: $\vdash$ WEAK_BISIM_UPTO Wbsm $\Longrightarrow$ $\forall E E^{\prime}$.

Wbsm $E E^{\prime} \Longrightarrow$
$\forall E_{1}$.

$$
E \stackrel{\epsilon}{\Rightarrow} E_{1} \Longrightarrow
$$

$$
\exists E_{2} . E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge\left(\text { WEAK_EQUIV } \circ_{r} \text { Wbsm } \circ_{r} \text { STRONG_EQUIV) } E_{1} E_{2}\right.
$$

```
6. WEAK_BISIM_UPTO_WEAK_TRANS_label:
 \(\vdash\) WEAK_BISIM_UPTO Wbsm \(\Longrightarrow\)
 \(\forall E E^{\prime}\).
 Wbsm E \(E^{\prime} \Longrightarrow\)
 \(\forall l E_{1}\).
 \(E=\) label \(l \Rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) STRONG_EQUIV) \(E_{1} E_{2}\)
```

Proof. (Proof sketch of above lemmas) The proof of STORNG_EQUIV_EPS and WEAK_EQUIV_EPS depends on the following "right-side induction" ${ }^{1}$ of the EPS transition:

```
\vdash(\forallx.P x x) ^(}\forallx\mathrm{ x y z. P x y ^ y - <
 \forallxy.x }\stackrel{\epsilon}{=>}y\LongrightarrowPxy\quad[EPS_ind_right]
```

Basically, we need to prove that, if the lemma already holds for $n-1 \tau$-transitions, it also holds for $n \tau$-transitions.

The proof of WEAK_BISIM_UPTO_EPS is also based on above induction theorem. The induction case of this proof can be sketched using the following graph:


The goal is to find $E_{2}^{\prime \prime \prime}$ which satisfy $E^{\prime} \stackrel{\epsilon}{\Rightarrow} E 2^{\prime \prime \prime}$. As we can see from the graph, using the induction, now given $y^{\prime} \mathrm{Wbsm} y$ and $y^{\prime} \xrightarrow{\tau} E_{2}^{\prime}$, we can easily crossover the "bisimulation up to $\approx$ " and assert the existence of $E_{2}^{\prime \prime}$ to finish the proof.

The proof of WEAK_BISIM_UPTO_WEAK_TRANS_label is based on WEAK_BISIM_UPTO_EPS. It is much more difficult, because an even bigger graph must be step-by-

[^24]step constructed:


That is, for all $E_{1}$ such that $E \stackrel{l}{\Rightarrow} E_{1}$ (which by definition of weak transitions exists $E_{1}^{\prime}$ and $E_{2}$ such that $E \stackrel{\epsilon}{\Rightarrow} E_{1}^{\prime}, E_{1}^{\prime} \xrightarrow{l} E_{2}$ and $E_{2} \stackrel{\epsilon}{\Rightarrow} E_{1}$ ), we would like to finally find an $E_{2}^{(7)}$ such that $E^{\prime} \stackrel{l}{\Rightarrow} E_{2}^{(7)}$. This process is long and painful, and we have to use WEAK_BISIM_UPTO_EPS twice. The formal proof tries to build above graph by asserting the existences of each process step-by-step, until it finally reached to $\left.E_{2}^{( } 7\right)$. This proof is so-far the largest formal proof (in single branch) that the author ever met, before closing it has 26 assumptions which represents above graph:

```
?E2. E' ==label l=>> E2 /\ (WEAK_EQUIV O Wbsm O STRONG_EQUIV) E1 E2
 0. WEAK_BISIM_UPTO Wbsm
 1. Wbsm E E'
2. E ==label l=>> E1
3. EPS E E1,
4. E1' --label l-> E2
5. EPS E2 E1
6. EPS E' E2'
7. STRONG_EQUIV E1' y'
8. Wbsm y' y
9. WEAK_EQUIV y E2'
10. y' --label l-> E2',
11. STRONG_EQUIV E2 E2',
12. y ==label l=>> E2,',
13. (WEAK_EQUIV O Wbsm O STRONG_EQUIV) E2', E2,',
14. E2' ==label l=>> E2,',',
15. WEAK_EQUIV E2,', E2',',
16. STRONG_EQUIV E2 y,',
17. Wbsm y',' y',
18. WEAK_EQUIV y', E2,',',
19. EPS y,', E2,,,,,
```

```
20. STRONG_EQUIV E1 E2,,,,,
21. EPS y,' E2,',',',
22. (WEAK_EQUIV O Wbsm O STRONG_EQUIV) E2,,,,', E2,,,,,',
23. EPS E2,,', E2,,,,,,,
24. WEAK_EQUIV E2',',',', E2',',',','
25. (WEAK_EQUIV O Wbsm O STRONG_EQUIV) E1 E2,,,,,,,'
```

All above lemmas concern the cases from left and right (for all $P$, exists $Q$ such that ...) To prove the other side (for all $Q$ there exist $P$ such that ...), there's no need to go over the painful proving process again, instead we can easily derive the other side by using CONVERSE_WEAK_BISIM_UPTO. For example, once above lemma WEAK_BISIM_UPTO_WEAK_TRANS_label is proved, it's trivial to get the following companion lemma:

Lemma 4.2.4. (The companion lemma of WEAK_BISIM_UPTO_WEAK_TRANS_label)

```
WEAK_BISIM_UPTO_WEAK_TRANS_label':
 \vdash ~ W E A K _ B I S I M _ U P T O ~ W b s m ~ \Longrightarrow
 \forallE E'.
 Wbsm E E' \Longrightarrow
 \foralll E2.
 E
 \exists}\mp@subsup{E}{1}{}\mathrm{ .
 E=label l=> E
 (STRONG_EQUIV or Wbsm or WEAK_EQUIV) E1 E E
```

Finally, once the main lemma WEAK_BISIM_UPTO_LEMMA, the following final result can be easily proved, following the same idea in the proof of strong bisimulation cases:

Theorem 4.2.1. If $\mathcal{S}$ is a bisimulation up to $\approx$, then $\mathcal{S} \subseteq \approx$ : WEAK_BISIM_UPTO_THM:
$\vdash$ WEAK_BISIM_UPTO $W b s m \Longrightarrow W b s m ~ \subseteq_{r}$ WEAK_EQUIV
As we have told at the beginning of this chapter, above result cannot be used for proving the "unique solution of equations" theorem for the weak equivalence (and observational congruence) cases. So above final theorem is not used anywhere in this thesis. It's simply an interesting result on its own.

### 4.3 Another version of "Bisimulation upto $\approx$ "

Milner's 1989 book contains an error: the definition of "bisimulation upto $\approx$ " cannot be used to prove the "unique solutions of equations" theorem for weak equivalence. This issue was originally found by Prof. Davide Sangiorgi when he was a student
of Robin Milner. The solution was published as a new paper [24], co-authored by them. The solution, however, is not to fix the original definition but to invent an alternative version of "bisimulation up to $\approx$ " which has not relationship with the old one. It's been found that, both versions were useful. In our project, this alternative version is also formalized, to support the proof of "unique solutions of equations" theorem for weak equivalence. Here is the definition:

Definition 4.3.1. (Another version of bisimulation up to $\approx) \mathcal{S}$ is a "bisimulation $u p$ to $\approx "$ if $P S Q$ implies, for all $\alpha \in A c t$,

1. Whenever $P \stackrel{\alpha}{\Rightarrow} P^{\prime}$ then, for some $Q^{\prime}, Q \xrightarrow{\hat{\alpha}} Q^{\prime}$ and $P^{\prime} \approx \mathcal{S} \approx Q^{\prime}$,
2. Whenever $Q \stackrel{\alpha}{\Rightarrow} Q^{\prime}$ then, for some $P^{\prime}, P \xrightarrow{\hat{\alpha}} P^{\prime}$ and $P^{\prime} \approx \mathcal{S} \approx Q^{\prime}$.

Or formally,

```
WEAK_BISIM_UPTO_ALT:
 \(\vdash\) WEAK_BISIM_UPTO_ALT Wbsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Wbsm \(E E^{\prime} \Longrightarrow\)
 (\(\forall l\).
 \(\left(\forall E_{1}\right.\).
 \(E=\) label \(l \Rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) WEAK_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}=\) label \(l \Rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\).
 \(E=\) label \(l \Rightarrow E_{1} \wedge\)
 (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) WEAK_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\left(\forall E_{1}\right.\).
 \(E=\tau \Rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime} \stackrel{\epsilon}{\Rightarrow} E_{2} \wedge\left(\right.\) WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) WEAK_EQUIV) \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}=\tau \Rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge\) (WEAK_EQUIV \(\circ_{r} W b s m \circ_{r}\) WEAK_EQUIV) \(E_{1} E_{2}\)
```

Noticed that, now there're two weak equivalences which surround the central relation. (So instead of calling it "alternative version", maybe "double-weak version" is better.)

It turns out that, the proof for properties of this alternative relation is slightly easier. We have proved exactly the same lemmas and theorems for it, of which the last two results are the following ones:
Lemma 4.3.1. If $\mathcal{S}$ is a "bisimulation up to $\approx$ "(alternative version), then $\approx \mathcal{S} \approx$ is a weak bisimulation:

## WEAK_BISIM_UPTO_ALT_LEMMA:

$\vdash$ WEAK_BISIM_UPTO_ALT Wbsm $\Longrightarrow$ WEAK_BISIM (WEAK_EQUIV $\circ_{r} W b s m \circ_{r}$ WEAK_EQUIV)

Theorem 4.3.1. If $\mathcal{S}$ is a "bisimulation up to $\approx "($ alternative version), then $\mathcal{S} \subseteq \approx$ :
WEAK_BISIM_UPTO_ALT_THM:
$\vdash$ WEAK_BISIM_UPTO_ALT Wbsm $\Longrightarrow$ Wbsm $\subseteq_{r}$ WEAK_EQUIV
In next chapter, we'll use the theorem WEAK_BISIM_UPTO_ALT_THM to prove Milner's "unique solutions of equations" theorems for weak equivalence, however without it the proof can still be finished (by constructing a more complex bisimulation), just a little longer.

### 4.4 Observational bisimulation up to $\approx$

This is a new creation by the author during the early proof attempts for Milner's "unique solutions of equations" theorems for observational congruence. It turns out that, this new relation is too restrictive, thus finally it's not used. Here we briefly mention it as an independent (useless) findings. The definition is based on the original "bisimulation up to $\approx$ " with EPS transitions replaced with normal weak $\tau$ transtions:

Definition 4.4.1. (Observational bisimulation up to $\approx) \mathcal{S}$ is a "observational bisimulation up to $\approx "$ if $P \mathcal{S} Q$ implies, for all $\alpha \in$ Act,

1. Whenever $P \xrightarrow{\alpha} P^{\prime}$ then, for some $Q^{\prime}, Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim \mathcal{S} \sim Q^{\prime}$,
2. Whenever $Q \xrightarrow{\alpha} Q^{\prime}$ then, for some $P^{\prime}, P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \sim \mathcal{S} \sim Q^{\prime}$.

Or formally,
OBS_BISIM_UPTO:

```
\(\vdash\) OBS_BISIM_UPTO Obsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Obsm E \(E^{\prime} \Longrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1}\right.\).
 \(E-u \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime}=u \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV \(\circ_{r}\) Obsm \(\circ_{r}\) STRONG_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}-u \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\).
 \(E=u \Rightarrow E_{1} \wedge\) (STRONG_EQUIV \(\circ_{r}\) Obsm \(\circ_{r}\) WEAK_EQUIV) \(E_{1} E_{2}\)
```

Notice the removal of "hats" in above definition in comparasion with previous versions of "bisimulation up to $\approx$ ", thus it's the so far most concise definition among others.

Properties are similar. Then we proved a final theorem (there's no lemma) for proving two processes are observational congruence: instead of proving it directly from definition, we only have to find an "observational bisimulation up to" which contains the pair of processes:

Theorem 4.4.1. If $\mathcal{S}$ is a "observational bisimulation up to $\approx$ ", then $\mathcal{S} \subseteq \approx^{c}$ :
OBS_BISIM_UPTO_THM:
$\vdash$ OBS_BISIM_UPTO Obsm $\Longrightarrow$ Obsm $\subseteq_{r}$ OBS_CONGR
It was hard to prove above theorem, but it remains to find potential applications for this beautiful result.

## Chapter 5

## Unique Solutions of Equations

To prove two processes are (strong or weak) bisimilar, currently we have explored two kind of bisimulation proof methods: one is based on the definition: finding a bisimulation relation containing the given two processes, which is usually hard, while the problem may become easier using bisimilation up-to techniques; the other is to use those algebraic laws to derive the resulting conclusion step by step, although there's no decision procedure (algorithms) to construct such proofs automatically.

In Milner's 1989 book [2], he carefully explains that the bisimulation proof method is not supposed to be the only method for reasoning about bisimilarity. Indeed, various interesting examples in the book are handled using other techniques, notably unique solution of equations, whereby two tuples of processes are component-wise bisimilar if they are solutions of the same system of equations. The main conclusion is that, under a certain condition on the expression $E$, there is an unique $P$ (up to $\sim$ ) such that

$$
P \sim E\{P / X\}
$$

That solution is, naturally, the agent $A$ defined by $A \xlongequal{\text { def }} E\{A / X\}$.
Clearly this cannot be true for all $E$; in the case where $E$ is just $X$, for example, every agant $P$ satisfies the equation, because the equation is just $P \sim P$. But we shall see that the conclusion holds provided that $X$ is weakly guarded in $E$, in which the concept of weak guardness will be explained soon in the following section.

For simplicity purposes we only consider single-variable equation in this project. There's no much additional work towards to multi-variable cases from the view of informal proofs in related books (see also [4], page 181-183). But to formally represent CCS equations with multiple variables, there may involves modified basic datatypes and many small theorems for recursively replacing those variables in CCS expressions. At the end of this thesis, the author has explored some approaches towards multi-variable equations, however, even the proofs of single-variable cases reflect the central ideas of this kind of results, given that even many textbooks and papers only prove these theorems for single-variable cases.

### 5.1 Guarded Expressions

If we consider only single-variable equations, it's straightforward to treat expressions like $E(X)$ as a $\lambda$-function taking any single CCS process returning another. In this way, no new datatypes were introduced, and actually that single variable $X$ never appears alone in any formal proof, thus no need to represent it as a dedicated object.

In our previous work, to formalize the theory of congruence for CCS, we have defined the concept of "context" based on $\lambda$-calculus. There're actually two types of contexts: one-hole and multi-hole (this includes no-hole case):

Definition 5.1.1. (one-hole context of CCS) The (one-hole) semantic context of CCS is a function $C[\cdot]$ of type " $(\alpha, \beta)$ context" recursively defined by following rules:

```
OH_CONTEXT (}\lambdat.t
OH_CONTEXT c \LongrightarrowOH_CONTEXT (}\lambdat.a..c t
OH_CONTEXT }c>\mathrm{ OH_CONTEXT (}\lambdat.ct+x
OH_CONTEXT }c\Longrightarrow\mathrm{ OH_CONTEXT (}\lambdat.x+ct
OH_CONTEXT }c\Longrightarrow\mathrm{ OH_CONTEXT (}\lambdat.ct|x
OH_CONTEXT }c>0\mathrm{ OH_CONTEXT (}\lambdat.x||t
OH_CONTEXT }c>\mathrm{ OH_CONTEXT (}\lambdat.\nuLL(ct)
OH_CONTEXT c \LongrightarrowOH_CONTEXT (}\lambdat.\mathrm{ . relab (c t) rf) [OH_CONTEXT_rules]
```

Definition 5.1.2. (multi-hole context of CCS) The semantic context of CCS is a function $C[\cdot]$ of type " $(\alpha, \beta)$ context" recursively defined by following rules:

```
CONTEXT (}\lambdat.t
CONTEXT (}\lambdat.p
CONTEXT e \Longrightarrow CONTEXT (}\lambdat.a..e t
CONTEXT e}\mp@subsup{e}{1}{}\wedge CONTEXT e e C CONTEXT (\lambdat. e e t t + e e t)
CONTEXT e}\mp@subsup{e}{1}{}\wedge CONTEXT e e \Longrightarrow CONTEXT (\lambdat. e e t t| e e t
CONTEXT e \Longrightarrow CONTEXT (}\lambdat.\nuL(et)
CONTEXT e C CONTEXT (}\lambdat\mathrm{ . relab (e t) rf) [CONTEXT_rules]
```

By repeatedly applying these inductive rules, one can imagine that, the "holes" in any CCS expressions at any depth, can be filled by the same process, when the $\lambda$ function is called with that process. For CCS equations containing only one variable, we can simply treat a context as the core part of an equation. Thus, if $C$ is a context, $P$ is the solution of the equation (in case of strong equivalence), this actually means $P \sim C P$. Thus the variable itself never need to be formalized, and it never appears in any related proof.

Notice the difference with one-hole context in the branches of sum and parallel operators. And also the possibility that, the expression may finally contains no variable at all (this is necessary, otherwise we can't finish the proof).

One major drawback of above techniques is, we cannot further define the weakly guardedness (or sequential property) as a predicate of CCS expressions, simply because there's no way to recursively check the internal structure of $\lambda$-functions, as
such functions were basically black-boxes once defined. A workaround solution is to define it independently and recursively:
Definition 5.1.3. (Weakly guarded expressions) $X$ is weakly guarded in $E$ if each occurrence of $X$ is within some subexpression $\alpha . F$ of $E$ :

```
WG (}\lambdat.p
CONTEXT e\Longrightarrow WG (\lambdat. a..e t)
WG e}\mp@subsup{e}{1}{}\wedge\textrm{WG}\mp@subsup{e}{2}{\Longrightarrow}\Longrightarrow\textrm{WG}(\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t
```



```
WG e\Longrightarrow WG (\lambdat. \nu L (e t))
WG e\Longrightarrow WG (\lambdat. relab (e t) rf)
```

[WG_rules]

Notice the only difference between weakly guarded expressions and normal expressions is at their first branch. In this way, a weakly guarded expression won't expose the variable without a prefixed action (could be $\tau$ ).

To make a connection between above two kind of expressions (and the one-hole context), we have proved their relationships by induction on their structures:
Proposition 5.1.1. (Relationship between one-hole/multi-hold contexts and weakly guarded expressions)

1. One-hole context is also context:

OH_CONTEXT_IS_CONTEXT:
$\vdash$ OH_CONTEXT $c \Longrightarrow$ CONTEXT $c$
2. Weakly guarded expressions is also context:

```
WG_IS_CONTEXT:
 \vdash \mp@code { W G ~ e ~ C O N T E X T ~ e }
```

Noticed that, the first result (and one-hole contexts) is never needed in the rest of this thesis, while the second one will be heavily used.

One limitation in our definitions is the lacking of CCS constants (i.e. var and rec operators defined as part of our CCS datatypes) in all above recursive definitions. This doesn't means the expressions cannot contains constants, just these constants must be irrelevant with the variable, that is, variable substitutions never happen inside the body of any CCS constant!. This restriction can be removed when we can prove the congruence of equivalences under rec operators, however this needs to discuss the "free variables" in CCS process, currently it's beyond the scope of this thesis.

### 5.2 Milner's three "unique solution of equations" theorems

Here we formalized three versions of the "unique solution of equations" theorem in Milner's book.

### 5.2.1 For strong equivalence

Based on results on bisimulation up to $\sim$, we have first proved the following nontrivial lemma. It states in effect that if $X$ is weakly guarded in $E$, then the "first move" of $E$ is independent of the agent substituted for $X$ :

Lemma 5.2.1. (Lemma 3.13 of [2]) If the variable $X$ are weakly guarded in $E$, and $E\{P / X\} \xrightarrow{\alpha} P^{\prime}$, then $P^{\prime}$ takes the form $E^{\prime}\{P / X\}$ (for some expression $E^{\prime}$ ), and moreover, for any $Q, E\{Q / X\} \xrightarrow{\alpha} E^{\prime}\{Q / X\}$ :

STRONG_UNIQUE_SOLUTIONS_LEMMA:

```
\(\vdash\) WG \(E \Longrightarrow\)
 \(\forall P a P^{\prime}\).
 \(E P-a \rightarrow P^{\prime} \Longrightarrow\)
 \(\exists E^{\prime}\). CONTEXT \(E^{\prime} \wedge\left(P^{\prime}=E^{\prime} P\right) \wedge \forall Q . E Q-a \rightarrow E^{\prime} Q\)
```

We're now ready to prove the following, the main proposition above the "unique solution of equations":

Theorem 5.2.1. (Proposition 3.14 of [2]) Let the expression $E$ contains at most the variable $X$, and let $X$ be weakly guarded in $E$, then

$$
\begin{equation*}
\text { If } P \sim E\{P / X\} \text { and } Q \sim E\{Q / X\} \text { then } P \sim Q \tag{5.1}
\end{equation*}
$$

STRONG_UNIQUE_SOLUTIONS:
$\vdash \mathrm{WG} E \Longrightarrow \forall P Q . P \sim E P \wedge Q \sim E Q \Longrightarrow P \sim Q$
In above proof, we have identified 14 major sub-goals, dividing into 7 groups, in which each pairs are symmetric (thus having similar proof steps). The proof of this last theorem consists of 500 lines (each line usually have 2 or 3 HOL tactics, to make the proof not too long in lines).

### 5.2.2 For weak equivalence

Actually Milner's book contains only two "unique solutions of equations" theorems, one for strong equivalence, the other for observational congruence (with a wrong proof). But there's indeed a version for weak equivalence which shares a large portion of proof steps with the case for "observation congruence". The problem is, since weak equivalence is not congruence, to make correct statement of this theorem, we must slightly modify the concept of sequential expresses with further restrictions: no direct sums (or only guarded sums):

Definition 5.2.1. (Sequential expressions restricted with guarded sum)
GSEQ $(\lambda t . t)$
GSEQ ( $\lambda t . p$ )
$\operatorname{GSEQ} e \Longrightarrow \operatorname{GSEQ}(\lambda t . a . . e t)$
$\operatorname{GSEQ} e_{1} \wedge \operatorname{GSEQ} e_{2} \Longrightarrow \operatorname{GSEQ}\left(\lambda t . a_{1} . e_{1} t+a_{2} . e_{2} t\right) \quad$ [GSEQ_rules]

The "unique solution of equations" theorem for weak equivalence requires more restrictions on the expression, namely, strong guardness:

Definition 5.2.2. ((Strongly) guarded expressions) $X$ is (strongly) guarded in $E$ if each occurrence of $X$ is within some subexpression of $E$ of the form l.F ( $l$ is a visible action):

```
SG (\lambdat. p)
CONTEXT e > SG (}\lambdat\mathrm{ . label l..e t)
SG e > SG (\lambdat.a..e t)
SG e
SG e
SG e > SG (\lambdat. \nuL (e t))
SG e SG (\lambdat. relab (e t) rf)
```

Now we're ready to state and prove the following lemma:
Lemma 5.2.2. If the variable $X$ are (strongly) guarded and sequential in $G$, and $G\{P / X\} \xrightarrow{\alpha} P^{\prime}$, then $P^{\prime}$ takes the form $H\{P / X\}$ (for some expression $H$ ), and for any $Q, G\{Q / X\} \xrightarrow{\alpha} H\{Q / X\}$. Moreover $H$ is sequential, and if $\alpha=\tau$ then $H$ is also guarded.

```
WEAK_UNIQUE_SOLUTIONS_LEMMA:
 \vdash \mp@code { S G ~ G ~ ^ ~ G S E Q ~ G \Longrightarrow }
 \forall a P '
 GP-a-> P' \Longrightarrow
 \exists
 GSEQ H ^ ((a=\tau) \Longrightarrow SG H)^(P'=H P) ^
 \forallQ.G Q -a->H Q
```

An important technique in the proof of above lemma is the ability to do inductions on the structure of $G$ which is both guarded and sequential. But if we apply the induction theorem generated by SG and GSEQ separately, the total numer of proof sub-goals is huge. Instead, we have proved the following combined induction theorems for SG+GSEQ expressions:

Proposition 5.2.1. (Combined induction principle for guarded and sequential expressions)

```
SG_GSEQ_strong_induction:
 \vdash (\forall p . R (\lambda t . p)) \wedge (\forall l e . G S E Q ~ e \Longrightarrow R (\lambda t . ~ l a b e l ~ l . . e ~ t)) ~ \wedge ~
 (\foralla e.SG e^GSEQ e^Re\LongrightarrowR (\lambdat.a..e t)) ^
 (\forall\mp@subsup{e}{1}{}}\mp@subsup{e}{2}{2}
 SG e
 R(\lambdat.\tau..el t + \tau..e.e t)) ^
 (\foralll l}\mp@subsup{l}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
 SG e
```

```
 R(\lambdat. \tau..e.e t + label l}\mp@subsup{l}{2}{}..\mp@subsup{e}{2}{}t))
(\foralllll
 GSEQ e}\mp@subsup{e}{1}{}\wedge\textrm{SG}\mp@subsup{e}{2}{}\wedge\textrm{GSEQ}\mp@subsup{e}{2}{}\wedgeR \mp@subsup{e}{2}{}
 R(\lambdat. label ll..e e t + \tau.. e}\mp@subsup{e}{2}{}t))
(\foralll lllll
 GSEQ e}\mp@subsup{e}{1}{}\wedgeGGEQ \mp@subsup{e}{2}{}
 R(\lambdat. label l l..e e t + label l l . . e2 t)) \Longrightarrow
\foralle. SG e ^ GSEQ e \Longrightarrow Re
```

Once above lemma is proved, it's just one small step toward the target theorem:
Theorem 5.2.2. (Unique solution of equations for weak equivalence) Let $E$ be guarded and sequential expressions, and let $P \approx E\{P / X\}, Q \approx E\{Q / X\}$. Then $P \approx Q$.

WEAK_UNIQUE_SOLUTIONS:
$\vdash \operatorname{SG} E \wedge \operatorname{GSEQ} E \Longrightarrow \forall P Q . P \approx E P \wedge Q \approx E Q \Longrightarrow P \approx Q$

### 5.2.3 For observational congruence

For "unique solutions of equations" theorem of observational congruence, we have used a whole new technique, i.e. the following lemma:

Lemma 5.2.3. To prove two processes $E$ and $E^{\prime}$ are observational congruence, it's enough to construct a bisimulation with additional observational transition properties:

```
OBS_CONGR_BY_WEAK_BISIM:
 \vdash ~ W E A K _ B I S I M ~ W b s m ~ \Longrightarrow
 \forallE E'.
 (\forallu.
 (\forall\mp@subsup{E}{1}{}.E-u->\mp@subsup{E}{1}{}\Longrightarrow\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}=u=>\mp@subsup{E}{2}{}\wedge\mathrm{ Wbsm E E E E) ^}
 \forall E _ { 2 } . E ^ { \prime } - u \rightarrow E _ { 2 } \Longrightarrow \exists E _ { 1 } . E = u \Rightarrow E _ { 1 } \wedge \text { Wbsm E E E E)} \Longrightarrow
 E *}\mp@subsup{|}{}{c}\mp@subsup{E}{}{\prime
```

This lemma can be easily proved by definition of observational congruence and weak equivalence, however it's never mentioned in Milner's book. Actually we think it's impossible to prove the corresponding "unique solutions" theorem without this result.

What we have proved is the following one. Notice that, we didn't use any "bisimulation up-to" techniques, because they're not applicable once above theorem OBS_CONGR_BY_WEAK_BISIM is used. Instead we have directly constructed a bisimulation to finish the proof.

Lemma 5.2.4. If the variable $X$ are (strongly) guarded and sequential in $G$, and $G\{P / X\} \xrightarrow{\alpha} P^{\prime}$, then $P^{\prime}$ takes the form $H\{P / X\}$ (for some expression $H$ ), and for any $Q, G\{Q / X\} \xrightarrow{\alpha} H\{Q / X\}$. Moreover $H$ is sequential, and if $\alpha=\tau$ then $H$ is also guarded.

## OBS_UNIQUE_SOLUTIONS_LEMMA:

$\vdash \mathrm{SG} G \wedge \mathrm{SEQ} G \Longrightarrow$ $\forall P$ a $P^{\prime}$.

$$
G P-a \rightarrow P^{\prime} \Longrightarrow
$$

$\exists H$.
SEQ $H \wedge((a=\tau) \Longrightarrow \mathrm{SG} H) \wedge\left(P^{\prime}=H P\right) \wedge \forall Q . G Q-a \rightarrow H Q$
Theorem 5.2.3. (Unique solution of equations for observational congruence) Let $E$ be guarded and sequential expressions, and let $P \approx^{c} E\{P / X\}, Q \approx^{c} E\{Q / X\}$. Then $P \approx^{c} Q$.

OBS_UNIQUE_SOLUTIONS:
$\vdash \mathrm{SG} E \wedge \mathrm{SEQ} E \Longrightarrow \forall P Q . P \approx^{c} E P \wedge Q \approx^{c} E Q \Longrightarrow P \approx^{c} Q$

## Chapter 6

## Equations, Contractions and Unique Solutions

Here we have used the title of Prof. Sangiorgi's paper [3] as the title of this chapter, as the purpose of all the work mentioned in this chapter is to prove the key "unique solutions of contractions" theorem in that paper. Although the theorem looks similar with Milner's classical results, the underlying proof idea and techniques are completely different. And we have to formalize new fundamental transition concepts (Trace) in order to finish the proof.

In this chapter, we start with the formalization of another relation called "expansion", which can be seen as the origin of the "contraction" relation. We're going to prove that, the expansion relation between two processes (called 'expands') is a pre-congruence and pre-order.

Then we introduce the "contraction" relation and prove that, contractions between two processes (called 'contracts') have the same properties as expansion, with something more reasonable.

During the proof attempts of the "unique solution of contractions/expansions" theorem, we found that, sometimes we need to track the precise number of steps inside certain weak transitions, and such number will be passed into next proof steps during the challenging of contractions, expansions and weak equivalences. As a result, we have to further formalize the (strong) trace transitions between two CCS processes, and this involves HOL's listTheory into our formalization project. Many intermediate results using lists were proved during this work, while the final statement of neither the unique solutions theorems nor their lemmas need to explicitly mention lists (or traces). This is very interesting and unexpected, because, after having formalized so many results, plus Milner's original three "unique solutions of equations" theorems, we still need to invent new devices to finish the proof of Sangiorgi's results. Thus this last piece (and central piece) of thesis project has really made something new and goes beyond all previous achievements.

### 6.1 Expansion

Expansion is a non-symmetric relation for CCS processes. " $P$ expands $Q$ " means " $P$ is at least as fast as $Q$ ", or more generally " $Q$ uses at least as much resources as $P$ ". Expansion is studied by Arun-Kumar and Hennessy [25] under a different terminology: they show that expansion is a mathematically tractable preorder and has a complete proof system for finite terms based on a modification of the standard $\tau$ laws for CCS. In CCS, strong and weak bisimilarity are congruence relations (for weak bisimilarity, guarded sums are required), and expansion is a precongruence.

Its definition and properties are quite like weak equivalence. To define expansion, we need to follow a two-step processes, first define a predicate of relations, called "expansion", then define a 2 -ary relation called 'contracts' as the maximal relation containing all expansions.

Definition 6.1.1. (expansion) A processes relation $\mathcal{R}$ is an expansion if, whenever $P \mathcal{R} Q$,

1. $P \xrightarrow{\mu} P^{\prime}$ implies that there is $Q^{\prime}$ with $Q \xrightarrow{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$;
2. $Q \xrightarrow{\mu} Q^{\prime}$ implies that there is $P^{\prime}$ with $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
or formally:
[EXPANSION]
$\vdash$ EXPANSION Exp $\Longleftrightarrow$
$\forall E E^{\prime}$.
$\operatorname{Exp} E E^{\prime} \Longrightarrow$
( $\forall l$.
$\left(\forall E_{1}\right.$.
$E$-label $l \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}$-label $\left.l \rightarrow E_{2} \wedge E x p E_{1} E_{2}\right) \wedge$ $\forall E_{2}$.
$E^{\prime}-$ label $l \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=$ label $\left.l \Rightarrow E_{1} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
( $\forall E_{1}$.
$\left.E-\tau \rightarrow E_{1} \Longrightarrow \operatorname{Exp} E_{1} E^{\prime} \vee \exists E_{2} . E^{\prime}-\tau \rightarrow E_{2} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
$\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=\tau \Rightarrow E_{1} \wedge E x p E_{1} E_{2}$
$P$ expands $Q$, written $P \succeq_{e} Q$, if $P \mathcal{R} Q$ for some expansion $\mathcal{R}$.
Above definition for 'expands' can be simply characterized as the following statement:

Definition 6.1.2. (Original definition of 'expands')

$$
\vdash P \succeq_{e} Q \Longleftrightarrow \exists \operatorname{Exp} . \operatorname{Exp} P Q \wedge \text { EXPANSION Exp } \quad \text { [expands_thm] }
$$

However it's not easy to derive its properties from such a definition (it's possible for sure). Instead we have used HOL's co-inductive relation package to define it
co-inductively, the same way as in the case of weak equivalence. As a result, the above "original" definition now becomes a theorem as alternative definition.

We have proved that, expansion is contained in weak bisimulation and 'expands' is between strong and weak equivalence:

Proposition 6.1.1. (Relationships between expansion, strong and weak equivalences)

1. expansion implies weak bisimulation:
$\vdash$ EXPANSION Exp $\Longrightarrow$ WEAK_BISIM Exp [EXPANSION_IMP_WEAK_BISIM]
2. 'expands' implies weak equivalence:
$\vdash P \succeq_{e} Q \Longrightarrow P \approx Q \quad$ [expands_IMP_WEAK_EQUIV]
3. Strong equivalence implies 'expands':
$\vdash P \sim Q \Longrightarrow P \succeq_{e} Q \quad$ [STRONG_EQUIV_IMP_expands]

### 6.1.1 Expansion is pre-order

It's not hard to prove that, the 'expands' relation is pre-order, that is, transitive and reflexitive. Actually we proved these properties from the properties of the 'expansion' predicate: if the identity relation is expansion, then 'expands' is reflexitive; and if the composition of any two expansions is still an expansion, then for sure the 'expands' relation is transitive.
Proposition 6.1.2. The composition of two expansions is still an expansion:
COMP_EXPANSION:
$\vdash$ EXPANSION $\operatorname{Exp}_{1} \wedge$ EXPANSION $E x p_{2} \Longrightarrow \operatorname{EXPANSION}\left(E x p_{2} \circ_{r} E x p_{1}\right)$
Using this result, it's trivial to prove the transitivity of 'expands' relation:
Proposition 6.1.3. (Transitivity of 'expands' relation)

$$
\vdash x \succeq_{e} y \wedge y \succeq_{e} z \Longrightarrow x \succeq_{e} z
$$

The 'expands' relation is also reflexitive (accordingly the identity relation is also an expansion):
Proposition 6.1.4. (Reflexitivity of 'expands' relation)
$\vdash$ EXPANSION (=)
[IDENTITY_EXPANSION]
$\vdash x \succeq_{e} x$
[expands_TRANS]
Combining above two results, we have proved that, 'expands' is a pre-order:
Lemma 6.1.1. Bisimularity expandsion is a pre-order:
$\vdash$ PreOrder (expands)
[expands_PreOrder]
where
$\vdash$ PreOrder $R \Longleftrightarrow$ reflexive $R \wedge$ transitive $R$

### 6.1.2 Expansion is precongruence

Now we prove 'contracts' relation is a precongruence (a special version which requires guarded sum). To get this result, we have to prove that, the 'expands' relation is preserved by all CCS operators (except for REC which we have ignored in this project). For the case of sum operator, we can only prove it for guarded sums:
Proposition 6.1.5. ('expands' is precongruence)

1. 'expands' is substitutive by prefix operator:
```
expands_SUBST_PREFIX:
 \vdash E E \succeq _ { e } E ^ { \prime } \Longrightarrow \forall u . u . . E ~ \succeq e ~ u . . E ' \
```

2. 'expands' is preserved by guarded sums:
```
expands_PRESD_BY_GUARDED_SUM:
```

$$
\vdash E_{1} \succeq_{e} E_{1}^{\prime} \wedge E_{2} \succeq_{e} E_{2}^{\prime} \Longrightarrow a_{1} \ldots E_{1}+a_{2} \ldots E_{2} \succeq_{e}\left(a_{1} \ldots E_{1}^{\prime}+a_{2} \ldots E_{2}^{\prime}\right)
$$

3. 'expands' is preserved by parallel composition:
```
expands_PRESD_BY_PAR:
 \vdash E _ { 1 } \succeq _ { e } E _ { 1 } ^ { \prime } \wedge E _ { 2 } \succeq _ { e } E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } \| E _ { 2 } \succeq _ { e } E _ { 1 } ^ { \prime } \| E _ { 2 } ^ { \prime }
```

4. 'expands' is substitutive by restrictions:
expands_SUBST_RESTR:
$\vdash E \succeq_{e} E^{\prime} \Longrightarrow \forall L . \nu L E \succeq_{e} \nu L E^{\prime}$
5. 'expands' is substitutive by relabeling operator:
expands_SUBST_RELAB:
$\vdash E \succeq_{e} E^{\prime} \Longrightarrow \forall r f$. relab $E r f \succeq_{e}$ relab $E^{\prime} r f$
With above results, now we can inductively prove the 'expands' relation is preserved by any context with guarded sums, which by definition is a precongruce:

Theorem 6.1.1. Bisimilarity expansion ('expands' relation) is precongruence, i.e. it's substitutive by semantics contexts (with restrictions of guarded sums):

```
expands_SUBST_GCONTEXT:
 \vdashP\succeqe}Q\Longrightarrow\forallE.GCONTEXT E\LongrightarrowEP \succeqe E Q
or
expands_precongruence:
 precongruence1 (expands)
where
precongruence1_def:
 \vdash \text { precongruence1 } R \Longleftrightarrow
 | y ctx. GCONTEXT ctx \Longrightarrow R x y \Longrightarrow R (ctx x) (ctx y)
```


### 6.2 Contraction

Contraction is the new invention by Prof. Davide Sangiorgi. It's another nonsymmetric relation. Roughly speaking, " $P$ contracts $Q$ " holds if " $P$ is equivalent to $Q$ " and, in addition, " $Q$ has the possibility of being as efficient as $P$ ". That is, $Q$ is capable of simulating $P$ by performing less internal work. It is suggicient that $Q$ has one 'efficient' path; $Q$ could also have other paths that are slower than any path in $P$.

Its definition and properties are almost the same as expansions (and weak equivalence). To define contraction, we also need to follow a two-step processes: first we define a predicate of relations, called "(bisimulation) contraction", then we define a binary relation called 'contracts' (bisimilarity contraction) as the union of all contractions.

Definition 6.2.1. (Bisimulation contraction) A processes relation $\mathcal{R}$ is a bisimulation contraction if, whenever $P \mathcal{R} Q$,

1. $P \xrightarrow{\mu} P^{\prime}$ implies that there is $Q^{\prime}$ with $Q \xrightarrow{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$;
2. $Q \stackrel{\mu}{\rightarrow} Q^{\prime}$ implies that there is $P^{\prime}$ with $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ and $P^{\prime} \approx Q^{\prime}$.
or formally:
[CONTRACTION]
$\vdash$ CONTRACTION Con $\Longleftrightarrow$ $\forall E E^{\prime}$.

Con $E E^{\prime} \Longrightarrow$ ( $\forall l$.
$\left(\forall E_{1}\right.$. $E$ - label $l \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}-$ label $\left.l \rightarrow E_{2} \wedge \operatorname{Con} E_{1} E_{2}\right) \wedge$
$\forall E_{2} . E^{\prime}$-label $l \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=$ label $\left.l \Rightarrow E_{1} \wedge E_{1} \approx E_{2}\right) \wedge$ $\left(\forall E_{1}\right.$.
$\left.E-\tau \rightarrow E_{1} \Longrightarrow C o n E_{1} E^{\prime} \vee \exists E_{2} . E^{\prime}-\tau \rightarrow E_{2} \wedge \operatorname{Con} E_{1} E_{2}\right) \wedge$ $\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1} . E \stackrel{\epsilon}{\Rightarrow} E_{1} \wedge E_{1} \approx E_{2}$

Bisimilarity contraction, written $\succeq_{\text {bis }}$, is the union of all bisimulation contractions.
Above definition for 'contracts' can be simply characterized as the following statement:

Definition 6.2.2. (Original definition of 'contracts')

```
\(\vdash P \succeq_{\text {bis }} Q \Longleftrightarrow \exists\) Con. Con \(P Q \wedge\) CONTRACTION Con
```

Like the case of expansions, it's not easy to derive its properties from such a definition. Instead we have used HOL's co-inductive relation package to define it co-inductively, the same way as in the case of weak equivalence. As a result, the above "original" definition now becomes a theorem as alternative definition.

In the first clause $Q$ is required to match $P$ 's challenge transition with at most one transition. This makes sure that $Q$ is capable of mimicking $P$ 's work at least as efficiently as $P$. In contrast, the second clause of Def. 6.2.1, on the challenges from $Q$, entirely ignores efficiency: It is the same clause of weak bisimulation-the final derivatives are even required to be related by $\approx$ rather then by $\mathcal{R}$.

We can prove that, 'contraction' is contained in weak bisimulation, and the 'contracts' (bisimularity contraction) is between 'expands' and weak equivalence:

Proposition 6.2.1. (Relationships between contraction, expansion and weak bisimulation)

1. 'expands' implies 'contracts',

$$
\vdash P \succeq_{e} Q \Longrightarrow P \succeq_{b i s} Q
$$

2. 'contracts' implies weak equivalence ('contracts' is contained in weak equivalence).

$$
\vdash P \succeq_{b i s} Q \Longrightarrow P \approx Q
$$

[contracts_IMP_WEAK_EQUIV]
The proof of all properties of contraction and 'contracts' are slightly harder than the case of expansion and 'expands', and we usually need to reduce the proof to corresponding properties of weak equivalence. Also, surprisingly, a contraction doesn't imply weak bisimulation, i.e. the following property doesn't hold:
$\forall$ Con. CONTRACTION Con $\Longrightarrow$ WEAK_BISIM Con
As a result, to finish the proof of contracts_IMP_WEAK_EQUIV, we do not prove Con itself is a weak bisimulation, but rather that Con "union" weak bisimilarity is a weak bisimulation. This is quite unexpected.

### 6.2.1 Contraction is pre-order

Following the same idea in the case of expansion, we prove that bisimularity contraction is a pre-order.

Proposition 6.2.2. The composition of two contractions is still a contraction:
$\vdash$ CONTRACTION Con $_{1} \wedge$ CONTRACTION $\mathrm{Con}_{2} \Longrightarrow$ CONTRACTION $\left(\mathrm{Con}_{2} \mathrm{o}_{r} \mathrm{Con}_{1}\right)$
[COMP_CONTRACTION]
Using this result, it's easy to prove the transitivity of 'contracts' relation:
Proposition 6.2.3. The bisimularity contraction ('contrats' relation) is transitive:

$$
\vdash x \succeq_{b i s} y \wedge y \succeq_{b i s} z \Longrightarrow x \succeq_{b i s} z
$$

[contracts_TRANS]
'contracts' is also reflexitive (accordingly the identity relation is also an CONTRACTION):

Proposition 6.2.4. Bisimilarity contraction is reflexitive:

```
\vdashCONTRACTION (=)
\vdash \mp@code { \vdash ~ \succeq b i s ~ } x
\(\vdash x \succeq_{\text {bis }} x\)
```

[IDENTITY_CONTRACTION]

Combining above two results, we got:
Lemma 6.2.1. Bisimularity contraction is a pre-order:

```
\vdash ~ P r e O r d e r ~ (c o n t r a c t s)
```


## [contracts_PreOrder]

where
$\vdash$ PreOrder $R \Longleftrightarrow$ reflexive $R \wedge$ transitive $R \quad$ [PreOrder]

### 6.2.2 Contraction is precongruence

Now we prove 'contracts' relation is a precongruence (a special version which requires guarded sum). To get this result, we have to prove that, the 'contracts' relation is preserved by all CCS operators (except for REC which we have ignored in this project). For the case of sum operator, we can only prove it for guarded sums:

Proposition 6.2.5. ('contracts' is precongruence)

1. 'contracts' is substitutive by prefix operator:
```
contracts_SUBST_PREFIX:
 \vdash E ~ \succeq ~ b i s ~ E ' ~ \Longrightarrow ~ \forall u . u . . E ~ \succeq b i s ~ u . . E ' \
```

2. 'contracts' is preserved by guarded syms:
contracts_PRESD_BY_GUARDED_SUM:
$\vdash E_{1} \succeq_{\text {bis }} E_{1}^{\prime} \wedge E_{2} \succeq_{\text {bis }} E_{2}^{\prime} \Longrightarrow a_{1} \ldots E_{1}+a_{2} \ldots E_{2} \succeq_{\text {bis }} a_{1} \ldots E_{1}^{\prime}+a_{2} \ldots E_{2}^{\prime}$
3. 'contracts' is preserved by parallel composition:
```
contracts_PRESD_BY_PAR:
 \vdash \vdash _ { 1 } \succeq _ { b i s } E _ { 1 } ^ { \prime } \wedge E _ { 2 } \succeq _ { b i s } E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } \| E _ { 2 } \succeq _ { b i s } E _ { 1 } ^ { \prime } \| E _ { 2 } ^ { \prime }
```

4. 'contracts' is substitutive by restrictions:
```
contracts_SUBST_RESTR:
 \vdash E = \succeq _ { \text { bis } } E ^ { \prime } \Longrightarrow \forall L . \nu L E ~ \succeq b i s ~ \nu ~ L ~ E ' \
```

5. 'contracts' is substitutive by relabeling operator:
```
contracts_SUBST_RELAB:
 \vdashE \succeq}\mp@subsup{\}{\mathrm{ is }}{}\mp@subsup{E}{}{\prime}\Longrightarrow\forallrf. relab E rf \succeqbis relab E'rf
```

With above results, now we can inductively prove the 'contracts' relation is preserved by any context with guarded sums, which by definition is a precongruence:

Theorem 6.2.1. Bisimilarity contraction ('contracts' relation) is precongruence, i.e. it's substitutive by semantics contexts (with restrictions of guarded sums):

```
contracts_SUBST_GCONTEXT:
```


or
contracts_precongruence:
- precongruence1 (contracts)
where

```
precongruence1_def:
```

    \(\vdash\) precongruence1 \(R \Longleftrightarrow\)
        \(\forall x\) y ctx. GCONTEXT \(c t x \Longrightarrow R x y \Longrightarrow R\left(\begin{array}{ll}c t x & x)\end{array}\left(\begin{array}{cc}c t x & y)\end{array}\right.\right.\)
    
### 6.3 Step and Trace transitions

To finish the proof of "unique solutions of contractions" theorem, we need to ability to reason about the "length" of weak transitions. We want to make sure the weak transitions become smaller (or same length) after passing a weak equivalence or contraction. Such a requirement is unusual because no other theorems need it. At the beginning we defined a simple relation which only capture the "length" of general transitions between two processes, but it turns out to be useless, because between any two process there may be multiple transitions with the same length, and having the facts that " $P$ weakly transits to $Q$ " and "there's a $n$-step transition from $P$ to $Q "$, we actually know nothing about the length of that specific weak transition. But we kept the definition of the so-called "step" transition in case it's needed somehow in the future.

### 6.3.1 $n$-step transitions

The concept of " $n$-step transitions" can be defined as a numbered relation closure of its single transition:

Definition 6.3.1. ( $n$-step transition) A $n$-step transition from $P$ to $Q$ is the numbered relation closure (NRC) of single step transition without respect to transition actions:

```
STEP_def:
 \vdash \operatorname { S T E P ~ P ~ n ~ Q ~ N R C ~ (\lambda E ~ E ' , ~ \exists u . E ~ - u \rightarrow ~ E ') ~ n ~ P ~ Q }
```

where

NRC:

NRC $R$ (SUC $n$ ) $x y \Longleftrightarrow \exists z . R x z \wedge \operatorname{NRC} R n z y$
For this relation, we have some nice arithmetic-like properties proved here:
Proposition 6.3.1. (Properties of $n$-step transitions)

1. O-step transition means equality:

$$
\vdash \operatorname{STEP} x \quad 0 \quad y \Longleftrightarrow(x=y)
$$

2. 1-step transition means single-step (strong) transition:

$$
\vdash \operatorname{STEP} x 1 y \Longleftrightarrow \exists u \cdot x-u \rightarrow y
$$

3. Reduce $n+1$-step transition to $n$-step transition:
```
STEP_SUC:
 \vdashTEP x (SUC n) y \Longleftrightarrow \existsz.(\existsu.x -u->z)^ STEP z n y
```

4. Reduce $n+1$-step transition to $n$-step transition (another way):
```
STEP_SUC_LEFT:
```


5. Reduce $m+n$-step transition to $m$-step and $n$-step transitions:

STEP_ADD_EQN:
$\vdash \operatorname{STEP} x(m+n) z \Longleftrightarrow \exists y$. STEP $x m y \wedge \operatorname{STEP} y n z$
What's more important is its relationship with EPS and weak transitions:
Lemma 6.3.1. (Making n-step transitions from EPS and weak transitions)

1. EPS implies the existence of n-step transition with the same ends:
```
EPS_AND_STEP:
```

$\vdash E \stackrel{\epsilon}{\Rightarrow} E^{\prime} \Longrightarrow \exists n$. STEP $E n E^{\prime}$
2. Weak transition implies the existence of $n$-step transition with the same ends:

```
WEAK_TRANS_AND_STEP:
 \vdash E = u \Rightarrow E ^ { \prime } \Longrightarrow \exists n . ~ S T E P ~ E ~ n ~ E '
```

However, it must be understood that, there may be multiple paths (with same or different lengths) between two processes $P$ and $Q$, thus the $n$-step transitions derived from above theorems may actually not reflect the path behind the initial weak transition (or EPS transition). This is why they're useless for proving the "unique solution of contractions" theorem. The $n$-step transition relation is simple, less powerfull but beautiful. It's never used in any proof in this thesis.

### 6.3.2 Traces

The successful formalization of Prof. Sangiorgi's "unique solution of contractions" theorem is completely based on successful definition of "Trace" in this thesis project. For an informal proof, it's not needed because the related arguments are quite obvious. Noticed that, trace equivalence is not covered by our projects. Also, the concept of "weak trace" is not defined anywhere.

Mathematically speaking, a trace transition is nothing but a special reflexive transitive closure (RTC) with a list accumulator, we call it LRTC:

Definition 6.3.2. (LRTC) A reflexitive transitive closure with list of transitions (LRTC) is a normal reflexitive transitive closure (RTC) of binary relations enhanced with a list, which accumulates all the transitions in the path:

```
\(\vdash \operatorname{LRTC} R\) a \(l b \Longleftrightarrow\)
 \(\forall P\).
 \((\forall x . P x[] x) \wedge\)
 \((\forall x h y t z . R x h y \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow\)
 Palb
```

We have followed the proof idea in HOL's relationTheory and the proof sketches of normal RTC, and successfully proved many of its properties, including its induction, strong induction, rules and cases theorems:

Proposition 6.3.2. (Properties of LRTC)

1. Induction principle of LRTC:
[LRTC_INDUCT]
$\vdash(\forall x . P x[] x) \wedge$
$(\forall x h y t z . R x h y \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow$ $\forall x l y$. LRTC $R x l y \Longrightarrow P x l y$
2. The 'rules' theorem of LRTC:
[LRTC_RULES]
LRTC $R x$ [] $x$
$R x h y \wedge \operatorname{LRTC} R y t z \Longrightarrow \operatorname{LRTC} R x(h:: t) z$
3. The strong induction principle of LRTC:
[LRTC_STRONG_INDUCT]
$\vdash(\forall x . P x[] x) \wedge$
( $\forall x h$ y $t z$.
$R x h y \wedge \operatorname{LRTC} R y t z \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow$ $\forall x l y$. LRTC $R x l y \Longrightarrow P x l y$
4. Reduce a $m+n$-step LRTC into $m$-step and $n$-step LRTCs:
[LRTC_LRTC]
$\vdash \operatorname{LRTC} R x m y \Longrightarrow \forall n z . \operatorname{LRTC} R y n z \Longrightarrow \operatorname{LRTC} R x(m+n) z$
5. Transitivity of LRTC:
[LRTC_TRANS]
$\vdash \operatorname{LRTC} R x m y \wedge \operatorname{LRTC} R y n z \Longrightarrow \operatorname{LRTC} R x(m+n) z$
6. 'cases' theorem of LRTC (using HD and TL of lists):
```
\vdash \mp@code { L R T C ~ R ~ x ~ l ~ y ~ \Longleftrightarrow }
 if NULL l then }x=
 else }\existsu.Rx(HD l) u^ LRTC R u(TL l) y [LRTC_CASES1]
```

7. 'cases' theorem of LRTC (using FRONT and LAST of lists):
```
\vdash \mp@code { L R T C ~ R ~ x ~ l ~ y ~ \Longleftrightarrow }
 if NULL l then }x=
 else \existsu. LRTC R x (FRONT l) u^Ru(LAST l) y [LRTC_CASES2]
```

Now we can simply define a trace as the LRTC of its single step transition, the "trace" between two CCS processes are stored into a list of actions. This is simpler than most of textbook which defines it inductively:

Definition 6.3.3. (Trace) A trace transition between two processes is the LRTC of single-step (strong) transition (with transition action accumulated into a list):

```
\vdashTRACE = LRTC TRANS
```

[TRACE_def]
Using above results of LRTC, we can easily derives the following properties of traces (which some of them are hard to get if we define the trace natively and inductively from the ground):

Proposition 6.3.3. (Properties of trace)

1. The 'rules' theorem of trace:
[TRACE_rules]
$\vdash(\forall x . \operatorname{TRACE} x \in x) \wedge$
$\forall x h y t z . x-h \rightarrow y \wedge \operatorname{TRACE} y t z \Longrightarrow \operatorname{TRACE} x(h:: t) z$
2. Transitivity of traces:
[TRACE_trans]
$\vdash \operatorname{TRACE} x m y \Longrightarrow \forall n z$. TRACE $y n z \Longrightarrow \operatorname{TRACE} x(m+n) z$
3. Induction principle of traces:
```
\vdash(\forallx.P x \epsilon x) ^
```

    \((\forall x h y t z . x-h \rightarrow y \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow\)
    \(\forall x l y\). TRACE \(x l y \Longrightarrow P x l y\)
    4. Strong induction principle of traces:
$\vdash(\forall x . P x \in x) \wedge$
$(\forall x h y t z$.
$x-h \rightarrow y \wedge$ TRACE $y t z \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow$ $\forall x l y$. TRACE $x l y \Longrightarrow P x l y$
5. 'cases' theorem of traces (using HD and TL of lists):
[TRACE_cases1]
$\vdash$ TRACE $x>y \Longleftrightarrow$ if NULL $l$ then $x=y$ else $\exists u . x-\operatorname{HD} l \rightarrow u \wedge$ TRACE $u(T L l) y$
6. 'cases' theorem of traces (using FRONT and LAST of lists):
[TRACE_cases2]
```
\(\vdash\) TRACE \(x l y \Longleftrightarrow\)
 if NULL \(l\) then \(x=y\)
 else \(\exists u\). TRACE \(x\) (FRONT \(l\)) \(u \wedge u\)-LAST \(l \rightarrow y\)
```

7. Breaking a trace (at any middle position) into two traces:
[TRACE_cases_twice]
$\vdash$ TRACE $x l y \Longleftrightarrow$
$\exists u l_{1} l_{2}$. TRACE $x l_{1} u \wedge$ TRACE $u l_{2} y \wedge\left(l=l_{1}+l_{2}\right)$
8. Appending two traces:
[TRACE_APPEND_cases]
$\vdash \operatorname{TRACE} x\left(l_{1}+l_{2}\right) y \Longleftrightarrow \exists u . \operatorname{TRACE} x l_{1} u \wedge \operatorname{TRACE} u l_{2} y$
Here some list operations: $h:: t$ means the list head $h$ connected with the rest part (tail) $t$ of the list. HD and TL are operators for getting the head and tail of a list, and $L_{1}+L_{2}$ means the connection of two lists. FRONT return the parts of list without the last element, and LAST literally returns the last element of the list.

Our goal here is to be able to freely move between an EPS or weak transition, and the corresponding trace with exactly the same intermediate actions (thus with
the same length). ${ }^{1}$ Clearly every EPS or weak transition is also a trace, but the reverse is not always true. To become an EPS transition, all intermediate actions must be tau. As for weak transitions, if there're visible actions in the trace, it must be unique in the action list. To capture such properties, we have defined two helper concepts:

Definition 6.3.4. (No label and unique lebal)

1. NO_LABEL_def:
$\vdash$ NO_LABEL $L \Longleftrightarrow \neg \exists l$. MEM (label $l$ ) $L$
2. UNIQUE_LABEL_def:
$\vdash$ UNIQUE_LABEL $u \quad \Longleftrightarrow$ $\exists L_{1} L_{2}$.
$\left(L_{1}+[u]+L_{2}=L\right) \wedge$ $\neg \exists l$. MEM (label $l$ ) $L_{1} \vee \operatorname{MEM}($ label $l) L_{2}$

The definition of "no label" seems straightforward, while the definition of "unique label" is quite smart ${ }^{2}$ Usually one can simply count the number of visible actions in the list and assert that number to be one, but the advantage of above definition is that, once we know that a visible action is unique in a list (or trace), from the definition we can immediately conclude that, the same action doesn't appear in the rest two parts of the list. And the related proofs become very straightforward.

NO_LABEL has the following lemma concerning its initial transition:
Lemma 6.3.2. (Case of "no (visible) label") If there's no (visible) label in a list of actions, then either the first action in the list is $\tau$, or the rest of actions has no labels:

NO_LABEL_cases:
$\vdash$ NO_LABEL $(x:: x s) \Longleftrightarrow(x=\tau) \wedge$ NO_LABEL $x s$
UNIQUE_LABEL has two useful lemmas concerning its initial transition: (noticed that how a UNIQUE_LABEL becomes NO_LABEL after the first visible action)

Lemma 6.3.3. (Two cases of "unique label")

1. If a (visible) label $l$ is unique in a list of actions starting with $\tau$ (invisible action), then $l$ is also unique in the rest of the list:

UNIQUE_LABEL_cases1:
$\vdash$ UNIQUE_LABEL (label $l$ ) ( $\tau:: x s$ ) $\Longleftrightarrow$ UNIQUE_LABEL (label $l$ ) $x s$

[^25]2. If a (visible) label $l$ is unique in a list of actions starting with another visible label $l^{\prime}$, then $l=l^{\prime}$ and the rest of actions has no (visible) labels:

UNIQUE_LABEL_cases2:

```
\vdash \mp@code { U N I Q U E _ L A B E L ~ (l a b e l ~ l) ~ (l a b e l ~ l ' : : x s) ~ \Longleftrightarrow }
 (l = l') ^ NO_LABEL xs
```

What we have finally established here, is the precise condition for translating an EPS or weak transition from/to a trace transition:
Theorem 6.3.1. (Trace, EPS and trace)

1. For any EPS transition, there exists a trace in which the action list has no labels:
[EPS_AND_TRACE]
$\vdash E \xlongequal{\epsilon} E^{\prime} \Longleftrightarrow \exists x s$. TRACE $E$ xs $E^{\prime} \wedge$ NO_LABEL $x s$
2. For any weak transition, there exists a trace in which the action list (not null) either has no labels or the label is unique:
[WEAK_TRANS_AND_TRACE]
$\vdash E=u \Rightarrow E^{\prime} \Longleftrightarrow$
$\exists$ us.
TRACE $E$ us $E^{\prime} \wedge \neg$ NULL us $\wedge$
if $u=\tau$ then NO_LABEL $u s$ else UNIQUE_LABEL $u$ us

### 6.3.3 Traces for Expansions and Contractions

Whenever a trace (corresponding to an EPS or weak transition) passes an expansion or contraction, its length either remains the same or becomes shorter. But for our purposes here, we only care about those traces with no (visible) labels or unique (visible) labels, and the traces always pass through the expansion/contraction from left to right (i.e. from 1st to 2 nd parameter). For simplicity we call them input and output traces.
Proposition 6.3.4. (Traces passing expansions and contractions)

1. Whenever a no-labeled trace passes through an expansion, its length remains the same or becomes shorter, while the output trace has still no label:
```
expands_AND_TRACE_tau:
 \vdash E E \succeq _ { e } E ^ { \prime } \Longrightarrow
 \foralls l El.
 TRACE E xs E E ^ NO_LABEL xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}
 TRACE E E xs' E E ^ E E \succeqe E2 ^ LENGTH xs' }\leq\mathrm{ LENGTH xs ^
 NO_LABEL }x\mp@subsup{s}{}{\prime
```

2. Whenever an unique-labeled trace passes through an expansion, its length remains the same or becomes shorter, while the output trace has still unique label (which is the same one as input trace):
```
expands_AND_TRACE_label:
 \vdash E E \succeq _ { e } E ^ { \prime } \Longrightarrow
 \foralls l E E.
 TRACE E xs E1 ^ UNIQUE_LABEL (label l) xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{\prime}\mathrm{ .
```



```
 UNIQUE_LABEL (label l) xs'
```

3. Whenever an no-labeled trace passes through a contraction, its length remains the same or becomes shorter, while the output trace has still no label:
```
contracts_AND_TRACE_tau:
 \vdash E = \succeq _ { b i s } E ^ { \prime } \Longrightarrow
 \foralls E. .
 TRACE E xs E E ^ NO_LABEL xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}
 TRACE E' xs' E E ^ E E1 \succeqbis E E2 ^ LENGTH xs' }\leq\mathrm{ LENGTH xs ^
 NO_LABEL }x\mp@subsup{s}{}{\prime
```

4. Whenever an unique-labeled trace passes through an contraction, its length remains the same or becomes shorter, while the output trace has still unique label (which is the same one as input trace):
```
contracts_AND_TRACE_label:
 \vdash E ~ \succeq b i s ~ E ' ~ \Longrightarrow ~
 |s l E1.
 TRACE E xs E E ^ UNIQUE_LABEL (label l) xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}\mathrm{ .
 TRACE E' xs' E E ^ E E1 \succeqbis E E \ LENGTH xs' }\leq\mathrm{ LENGTH xs ^
 UNIQUE_LABEL (label l) xs'
```

Proof. It's only important to be noticed that, depending on the first transition, it's possible that a weak transition becomes an EPS transition after passing though the expansion/contraction.

These results are essentially important for the proof of the "unique solutions of expansions (or contractions)" in next section.

### 6.4 Unique solutions of contractions

In this section, we describe the formal proof of Theorem 3.10 in Prof. Sangiorgi's paper [3):

Theorem 6.4.1. (unique solution of contractions for $\approx$ ) A system of weakly-guarded contractions has an unique solution for $\approx$.
or formally:
UNIQUE_SOLUTIONS_OF_CONTRACTIONS:
$\vdash$ WGS $E \Longrightarrow \forall P Q . P \succeq_{\text {bis }} E P \wedge Q \succeq_{b i s} E Q \Longrightarrow P \approx Q$
It must be noticed that, in our formal proof there's no "system of contractions", instead there's just one contraction, because currently we can only formalize equations (or expressions) with single process variable. Also, we must understand that "weakly-guarded" contractions with only "guarded sums". This is not a problem of the statement itself, because in Sangiorgi's paper the CCS grammar itself was defined to have only guarded sums. Our CCS grammar has general binary sums, instead, that's why we have "WGS" instead of "WG" in the formal statement of the theorem.

Here "WGS" means "weakly guarded expression (context) with only guarded sum", its recursive definition is similar with "WG":

Definition 6.4.1. (Weakly guarded expression with restriction of guarded sums) A weakly guarded expression with restriction of guarded sums is defined inductively as a $\lambda$-function:

```
WGS (}\lambdat.p
GCONTEXT e WGS (}\lambdat.a.e t
GCONTEXT }\mp@subsup{e}{1}{}\wedge\mathrm{ GCONTEXT }\mp@subsup{e}{2}{}\Longrightarrow\mathrm{ WGS (}\lambdat.\mp@subsup{a}{1}{}..\mp@subsup{e}{1}{}t+\mp@subsup{a}{2}{}..\mp@subsup{e}{2}{}t
WGS e}\mp@subsup{e}{1}{}\wedge\textrm{WGS}\mp@subsup{e}{2}{}\Longrightarrow\textrm{WGS}(\lambdat. e e t | e e t)
WGS e WGS (\lambdat. \nuL (e t))
WGS e WGS (}\lambdat.relab (e t) rf) [WGS_rules]
```

where GCONTEXT is defined by

```
GCONTEXT (}\lambdat.t
GCONTEXT (}\lambdat.p
GCONTEXT }e\Longrightarrow\mathrm{ GCONTEXT (}\lambdat.a..e t
GCONTEXT }\mp@subsup{e}{1}{}\wedge GCONTEXT \mp@subsup{e}{2}{}\Longrightarrow\mathrm{ GCONTEXT (}\lambdat.\mp@subsup{a}{1}{}..\mp@subsup{e}{1}{}t+\mp@subsup{a}{2}{}..\mp@subsup{e}{2}{}t\mathrm{)
GCONTEXT }\mp@subsup{e}{1}{}\wedge GCONTEXT \mp@subsup{e}{2}{}\Longrightarrow\mathrm{ GCONTEXT (}\lambdat.\mp@subsup{e}{1}{}t|\mp@subsup{e}{2}{}t\mathrm{)
GCONTEXT e ב GCONTEXT (}\lambdat.\nuL(e t)
GCONTEXT e\Longrightarrow GCONTEXT (}\lambdat.\mathrm{ relab (e t) rf) [GCONTEXT_rules]
```

And we have proved the following results:
Proposition 6.4.1. A "WGS" is also an GCONTEXT, and its combination with a GCONTEXT gives another WGS:
$\vdash$ WGS $e \Longrightarrow$ GCONTEXT $e$
$\vdash \operatorname{GCONTEXT} c \wedge$ WGS $e \Longrightarrow$ WGS $(c \circ e)$
Actually the proof of above theorem itself is quite simple, what's not simple is the Lemma 3.9 before it: (also reduced to single-variable case)

Lemma 6.4.1. Suppose $P$ and $Q$ are solutions for $\approx$ of a weakly-guarded contraction. For any context $C$, if $C[P] \stackrel{\mu}{\Rightarrow} R$, then there is a context $C^{\prime}$ such that $R \succeq_{\text {bis }} C^{\prime}[P]$ and $C[Q] \stackrel{\hat{\sim}}{\approx} C^{\prime}[Q]$.
or formally:
UNIQUE_SOLUTIONS_OF_CONTRACTIONS_LEMMA:

```
\(\vdash\left(\exists E\right.\). WGS \(\left.E \wedge P \succeq_{\text {bis }} E P \wedge Q \succeq_{\text {bis }} E Q\right) \Longrightarrow\)
 \(\forall C\).
 GCONTEXT \(C \Longrightarrow\)
 (\(\forall l\) R.
 \(C P=\) label \(l \Rightarrow R \Longrightarrow\)
 \(\exists C^{\prime}\) 。
 GCONTEXT \(C^{\prime} \wedge R \succeq_{\text {bis }} C^{\prime} P \wedge\)
 (WEAK_EQUIV \(\left.\left.\circ_{r}(\lambda x y . x=l a b e l ~ l \Rightarrow y)\right)\left(\begin{array}{ll}C & Q\end{array}\right)\left(C^{\prime} Q\right)\right) \wedge\)
```

        \(\forall R\).
            \(C P=\tau \Rightarrow R \Longrightarrow\)
            \(\exists C^{\prime}\) 。
                GCONTEXT \(C^{\prime} \wedge R \succeq_{\text {bis }} C^{\prime} P \wedge\)
                    (WEAK_EQUIV \(\circ_{r}\) EPS) ( \(\left.\begin{array}{ll}C & Q\end{array}\right)\left(\begin{array}{ll}C^{\prime} & Q\end{array}\right)\)
    It's in this proof that we must use traces to capture the length of weak transitions. The formal proof also used the following four so-called "unfolding lemmas" to minimize the proof size for single theorem (otherwise it's very hard to replay and learn the entire single proof):

Lemma 6.4.2. (Four "unfolding lemmas" used in proof of Lemma 6.4.1)

```
unfolding_lemma1:
 \vdash ~ G C O N T E X T ~ E ~ \ ~ G C O N T E X T ~ C ~ \wedge ~ P ~ \succeq ~ b i s ~ E ~ P \Longrightarrow
 \foralln.CP}\mp@subsup{\succeq}{bis}{(C}O\mathrm{ FUNPOW E n) P
unfolding_lemma2:
 \vdash ~ W G S ~ E ~ \Longrightarrow ~
 \forall u P'.
 E P-u-> P'\Longrightarrow
 \existsC'. GCONTEXT C'^(}\mp@subsup{C}{}{\prime}=\mp@subsup{C}{}{\prime}P)\wedge\forallQ.E Q -u->\mp@subsup{C}{}{\prime}
unfolding_lemma3:
 \vdash ~ G C O N T E X T ~ C ~ \wedge ~ W G S ~ E ~ \Longrightarrow ~
 \forallP}x\mp@subsup{P}{}{\prime}
```

```
C(E P) -x-> P' \Longrightarrow
\existsC'. GCONTEXT C'^(P'= C' P)^\forallQ.C(E Q) -x->C C'Q
unfolding_lemma4:
 \vdash ~ G C O N T E X T ~ C ~ \wedge ~ W G S ~ E ~ \wedge ~ T R A C E ~ ((C ~ O ~ F U N P O W ~ E ~ n) ~ P) ~ x s ~ P ' ~ \ ~
 LENGTH xs \leq n \Longrightarrow
 \exists}\mp@subsup{C}{}{\prime}\mathrm{ .
 GCONTEXT C }\mp@subsup{C}{}{\prime}\wedge(\mp@subsup{P}{}{\prime}=\mp@subsup{C}{}{\prime}P)
 \forallQ. TRACE ((C ○ FUNPOW E n) Q) xs ((}\mp@subsup{C}{}{\prime}Q
```

The purpose of unfolding_lemma1 is to make sure the contraction is preserved by $n$-times wrapping of contexts (GCONTEXT actually), and the proof only need to precongruence property of the 'contracts' relation. (Thus any precongruence or congruence relation fits the lemma). This lemma is directly used in the proof of main lemma, UNIQUE_SOLUTIONS_OF_CONTRACTIONS_LEMMA.

The purpose of unfolding_lemma2 is to make sure the first transition from a weakly guarded expression do not come from the inside of its variable(s). This is very important, because otherwise we will not be able to freely change the value of process variable (and still form a valid transition). To prove this lemma, we have to do induction into the structure of a weakly-guarded expressions, and for the cases of sums, we have to do further inductions to look at each of its summands.

The purpose of unfolding_lemma3 is a simple wrapper for unfolding_lemma2, to fit the use in unfolding_lemma4, in which the weakly-guarded expression is actually a composition of two expressions.

The purpose of unfolding_lemma4 is to guarantee that, if the process variable is hiding deeply enough in the weakly guarded expressions, then after $n$ times transition, it's still not touched. This actually completes the first half (most important part) of the informal proof of Lemma 3.9 of [3] (UNIQUE_SOLUTIONS_OF_CONTRACTIONS_LEMMA).

With all these lemmas (nicely separated out from the previous big informal proofs), the whole "unique solution of contractions" theorem get proved formally. Again, although we have only formalized its single-variable case, extending it to multiple variable cases informally is quite straightforward, so we can claim that, the formal verification of this result is a success.

In fact, we can also prove the "unique solutions of expansions" theorem in the same way, because in above proof, all used properties for "contracts" also hold for "expands". Therefore by almost the same steps, we have also proved the following results for expansion, together with its main lemma:

Theorem 6.4.2. (Unique solution of expansions and its lemma)
UNIQUE_SOLUTIONS_OF_EXPANSIONS_LEMMA:

```
 \(\vdash\left(\exists E\right.\). WGS \(\left.E \wedge P \succeq_{e} E P \wedge Q \succeq_{e} E Q\right) \Longrightarrow\)
 \(\forall C\).
 GCONTEXT \(C \Longrightarrow\)
 (\(\forall l\) R.
```

```
 C P =label l=>R\Longrightarrow
 \exists}\mp@subsup{C}{}{\prime}\mathrm{ .
 GCONTEXT C' ^ R \succeq
 (WEAK_EQUIV or (}\lambdaxy.x=label l=> y)) (C Q) ((' | Q)) ^
\forall}\mathrm{ .
 C P =\tau=> R\Longrightarrow
 \exists}\mp@subsup{C}{}{\prime}
 GCONTEXT C C ^ R \succeqe }\mp@subsup{C}{}{\prime}\mp@subsup{C}{}{\prime}P
 (WEAK_EQUIV or EPS) (}C\quadQ\mathrm{) ((}\mp@subsup{C}{}{\prime}\quadQ
UNIQUE_SOLUTIONS_OF_EXPANSIONS:
```



We have re-used 3 of the 4 above "unfolding lemmas", because in their statements there's "contracts" at all. For the first unfolding lemma, we have easily duplicated it into the following version for "expands":

```
unfolding_lemma1':
 \vdash \mp@code { G C O N T E X T ~ E ~ ^ ~ G C O N T E X T ~ } C \wedge P \ \succeq _ { e } E P \Longrightarrow
 \foralln. CP \succeqe (}C\mathrm{ ○ FUNPOW E n) P
```

But actually there's a much easier way to prove "unique solutions of expansions" theorem, or the "unique solution" theorem for any relation contained in "contracts". Here is the idea: (also formalized)

Proof. (Easy proof for Theorem 6.4.2) If $P$ and $Q$ are both solutions of an expansion, i.e. $P \succeq_{e} E[P]$ and $P \succeq_{e} E[Q]$, as we know expansion implies contraction, so we have also $P \succeq_{b i s} E[P]$ and $P \succeq_{b i s} E[Q]$. By "unique solutions of contractions" theorem, immediately we get $P \approx Q$.

Here a natural question raised up: since we have also the theorem for "unique solution of expansions", then why contractions? Is there any property which holds for only contraction but expansion? The answer is the following completeness theorem (Theorem 3.13 in [3]) that we cannot formalize right now (because it holds only for a system of contractions but single contraction):

Theorem 6.4.3. (completeness) Suppose $\mathcal{R}$ is a bisimulation. Then there is a system of weakly-guarded pure contractions of which $\mathcal{R}_{1}$ and $\mathcal{R}_{2}$ are solutions for $\succeq_{\text {bis }}$. (Here $\mathcal{R}_{i}$ indicates the tuple obtained by projecting the pairs in $\mathcal{R}$ on the $i$-th component ( $i=1,2$ ).

We omit the proof here, while only quote the following remarks given by Prof. Sangiorgi in his paper:
Remark. In the final step of the proof above, relation $\xlongequal{\hat{\mu}_{s}}$ comes from the definition of weak bisimulation, and could not be replaced by $\xrightarrow{\mu_{s}}$. This explains why the completeness proof fails with expansion in place of contraction. 3

[^26]
### 6.5 Observational contraction

In this thesis, we have slightly gone beyond the paper of Prof. Sangiorgi [3] by finding a slightly "better" contraction relation which is real precongruence beside all properties of the existing one, such that the restriction on guarded sums can be removed from all levels (CCS grammar, weakly guarded contractions, etc.). Fortunately such a relation does exist and was found in just one day. The quick finding is based on the following two principles:

1. Its definition must NOT be recursive (co-inductive), just like the definition of observation congruence ( $\approx^{c}$ );
2. It must be based on the existing 'contracts' relation, which we believe it's the 'right' one (become its completeness), just like weak equivalence (approx).

We call this new contraction relation "observational contraction" with the symbol $\succeq_{\text {bis }}^{c}$ (the small letter $c$ indicates it's a (pre)congruence): (OBS_contracts in HOL), here is its definition:

Definition 6.5.1. (Observational contraction) Two processes $E$ and $E^{\prime}$ has observational contraction relation (called " $E$ observational contracts $E^{\prime \prime \prime}$ ) if and only if

1. $E \xrightarrow{\mu} E_{1}$ implies that there is $E_{2}$ with $E^{\prime} \xrightarrow{\mu} E_{2}$ and $E_{1} \succeq_{\text {bis }} E_{2}$,
2. $E^{\prime} \xrightarrow{\mu} E_{2}$ implies that there is $E_{1}$ with $E \stackrel{\mu}{\Rightarrow} E_{1}$ and $E_{1} \approx E_{2}$.
or formally:
```
\(\vdash E \succeq_{\text {bis }}^{c} E^{\prime} \Longleftrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}-u \rightarrow E_{2} \wedge E_{1} \succeq_{\text {bis }} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge E_{1} \approx E_{2}\)
```

The primary property we wanted from this new relation is to make sure that it's preserved by direct sums. This is indeed true for this new relation:

Proposition 6.5.1. Observational contraction is preserved by (direct) sums:
OBS_contracts_PRESD_BY_SUM:
$\vdash E_{1} \succeq_{b i s}^{c} E_{1}^{\prime} \wedge E_{2} \succeq_{b i s}^{c} E_{2}^{\prime} \Longrightarrow E_{1}+E_{2} \succeq_{b i s}^{c} E_{1}^{\prime}+E_{2}^{\prime}$
Following standard techniques (especially the proof ideas for "observational congruence"), we have also proved its preserving properties on other CCS constructions:

Proposition 6.5.2. (Other properties of observational contraction)
important for applications? I doubt. Contractions are a variation of expansion. However, completeness to me shows that contractions are the 'right' relation. I wish I had further evidence for that."

1. Observational contraction is substitutive by prefix OBS_contracts_SUBST_PREFIX:
$\vdash E \succeq_{\text {bis }}^{c} E^{\prime} \Longrightarrow \forall u . u \ldots E \succeq_{\text {bis }}^{c} u \ldots E^{\prime}$
2. Observational contraction is preserved by parallel composition:
```
OBS_contracts_PRESD_BY_PAR:
 \vdash E _ { 1 } \succeq _ { b i s } ^ { c } E _ { 1 } ^ { \prime } \wedge E _ { 2 } \succeq _ { b i s } ^ { c } E _ { 2 } ^ { \prime } \Longrightarrow E _ { 1 } \| E _ { 2 } \succeq _ { \text { bis } } ^ { c } E _ { 1 } ^ { \prime } \| E _ { 2 } ^ { \prime }
```

3. Observational contraction is substitutive by restrictions:
```
OBS_contracts_SUBST_RESTR:
 \vdash \succeq \succeqbis }\mp@subsup{E}{}{\prime}\Longrightarrow\forallL.\nuLE \succeqcis \nu L E'
```

4. Observational contraction is substitutive by relabeling operators:
```
OBS_contracts_SUBST_RELAB:
 \vdashE \succeq
```

Putting all together, observational contraction relation is a (real) precongruence:
Lemma 6.5.1. Observational contraction is precongruence, i.e. it's substitutive by semantics contexts:

```
OBS_contracts_SUBST_CONTEXT:
 \vdash P \ \succeq c i c h \ ~ Q ~ \forall E . ~ C O N T E X T ~ E \Longrightarrow E P ~ \succeq b i s ~ E ~ Q ~
```

or
$\vdash$ precongruence OBS_contracts [OBS_contracts_precongruence]
where
$\vdash$ precongruence $R \Longleftrightarrow$
$\forall x y c t x$. CONTEXT $c t x \Longrightarrow R x y \Longrightarrow R(c t x \quad x)\left(\begin{array}{ll}c t x & y\end{array}\right)$

The other potential problematic property is the transitivity, but fortunately this is also proven:

Proposition 6.5.3. (Transitivity of observational contraction)

$$
\vdash E \succeq_{b i s}^{c} E^{\prime} \wedge E^{\prime} \succeq_{b i s}^{c} E^{\prime \prime} \Longrightarrow E \succeq_{b i s}^{c} E^{\prime \prime} \quad \text { [OBS_contracts_TRANS] }
$$

Together with the easily proved reflexivity, we show the "observational contraction" is indeed a pre-order:

Proposition 6.5.4. Observational contraction is a pre-order:
$\vdash$ PreOrder (contracts)
On the relationship with other relations, we have the following results:
Proposition 6.5.5. (Observational contraction and other relations)

1. Observational contraction implies contraction:

$$
\vdash E \succeq_{\text {bis }}^{c} E^{\prime} \Longrightarrow E \succeq_{\text {bis }} E^{\prime} \quad \text { [OBS_contracts_IMP_contracts] }
$$

2. Observational contraction implies observational congruence:

$$
\vdash E \succeq_{\text {bis }}^{c} E^{\prime} \Longrightarrow E \approx^{c} E^{\prime} \quad \text { [OBS_contracts_IMP_OBS_CONGR] }
$$

Thus observational contraction is also contained in the existing 'contracts' relation, plus it's contained in observational congruence. The overall relationships we know so far looks like this:

$$
\begin{aligned}
& \succeq_{e} \subset \succeq_{b i s} \subset \approx \\
& \succeq_{b i s}^{c} \subset \succeq_{b i s} \subset \approx \\
& \succeq_{b i s}^{c} \subset \approx^{c} \subset \approx
\end{aligned}
$$

Noticed that, the strict subset relationship is not proved in our project, but they're indeed true (by showing some counterexamples). Also, we don't know if there's a subset relationship between expansion and observational contraction but we believe they have no such relationship at all.

Also, so far we haven't found any relation which is coarser than $\succeq_{b i s}$, this probably means it's the "coarsest one" in some sense (although we don't no such results so far), and since $\succeq_{b i s}^{c}$ is contained in $\succeq_{b i s}$, its "unique solution" theorem is immediately available from the "unique solution of contractions" theorem, just like the case of "expansion":

UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS ' :
$\vdash$ WGS $E \Longrightarrow \forall P Q . P \succeq_{b i s}^{c} E P \wedge Q \succeq_{b i s}^{c} E Q \Longrightarrow P \approx Q$
However, we can do certainly much better: all restrictions on guarded sums can be removed from the proof of "unique solution of contractions" theorem, while we still have essentially the same proof. What we have finally proved is the following one, together with its main lemma:

```
UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS_LEMMA:
 \vdash(\existsE.WG E\wedgeP}\mp@subsup{\succeq}{\mathrm{ bis }}{c}EP\wedgeQ\mp@subsup{\succeq}{\mathrm{ bis }}{c}EQ)
 \forall
 CONTEXT C \Longrightarrow
 (}\foralllR
 C P =label l=>R\Longrightarrow
 \exists}\mp@subsup{C}{}{\prime}\mathrm{ .
```

CONTEXT $C^{\prime} \wedge R \succeq_{b i s} C^{\prime} P \wedge$
(WEAK_EQUIV $\circ_{r}(\lambda x \quad y \cdot x=$ label $\left.\left.l \Rightarrow y)\right)\left(\begin{array}{ll}C & Q\end{array}\right)\left(\begin{array}{ll}C^{\prime} & Q\end{array}\right)\right) \wedge$
$\forall R$.
$C P=\tau \Rightarrow R \Longrightarrow$
$\exists C^{\prime}$ 。
CONTEXT $C^{\prime} \wedge R \succeq_{b i s} C^{\prime} P \wedge$
(WEAK_EQUIV $o_{r}$ EPS) ( $C \quad Q$ ) ( $C^{\prime} Q$ )
UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS:

$$
\vdash \text { WG } E \Longrightarrow \forall P Q . P \succeq_{b i s}^{c} E P \wedge Q \succeq_{b i s}^{c} E Q \Longrightarrow P \approx Q
$$

The last theorem above is a beautiful and concise result, because it requires only a normal weakly-guarded expression, which is the same as in Milner's "unique solution of equations" theorem for strong equivalence.

To finish this formal proof, we have almost used everything, please notice that, in the conclusion of above main lemma, it still requires the normal "contracts" relation. This is because our definition of "observation contraction" is not recursive: after passing the first transition, it "downgrades" to the normal contraction, thus we need to use the properties of normal contractions to finish the rest of the proof. What's also needed, is the following properties related to trace:

```
OBS_contracts_AND_TRACE_tau:
 \vdash E ~ \succeq ~ ל b i s ~ E ' ~ \Longrightarrow ~
 \foralls l E1.
 TRACE E xs E E ^ ^NO_LABEL xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}
 TRACE E' }\mp@subsup{E}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mp@subsup{\succeq}{bis}{}\mp@subsup{E}{2}{}\wedge LENGTH xs' \leq LENGTH xs ^
 NO_LABEL }x\mp@subsup{s}{}{\prime
OBS_contracts_AND_TRACE_label:
 \vdash E ~ \succeq ~ \succeq b i s ~ E ' ~ \Longrightarrow ' ,
 *s l El.
 TRACE E xs E E ^ UNIQUE_LABEL (label l) xs \Longrightarrow
 \existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}\mathrm{ .
 TRACE E' }\mp@subsup{E}{}{\prime}\mp@subsup{s}{}{\prime}\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mp@subsup{\succeq}{\mathrm{ bis }}{}\mp@subsup{E}{2}{}\wedge LENGTH xs' \leq LENGTH xs ^
 UNIQUE_LABEL (label l) }x\mp@subsup{s}{}{\prime
OBS_contracts_WEAK_TRANS_label':
 \vdash E ~ \succeq ~ \succeq b i s ~ E ' ~ \Longrightarrow ~
```



```
OBS_contracts_EPS':
```



Noticed how "observational contraction" becomes normal contraction in above statements, after passing the first transition step.

### 6.5.1 coarsest precongruence contained in $\succeq_{\text {bis }}$

So far we haven't examined any practical application in which our new "observational contraction" is meaningful and useful. However, it's natural to ask if there's another relation having all the properties of "observational contraction" while containing more process pairs (in another word, coarser than $\succeq_{\text {bis }}^{c}$. We want to prove our finding is the coarsest precongruence contained in $\succeq_{b i s}$, just like observation congruence is the coarsest congruence contained in weak equivalence. Following the theory of congruence we have built for CCS, this proposition can be reduce to the following simpler form:

Proposition 6.5.6. The "observational contraction" $\left(\succeq_{b i s}^{c}\right)$ is the coarsest precongruence contained in $\succeq_{\text {bis }}$ if and only if:

$$
\begin{equation*}
\forall p q . p \succeq_{b i s}^{c} q \Longleftrightarrow \forall r . p+r \succeq_{b i s} q+r . \tag{6.1}
\end{equation*}
$$

In the following formalizations, we only how to reduce the initial concern to above form, and formally prove above proposition from left to right (which is quite easy).

First of all, we can define a new relation (C_contracts) as the context closure of $\succeq_{\text {bis }}$ (also recall the definition of context closure),

```
\(\vdash\) C_contracts \(=\) CC (contracts) [C_contracts]
\(\vdash \mathrm{CC} R=\left(\lambda g h . \forall c . \operatorname{CONTEXT} c \Longrightarrow R\left(\begin{array}{ll}c & g\end{array}\right)\left(\begin{array}{ll}c h\end{array}\right)\right.\)

Then we can immediately show that, this new relation is indeed a (real) precongruence (because any congruence closure is automatically precongruence):
```

\& precongruence C_contracts
[C_contracts_precongruence]

```

We can also easily prove that, above new relation contains \(\succeq_{b i s}^{c}\), because it's the coarsest one (recall a congruence closure is always coarsest):
```

OBS_contracts_IMP_C_contracts:
\vdash p \succeq _ { bis } ^ { c } q \Longrightarrow C_contracts pq

```

Next, we define another new relation, which seems much larger, as the closure closed only on direct sums: (here we don't even know if it's a precongruence)
```

SUM_contracts:
\&SUM_contracts = ( }\lambda\mathrm{ \ p q. }\forallr.p+r\mp@subsup{\succeq}{bis}{}q+r

```

However, what we do know is, this new relation contains the previous one: (this actually proves the "left-to-right part" of our earlier proposition!)
```

C_contracts_IMP_SUM_contracts:
\vdash C_contracts p q 丷 SUM_contracts p q

```

Now we have a relation chain: OBS_contracts \(\subseteq\) C _contracts \(\subseteq\) SUM_contracts. To prove our "observational contraction" is the "coarsest one", i.e. it coincides with "C_contracts", it's sufficient to prove "SUM_contracts" implies "OBS_contracts":
\(\forall p q\). SUM_contracts \(p q \Longrightarrow p \succeq_{\text {bis }}^{c} q\)
which equals to the "right-to-left" part of our earlier proposition. This proof is actually quite like the case of "coarsest congruence contained in \(\approx\) " (Section 3.10). Whenever the two process didn't use up all available actions, we can prove the following easy version:

COARSEST_PRECONGR_THM:
\(\vdash\) free_action \(p \wedge\) free_action \(q \Longrightarrow\left(p \succeq_{\text {bis }}^{c} q \Longleftrightarrow\right.\) SUM_contracts \(\left.p q\right)\)
COARSEST_PRECONGR_THM':
\(\vdash\) free_action \(p \wedge\) free_action \(q \Longrightarrow\left(p \succeq_{b i s}^{c} q \Longleftrightarrow \forall r . p+r \succeq_{b i s} q+r\right)\)
A further extension of this result for finite state CCS (based on Klop functions) should be also possible, but in this project we didn't try to prove it due to time limits.

\section*{Chapter 7}

\section*{Towards multi-variable equations}

As we have explained in the Introduction chapter, the existing CCS datatype in our formalization project can be seen as expressions with some free variables. Suppose \(E\) is such an expression with free variables \(X_{1}, X_{2}, \ldots, X_{n}\) (there must be finite number of them because any CCS expression can only be finitary given there's no infinite sums, which is the current case), abbreviated as \(E[\tilde{X}]\), then \(X_{1} \sim E[\tilde{X}]\) is CCS equations for strong equivalence. And suppose we have a system of expressions \(\tilde{E}\), then \(\tilde{X} \sim \tilde{E}[\tilde{X}]\) is a system of CCS equations.

To actually prove things about these equations, we need to at least two devices: 1) the ability to find all free variables in any CCS term, and 2) the ability to replace any free variable with specific CCS process (which shouldn't further contain any free variable).

The following recursive function can be used to retrieve a set of free variables in any CCS term:
```

FV nil = \emptyset
FV (u..p) = FV p
FV (p+q) = FV p U FV q
FV (p|q) = FV p\cup FV q
FV (\nuL p) = FV p
FV (relab p rf) = FV p
FV (var X) = {X}
FV (rec X p) = FV p DIFF {X}

```

Similarity, we can also define a function for retrieving the set of all bound variables:
```

BV nil = \emptyset
BV (u..p) = BV p
BV (p+q) = BV p U BV q
BV (p|q) = BV p\cup BV q
BV (\nu L p) = BV p
BV (relab p rf) = BV p
BV (var X) = \emptyset
BV (rec X p) = X INSERT BV p

```

However, the set of bound variables are not quite interesting, because a variable bounded somewhere in the term may be also free at another position in the term, thus the set of free and bound variables are not disjoint.

Sometimes we need to if a CCS term is an expression or process, which can be checked by the following function based on FV:
```

IS_PROC_def:
\vdash IS_PROC E < (FV E = \emptyset)

```

To replace the free variables in CCS terms with processes, we must clearly specify the correspondence between each variable and its replacement, thus the resulting (single) CCS process after all its free variables have been replaced, should be in forms like \(E\{\tilde{p} / \tilde{X}\}\). In case some variables in \(\tilde{X}\) didn't appear in \(E\), it's natural to simple ignore the replacement operation, or the operation has no effects. Using constants defined in HOL's listTheory, such a substitution operation could be defined simply upon the existing CCS_Subst. However there will be all kinds of issues regarding the order of substitutions and it's hard to prove that the resulting process is unique for whatever permutations of the variable list. Another solution is to use finite maps to represent variable substitutions, to get rid of the ordering issues (suggested by Konrad Slind from HOL community):
```

CCS_Subst1 nil fm = nil
CCS_Subst1 (u..E) fm = u..CCS_Subst1 E fm
CCS_Subst1 ( }\mp@subsup{E}{1}{}+\mp@subsup{E}{2}{})fm=CCS_Subst1 E E fm + CCS_Subst1 E E fm
CCS_Subst1 ( }\mp@subsup{E}{1}{|}|\mp@subsup{E}{2}{})fm=\mathrm{ CCS_Subst1 E E fm| CCS_Subst1 E E fm
CCS_Subst1 (
CCS_Subst1 (relab E rf) fm = relab (CCS_Subst1 E fm) rf
CCS_Subst1 (var Y) fm = if Y G FDOM fm then fm , Y else var Y
CCS_Subst1 (rec Y E) fm =
if Y\in FDOM fm then rec Y E else rec Y (CCS_Subst1 E fm)

```

To further do substitutions on a list of CCS terms, we can define CCS_Subst2 which depends on CCS_Subst1:
```

CCS_Subst2_def:
\vdash \mp@code { C C S _ S u b s t 2 ~ E s ~ f m ~ = ~ M A P ~ ( ~ } \lambda e . CCS_Subst1 e fm) Es

```

Here we have used the constant MAP, which has the following recursive definition:
```

MAP f [] = []
MAP f (h::t) = f h::MAP f t

```

Thus it will call CCS_Subst1 with the same list of variables and their substitutions on each given CCS term, and then collect the resulting processes into a returning list. The type of CCS_Subst2 is
```

:('a, 'b) CCS list -> ('a, 'b) CCS list -> 'a list -> ('a, 'b) CCS list

```

To define weakly guarded expressions, say \(E\), we must make sure that all free variables in \(E\) are weakly guarded. If we ignore all other free variables and focus on just one of them, say, \(X\), then it's possible to define weak guardedness of any CCS term in the following way:
```

weakly_guarded1_def:
\vdash ~ w e a k l y \_ g u a r d e d 1 ~ E ~ \Longleftrightarrow ~
\forallX. X \in FV E\Longrightarrow \foralle. CONTEXT e ^ (e (var X) = E) \Longrightarrow WG e

```

Similarily we can also define other guardedness concepts in the same way. With these new devices, it's possible to formalize all "unique solution of equations" theorems with multi-variable equations, without touching existing formalization framework.

\section*{Chapter 8}

\section*{Conclusions}

In this thesis project, we have further formalized Milner's Calculus of Communicating Systems (CCS) using HOL theorem prover (HOL4). Beside classical results like the properties and algebraic laws of three equivalence relations (strong/weak bisimilarities and observational congruence), this work also includes a comprehensive formalization of "bisimulation up to", expansions and contractions, a theory of congruence for CCS, up to several versions of the "unique solution of equations (or contractions)" theorem. Some of the concepts and theorems were introduced by Prof. Davide Sangiorgi in his recent paper [3], and during this thesis we have further introduced new concept (observational contraction) and proved an more elegant form of its "unique solution of contraction" theorem. Therefore, to some extent, this thesis work has touched the current frontier in the research of concurrency theory and process algebra.

Although we chose to focus on single-variable equations in all "unique solutions" theorems, to minimize the development efforts, the resulting formal proofs actually have the same steps with the informal proofs, therefore we have confidence that the related informal proofs were all correct (so is our formalization). An extension to multi-variable cases is possible, without touching the CCS grammar (datatype) definition, as the free variables in CCS terms can be treated as equation variables, although this is not the current standard viewpoint.

Our formalization is based on the work done by Prof. Monica Nesi during 19921995 on Hol88 theorem prover, and by porting them into latest HOL4, we have successfully preserved this important work and make sure it's availability in the future (by submitting them into HOL's official code base). The use of HOL4's co-inductive relation and many builtin theories has demonstrated that HOL4's advantages over other theorem provers on the formalization of CCS or other process algebras.

\subsection*{8.1 Further directions}

The proof engineering research in Concurrency Theory is far from fully resolved. Although we have quickly achieve a more-than-ever depth on the formalization of a simple process algebra (CCS), by covering several deep theorems, some important
foundations in the work are still not perfectly built. And the author is planning to make further perfections in the future. Below is a list of plans:
1. Infinite sum of CCS processes. We want to precisely implement Milner's original CCS theory in which infinite sum of processes is included. Infinite sum is necessary for the proof of some theoretical results, and it's also needed for the encoding of Value-Passing CCS into Pure CCS. Currently this is limited by the datatype package of HOL4. Instead of manually define an CCS datatype with infinite sums in higher order logic, the author would like to improve HOL4's datatype defining abilities by implementing [12] (or porting its existing implementation in Isabelle/HOL), a compositional (co) datatype support based on category theory.
2. Extending to multi-variable equations. Currently we have only proved all "unique solutions of equations/contractions" theorems for single-variable equations. It is possible to prove the same theorems for systems of multivariable equations in current framework. The congruence of equivalence with respect to recursive constructions, and supporting lemma for multi-variable substitutions must be formally proved first.
3. Decision procedures for equivalence checking. We want to implement the symbolic equivalence checking for CCS processes, and turn theorem prover into a model checking utility like the Concurrency Workbench (CWB). Instead of implementing the underlying algorithms directly in Standard ML, we would like to reduce the problem into BDD (Binary Decision Diagram) problems and call HOL's BDD library for the actual model checking.

\section*{Chapter 9}

\section*{References}

This chapter contains all definitions and theorems we have proved in this thesis project. They're separated by theories with reasonable names, ordered by their logical dependencies.

Some theorems are generated from existing theorems in forward way, they're also exported because from the view of HOL there's no difference between them and other manually proved theorems in backward ways. Thus there're some duplications in the sense that some theorems are just other theorems in separated (or combined) forms.

On the other side, each theorem has only its statement in HOL presented here. Their formal proofs are NOT presented here. (This is different with \(\mathrm{T}_{\mathrm{E}} \mathrm{Xexporting}\) facility found in Isabelle, which exports both the statements and (usually humanreadable) proofs into papers) This project has roughly 20,000 lines of proof scripts, which are exported into about 100 pages. Please keep in mind that, the number of these pages has no strict relationship with the complexity of the theorems being proved: it's possible for a very complicated theorem to have several thousands of line of proof code (which is not a good style though) but when exporting it into TEXpages, it's just a few lines! In this thesis project, the author tends to break large theorems into small pieces and prove them increasingly, and most of the meaningful intermediate theorems were also saved and exported.

Also noticed that, due to issues in HOL's TEXexporting facility, some theorems have slightly different forms with the same theroems appeared in previous chapters, with Unicode symbols replaced by their original ASCII-based names.

\subsection*{9.1 CCS Theory}

Built: 08 Dicembre 2017
Parent Theories: real

\subsection*{9.1.1 Datatypes}
\(C C S=\)
nil
| var 'a
| prefix ('b Action) (('a, 'b) CCS)
| (+) (('a, 'b) CCS) (('a, 'b) CCS)
I par (('a, 'b) CCS) (('a, 'b) CCS)
| \(\nu\) ('b Label \(\rightarrow\) bool) (('a, 'b) CCS)
| relab (('a, 'b) CCS) ('b Relabeling)
| rec 'a (('a, 'b) CCS)
Label \(=\) name 'b | coname 'b

\subsection*{9.1.2 Definitions}
```

[ALL_IDENTICAL_def]
$\vdash \forall t$. ALL_IDENTICAL $t \Longleftrightarrow \exists x . \forall y$. MEM $y t \Longrightarrow(y=x)$
[ALL_PROC_def]
$\vdash \forall E s$. ALL_PROC $E s \Longleftrightarrow$ EVERY IS_PROC Es
[Apply_Relab_def]
$\vdash(\forall l$. Apply_Relab [] $l=l) \wedge$
$\forall$ newold $l s l$.
Apply_Relab (newold::ls) $l=$
if SND newold $=l$ then FST newold
else if COMPL (SND newold) $=l$ then COMPL (FST newold)
else Apply_Relab ls l
[BN_def]
$\vdash(\forall J . \mathrm{BN} \operatorname{nil} J=\{ \}) \wedge(\forall u p J . \mathrm{BN}(u \ldots p) J=\mathrm{BN} p J) \wedge$
$(\forall p q J . \mathrm{BN}(p+q) J=\mathrm{BN} p J \cup \mathrm{BN} q J) \wedge$
$(\forall p q J . \mathrm{BN}(p \| q) J=\mathrm{BN} p J \cup \mathrm{BN} q J) \wedge$
$(\forall L p J . \mathrm{BN}(\nu L p) J=\mathrm{BN} p J \cup L) \wedge$
$(\forall p$ rf $J . \mathrm{BN}($ relab $p r f) J=\mathrm{BN} p J) \wedge$
$(\forall X J . B N(\operatorname{var} X) J=\{ \}) \wedge$
$\forall X \quad p \quad J$.
BN (rec $X p$ ) $J=$
if MEM $X J$ then
FN (CCS_Subst $p$ (rec $X \quad$ ) $X$ ) (DELETE_ELEMENT $X \quad J$ )
else \{ \}

```
```

[bound_names_def]
\vdash}\forallp.\mathrm{ bound_names p = BN p(SET_TO_LIST (BV p))
[BV_def]
\vdash(BV nil = {}) ^(\forallu p. BV (u..p) = BV p)^
(\forallpq. BV (p+q) = BV p\cup BV q)^
(
(\forallL p. BV ( }\nuL~p)=\textrm{BV}p)\wedge(\forallprf. BV (relab prf)= BV p) ^
(\forallX. BV (var X) = {}) ^ \forallX p. BV (rec X p) = X INSERT BV p
[CCS_Subst1_def]
\vdash ( \forall f m . ~ C C S \ S u b s t 1 ~ n i l ~ f m ~ = ~ n i l ) ~ \wedge ~
(\forallu E fm. CCS_Subst1 (u..E) fm = u..CCS_Subst1 E fm) ^
(\forallE E E E fm.
CCS_Subst1 ( }\mp@subsup{E}{1}{}+\mp@subsup{E}{2}{})fm
CCS_Subst1 E1 fm + CCS_Subst1 E E fm) ^
(\forallE E E E fm.
CCS_Subst1 ( }\mp@subsup{E}{1}{|}|\mp@subsup{E}{2}{})fm
CCS_Subst1 E1 fm| CCS_Subst1 E2 fm) ^
(\forallL E fm. CCS_Subst1 (\nu L E) fm = \nu L (CCS_Subst1 E fm)) ^
(}\forallE\mathrm{ rf fm.
CCS_Subst1 (relab E rf) fm = relab (CCS_Subst1 E fm) rf) ^
(}\forallY fm
CCS_Subst1 (var Y) fm =
if Y\in FDOM fm then fm ' Y else var Y) ^
\forall E fm.
CCS_Subst1 (rec Y E) fm =
if Y\in FDOM fm then rec Y E else rec Y (CCS_Subst1 E fm)
[CCS_Subst2_def]
\vdash \forall E s ~ f m . ~ C C S \_ S u b s t 2 ~ E s ~ f m ~ = ~ M A P ~ ( ~ \lambda e . ~ C C S \_ S u b s t 1 ~ e ~ f m ) ~ E s ~
[CCS_Subst_def]
\vdash(\forallE 生 X. CCS_Subst nil E E X = nil)}
(\forallu E E' X. CCS_Subst (u..E) E' X = u..CCS_Subst E E' X) ^
(\forall\mp@subsup{E}{1}{}}\mp@subsup{E}{2}{}\quad\mp@subsup{E}{}{\prime}X
CCS_Subst ( }\mp@subsup{E}{1}{}+\mp@subsup{E}{2}{})\mp@subsup{E}{}{\prime}X
CCS_Subst E1 E
(\forall}\mp@subsup{E}{1}{}\mp@subsup{E}{2}{}\quad\mp@subsup{E}{}{\prime}X
CCS_Subst ( }\mp@subsup{E}{1}{}|\mp@subsup{E}{2}{})\mp@subsup{E}{}{\prime}X
CCS_Subst E1 E ' X | CCS_Subst E E E E X) ^
(}\forallLEE E' X.
CCS_Subst (\nu L E) E' X = \nu L (CCS_Subst E E' X)) ^
(}\forallEf\mp@subsup{E}{}{\prime}X\mathrm{ .
CCS_Subst (relab E f) E' X = relab (CCS_Subst E E' X) f)^
(}\forallY\mp@subsup{E}{}{\prime}X\mathrm{ .

```
```

    CCS_Subst (var Y) E' X = if Y=X then E' else var Y) ^
    \forallY E E' X.
    CCS_Subst (rec Y E) E' X =
    if Y=X then rec Y E else rec Y (CCS_Subst E E' X)
    [COMPL_ACT_def]
\vdash(\foralll. COMPL (label l) = label (COMPL l)) ^(COMPL \tau = \tau)
[COMPL_LAB_def]
\vdash ( \forall s . C O M P L ~ ( n a m e ~ s ) ~ = ~ c o n a m e ~ s ) ~ \wedge ~
\foralls. COMPL (coname s) = name s
[DELETE_ELEMENT_def]
\vdash(\foralle. DELETE_ELEMENT e [] = []) ^
\forallex l.
DELETE_ELEMENT e ( }x::l)
if e=x then DELETE_ELEMENT e l else x::DELETE_ELEMENT e l
[free_names_def]
\vdash \forallp. free_names p = FN p (SET_TO_LIST (BV p))
[FV_def]
\vdash(FV nil = { }) ^(\forallu p. FV (u..p) = FV p) ^
(\forallp q. FV ( p + q) = FV p\cup FV q) ^
(\forallp q. FV (
(\forallL p. FV ( }\nuL~\mp@code{L}=\textrm{FV}p)\wedge(\forallprf. FV (relab prf) = FV p) ^
(\forallX. FV (var X) = {X}) ^ \forallX p. FV (rec X p) = FV p DIFF {X}
[IS_PROC_def]
\vdash}\forallE. IS_PROC E (FV E={}
[Is_Relabeling_def]
\vdash}\forallf. Is_Relabeling f \Longleftrightarrow \foralls.f (coname s) = COMPL (f (name s)
[RELAB_def]
\vdash \foralllabl. RELAB labl = ABS_Relabeling (Apply_Relab labl)
[relabel_def]
\vdash ( \forall r f . ~ r e l a b e l ~ r f ~ \tau = \tau ) ~ \wedge ~
\forallrf l. relabel rf (label l) = label (REP_Relabeling rf l)
[Relabeling_ISO_DEF]
\vdash(\foralla. ABS_Relabeling (REP_Relabeling a) = a) ^
\forallr.
Is_Relabeling r ( REP_Relabeling (ABS_Relabeling r) = r)

```
```

[Relabeling_TY_DEF]
\vdash 瓜p. TYPE_DEFINITION Is_Relabeling rep
[size_def]
\vdash}\forallp.size p = CCS_size ( \lambdax.0) (\lambdax. 0)
[TRANS_def]
TRANS =
(\lambda la a al a a
\forallRANS'.
(\forall\mp@subsup{a}{0}{}}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}
(a0}=\mp@subsup{a}{1}{}···\mp@subsup{a}{2}{})
(\existsE E'. (a a = E + E') ^ TRANS' E a a a a ) \vee
(\existsE E'. (a a = E' + E)^ TRANS' E a
(\existsE E1 E ',

```

```

            (\existsE E1 E'.
                    (a0 = E'|E) ^(a2= E'| E1) ^ TRANS'E a (al E ) \vee
        (\existsEl E1 E' E2.
                    ( a a = E| | ') ^( (a1=\tau) ^( (a2= E | | E E ) ^
                    TRANS' E (label l) E1 ^
                TRANS' E' (label (COMPL l)) E E ) \vee
            (\existsE E ' l L.
                (a (a = L L E) ^( (a2 = \nuLE E')^TRANS' E a a E E ^
                (( (a, = \tau) \vee
                    (a1 = label l) ^l l L \ COMPL l#L)) \vee
        (\existsE u E'rf.
            ( }\mp@subsup{a}{0}{}=\mathrm{ relab E rf) ^( }\mp@subsup{a}{1}{}=\mathrm{ relabel rf u) ^
            (a2 = relab E'rf) ^ TRANS' E u E') \vee
        ( }\exists\textrm{E X.
            (a0 = rec X E) ^
            TRANS' (CCS_Subst E (rec X E) X) a a a c) \Longrightarrow
        TRANS' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{})
            TRANS' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{\prime
    ```

\subsection*{9.1.3 Theorems}
[Action_11]
\(\vdash \forall x y\). (label \(x=\) label \(y) \Longleftrightarrow(x=y)\)
[Action_distinct]
\(\vdash \forall x . \tau \neq\) label \(x\)
[Action_distinct_label]
\(\vdash \forall x\). label \(x \neq \tau\)
```

[Action_induction]
\vdash\forallP.P}\tau\wedge(\foralla.P(\mathrm{ label a)) ఋ }\Longrightarrowx.P
[Action_nchotomy]
\vdash \forallopt. (opt = \tau) \vee \existsx. opt = label }
[Action_no_tau_is_Label]
\vdash \forall \mp@code { \vdash . A } \neq \tau \Longrightarrow \exists x . A = ~ l a b e l ~ x ~
[Apply_Relab_COMPL_THM]
\vdash labl s.
Apply_Relab labl (coname s) =
COMPL (Apply_Relab labl (name s))
[APPLY_RELAB_THM]
\vdash labl' labl.
(RELAB labl' = RELAB labl) \Longleftrightarrow
(Apply_Relab labl' = Apply_Relab labl)
[CCS_caseeq]
\vdash(CCS_CASE }x\mathrm{ vllllllll}\mp@subsup{f}{2}{\prime}\mp@subsup{f}{3}{}\mp@subsup{f}{4}{}\mp@subsup{f}{5}{\prime}\mp@subsup{f}{6}{\prime=}\mp@subsup{v}{}{\prime})
(x=\operatorname{nil})\wedge(v=\mp@subsup{v}{}{\prime})\vee(\existsa.(x=\operatorname{var}a)\wedge(fa=\mp@subsup{v}{}{\prime}))\vee
(\exists\mp@subsup{o}{}{\prime}\mp@subsup{C}{}{\prime}.(x=\mp@subsup{o}{}{\prime}..C\mp@subsup{C}{}{\prime})\wedge(\mp@subsup{f}{1}{}\mp@subsup{o}{}{\prime}\mp@subsup{C}{}{\prime}=\mp@subsup{v}{}{\prime}))\vee
(\exists\mp@subsup{C}{}{\prime}\mp@subsup{C}{0}{\prime}.(x=\mp@subsup{C}{}{\prime}+\mp@subsup{C}{0}{\prime})\wedge(\mp@subsup{f}{2}{}\mp@subsup{C}{}{\prime}\mp@subsup{C}{0}{}=\mp@subsup{v}{}{\prime}))\vee
(\exists\mp@subsup{C}{}{\prime}\mp@subsup{C}{0}{}.(x=\mp@subsup{C}{}{\prime}|\mp@subsup{C}{0}{})\wedge(\mp@subsup{f}{3}{}\mp@subsup{C}{}{\prime}\mp@subsup{C}{0}{}=\mp@subsup{v}{}{\prime}))\vee
(\exists\mp@subsup{f}{}{\prime}\mp@subsup{C}{}{\prime}.(x=\nu\mp@subsup{f}{}{\prime}\mp@subsup{C}{}{\prime})\wedge(\mp@subsup{f}{4}{}\mp@subsup{f}{}{\prime}\mp@subsup{C}{}{\prime}=\mp@subsup{v}{}{\prime}))\vee
(\exists\mp@subsup{C}{}{\prime}R.(x= relab C'R)^(f}\mp@subsup{f}{5}{\prime}\mp@subsup{C}{}{\prime}R=\mp@subsup{v}{}{\prime}))

```

```

[CCS_COND_CLAUSES]
\vdash
((if T then t1 else t2) = tr ) ^
((if F then }\mp@subsup{t}{1}{}\mathrm{ else t2) = th2)
[CCS_distinct']
\vdash(\foralla. nil }\not=\operatorname{var}a)\wedge(\forall\mp@subsup{a}{1}{}\mp@subsup{a}{0}{}.\operatorname{nil}\not=\mp@subsup{a}{0}{}..\mp@subsup{a}{1}{})
(\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{0}{}.\mathrm{ nil }\not=\mp@subsup{a}{0}{}+\mp@subsup{a}{1}{})\wedge(\forall\mp@subsup{a}{1}{}\mp@subsup{a}{0}{}.\mathrm{ nil }\not=\mp@subsup{a}{0}{}|\mp@subsup{a}{1}{})

```

```

        (\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{0}{}.\mathrm{ nil }\not=\operatorname{rec}\mp@subsup{a}{0}{}\mp@subsup{a}{1}{\prime})\wedge(\forall\mp@subsup{a}{1}{}\mp@subsup{a}{0}{}a.\operatorname{var}a\not=\mp@subsup{a}{0}{}..\mp@subsup{a}{1}{})
    ```

```

        (\forall\mp@subsup{a}{1}{}
        (\forall\mp@subsup{a}{1}{}
        (\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{0}{}a,\mathrm{ var }a\not=\textrm{rec}\mp@subsup{a}{0}{}\mp@subsup{a}{1}{})
        (\forall\mp@subsup{a}{1}{\prime}
        (\forall\mp@subsup{a}{1}{\prime}
        (\forall\mp@subsup{a}{1}{\prime}}\mp@subsup{a}{1}{
    ```
```

    \(\left(\forall a_{1}^{\prime} a_{1} \quad a_{0}^{\prime} \quad a_{0} . a_{0} . . a_{1} \neq \operatorname{relab} a_{0}^{\prime} \quad a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . a_{0} . . a_{1} \neq \operatorname{rec} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} \cdot a_{0}+a_{1} \neq a_{0}^{\prime} \| a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} \quad a_{0}^{\prime} \quad a_{0} \cdot a_{0}+a_{1} \neq \nu a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} \cdot a_{0}+a_{1} \neq \operatorname{relab} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} \quad a_{0}^{\prime} \quad a_{0} \cdot a_{0}+a_{1} \neq \operatorname{rec} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . a_{0} \| a_{1} \neq \nu a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . a_{0} \| a_{1} \neq \operatorname{relab} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} \quad a_{0}^{\prime} \quad a_{0} \cdot a_{0} \| a_{1} \neq \operatorname{rec} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} \quad a_{1} \quad a_{0}^{\prime} \quad a_{0} . \nu \quad a_{0} \quad a_{1} \neq \mathrm{relab} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . \nu \quad a_{0} \quad a_{1} \neq \operatorname{rec} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0}\right.\). relab \(\left.a_{0} a_{1} \neq \operatorname{rec} a_{0}^{\prime} a_{1}^{\prime}\right) \wedge\)
    \((\forall a . \operatorname{var} a \neq \operatorname{nil}) \wedge\left(\forall a_{1} a_{0} \cdot a_{0} . . a_{1} \neq \operatorname{nil}\right) \wedge\)
    \(\left(\forall a_{1} a_{0} \cdot a_{0}+a_{1} \neq \mathrm{nil}\right) \wedge\left(\forall a_{1} a_{0} \cdot a_{0} \| a_{1} \neq\right.\) nil \() \wedge\)
    \(\left(\forall a_{1} a_{0} . \nu a_{0} a_{1} \neq\right.\) nil \() \wedge\left(\forall a_{1} a_{0}\right.\). relab \(a_{0} a_{1} \neq\) nil \() \wedge\)
    \(\left(\forall a_{1} a_{0} . \operatorname{rec} a_{0} a_{1} \neq \operatorname{nil}\right) \wedge\left(\forall a_{1} a_{0} a . a_{0} . . a_{1} \neq \operatorname{var} a\right) \wedge\)
    \(\left(\forall a_{1} a_{0} a \cdot a_{0}+a_{1} \neq \operatorname{var} a\right) \wedge\left(\forall a_{1} a_{0} a \cdot a_{0} \| a_{1} \neq \operatorname{var} a\right) \wedge\)
    \(\left(\forall a_{1} a_{0} \quad a . \nu a_{0} a_{1} \neq \operatorname{var} a\right) \wedge\)
    \(\left(\forall a_{1} a_{0} a\right.\). relab \(\left.a_{0} a_{1} \neq \operatorname{var} a\right) \wedge\)
    \(\left(\forall a_{1} a_{0} a\right.\). rec \(\left.a_{0} a_{1} \neq \operatorname{var} a\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} \quad a_{0} \cdot a_{0}^{\prime}+a_{1}^{\prime} \neq a_{0} . . a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . a_{0}^{\prime} \| a_{1}^{\prime} \neq a_{0} . . a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} \quad a_{1} \quad a_{0}^{\prime} \quad a_{0} . \nu a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} \ldots a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} 1 a_{1} a_{0}^{\prime} \quad a_{0}\right.\). relab \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} . . a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0}\right.\). rec \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} . . a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} \cdot a_{0}^{\prime} \| a_{1}^{\prime} \neq a_{0}+a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} \cdot \nu a_{0}^{\prime} a_{1}^{\prime} \neq a_{0}+a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} \quad a_{1} \quad a_{0}^{\prime} \quad a_{0}\right.\). relab \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0}+a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0}\right.\). rec \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0}+a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0} . \nu a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} \| a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0}\right.\). relab \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} \| a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} a_{0}\right.\). rec \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq a_{0} \| a_{1}\right) \wedge\)
    \(\left(\forall \begin{array}{llllll}a_{1}^{\prime} & a_{1} & a_{0}^{\prime} & a_{0}\end{array}\right.\). relab \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq \nu a_{0} a_{1}\right) \wedge\)
    \(\left(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} \quad a_{0}\right.\). rec \(\left.a_{0}^{\prime} a_{1}^{\prime} \neq \nu a_{0} a_{1}\right) \wedge\)
    \(\forall a_{1}^{\prime} a_{1} a_{0}^{\prime} \quad a_{0}\). rec \(a_{0}^{\prime} \quad a_{1}^{\prime} \neq\) relab \(a_{0} a_{1}\)
    [CCS_Subst_rec]
$\vdash \forall X E E^{\prime}$. CCS_Subst (rec $X E$ ) $E^{\prime} X=\operatorname{rec} X E$
[CCS_Subst_var]
$\vdash \forall X E$. CCS_Subst (var $X$ ) $E X=E$

```
[COMPL_COMPL_ACT]
 \(\vdash \forall a . \operatorname{COMPL}(\operatorname{COMPL} a)=a\)
[COMPL_COMPL_LAB]
 \(\vdash \forall l\). COMPL \((\operatorname{COMPL} l)=l\)
```

[COMPL_THM]
\vdash \foralll s.
(l f name s\Longrightarrow COMPL l f coname s)^
(l l coname s\Longrightarrow COMPL l l name s)
[coname_COMPL]
\vdash}\foralls\mathrm{ . coname s = COMPL (name s)
[DELETE_ELEMENT_APPEND]
\vdash}\forallaL\mp@subsup{L}{}{\prime}
DELETE_ELEMENT a (L ++ L') =
DELETE_ELEMENT a L ++ DELETE_ELEMENT a L'
[DELETE_ELEMENT_FILTER]
\vdash}\foralle L. DELETE_ELEMENT e L = FILTER ( \lambda y.e f y ) L
[EVERY_DELETE_ELEMENT]
\vdash \foralle L P. P e ^ EVERY P (DELETE_ELEMENT e L) \Longrightarrow EVERY P L
[EXISTS_Relabeling]
\vdash\existsf. Is_Relabeling f
[FN_def]
\vdash(\forallJ. FN nil J = {}) ^
(\forallpl J. FN (label l..p) J = l INSERT FN p J) ^
(\forallpJ. FN (\tau..p) J = FN p J)^
(\forallq pJ. FN ( p + q) J = FN p J U FN q J)^
(\forallq p J. FN ( p|q) J = FN p J U FN q J) ^
(\forallpLJ. FN ( }\nuL~p)J=FN p J DIFF (L\cup IMAGE COMPL L)) ^
(\forallrf p J.
FN (relab p rf) J = IMAGE (REP_Relabeling rf) (FN p J)) ^
(\forallX J. FN (var X) J = {})^
\forallpX J.
FN (rec X p) J =
if MEM X J then
FN (CCS_Subst p (rec X p) X) (DELETE_ELEMENT X J)
else {}
[FN_ind]
\vdash}\forallP\mathrm{ .
(\forallJ. P nil J) ^(\foralll p J. P p J \Longrightarrow P (label l..p) J) ^
(\forallp J. P p J \LongrightarrowP(\tau..p) J)^
(\forallpqJ.PpJ^PqJ\LongrightarrowP(p+q)J)^
(\forallpqJ. P p J ^Pq J \LongrightarrowP(p|q) J)^
(\forallL p J. P p J \LongrightarrowP(\nuL p)J)^
(\forallp rf J.P p J\LongrightarrowP(relab prf) J) ^(\forallX J.P (var X) J) ^
(\forallX p J.
(MEM X J \Longrightarrow
P(CCS_Subst p (rec X p) X) (DELETE_ELEMENT X J)) \Longrightarrow
P(rec X p) J) \Longrightarrow
vv

```
```

[FN_UNIV1]

```

```

[FN_UNIV2]
\vdash}\forallpq
free_names p free_names q}\not=\mathcal{U}(:'b Label) \Longrightarrow>
\existsa.a\not\in free_names p^a\not\in free_names q
[IS_LABEL_def]
\vdash ( \forall x . ~ I S . S O M E ~ ( l a b e l ~ x ) ~ \Longleftrightarrow ~ T ) ~ \wedge ~ ( I S . S O M E ~ \tau ~ \Longleftrightarrow ~ F )
[IS_RELABELING]
\vdash \foralllabl. Is_Relabeling(Apply_Relab labl)
[Label_caseeq]
\vdash(Label_CASE x f f f = v) \Longleftrightarrow
(\existsb. (x= name b) ^(f b=v)) \vee
\existsb. (x= coname b)}\wedge(\mp@subsup{f}{1}{}b=v
[LABEL_def]
\vdash}\forallx\mathrm{ . LABEL (label }x\mathrm{ ) = x
[Label_distinct']
\vdash \forall a ^ { \prime } a . coname a a ^ { \prime } \neq name a
[Label_not_eq]
\vdash \foralla' a. (name a = coname a') \Longleftrightarrow F
[Label_not_eq']
\vdash \foralla'a. (coname a}\mp@subsup{a}{}{\prime}=\mathrm{ name a) }\Longleftrightarrow\textrm{F
[LENGTH_DELETE_ELEMENT_LE]
\vdash}\foralle L. MEM e L\Longrightarrow LENGTH (DELETE_ELEMENT e L) < LENGTH L
[LENGTH_DELETE_ELEMENT_LEQ]
\vdash \foralle L. LENGTH (DELETE_ELEMENT e L) \leq LENGTH L
[NIL_NO_TRANS]
\vdash}\foralluE.\neg(nil -u->E
[NIL_NO_TRANS_EQF]
\vdash}\foralluE.nil -u->E\Longleftrightarrow ¢

```

\section*{[NOT_IN_DELETE_ELEMENT]}
```

    \vdash \foralle L. \negMEM e (DELETE_ELEMENT e L)
    ```
[PAR1]
```

$\vdash \forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E\left\|E^{\prime}-u \rightarrow E_{1}\right\| E^{\prime}$

```
[PAR2]
\[
\vdash \forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E^{\prime}\left\|E-u \rightarrow E^{\prime}\right\| E_{1}
\]
[PAR3]
```

$\vdash \forall E l E_{1} E^{\prime} E_{2}$.
$E$-label $l \rightarrow E_{1} \wedge E^{\prime}$-label (COMPL $\left.l\right) \rightarrow E_{2} \Longrightarrow$
$E\left\|E^{\prime}-\tau \rightarrow E_{1}\right\| E_{2}$

```
[PAR_cases]
\(\vdash \forall D D^{\prime} u D^{\prime \prime}\).
 \(D \| D^{\prime}-u \rightarrow D^{\prime \prime} \Longrightarrow\)
 (\(\exists E E_{1} E^{\prime}\).
 \(\left.\left((D=E) \wedge\left(D^{\prime}=E^{\prime}\right)\right) \wedge\left(D^{\prime \prime}=E_{1} \| E^{\prime}\right) \wedge E-u \rightarrow E_{1}\right) \vee\)
 (\(\exists E E_{1} E^{\prime}\).
 \(\left.\left(\left(D=E^{\prime}\right) \wedge\left(D^{\prime}=E\right)\right) \wedge\left(D^{\prime \prime}=E^{\prime} \| E_{1}\right) \wedge E-u \rightarrow E_{1}\right) \vee\)
 \(\exists E l E_{1} E^{\prime} E_{2}\).
 \(\left((D=E) \wedge\left(D^{\prime}=E^{\prime}\right)\right) \wedge(u=\tau) \wedge\left(D^{\prime \prime}=E_{1} \| E_{2}\right) \wedge\)
 \(E\)-label \(l \rightarrow E_{1} \wedge E^{\prime}\)-label (COMPL \(\left.l\right) \rightarrow E_{2}\)
[PAR_cases_EQ]
\(\vdash \forall D D^{\prime}\) u \(D^{\prime \prime}\).
\(D \| D^{\prime}-u \rightarrow D^{\prime \prime} \Longleftrightarrow\)
(\(\exists E E_{1} E^{\prime}\).
\(\left.\left((D=E) \wedge\left(D^{\prime}=E^{\prime}\right)\right) \wedge\left(D^{\prime \prime}=E_{1} \| E^{\prime}\right) \wedge E-u \rightarrow E_{1}\right) \vee\)
(\(\exists E E_{1} E^{\prime}\).
\(\left.\left(\left(D=E^{\prime}\right) \wedge\left(D^{\prime}=E\right)\right) \wedge\left(D^{\prime \prime}=E^{\prime} \| E_{1}\right) \wedge E-u \rightarrow E_{1}\right) \vee\)
\(\exists E l E_{1} E^{\prime} E_{2}\).
\(\left((D=E) \wedge\left(D^{\prime}=E^{\prime}\right)\right) \wedge(u=\tau) \wedge\left(D^{\prime \prime}=E_{1} \| E_{2}\right) \wedge\) \(E\)-label \(l \rightarrow E_{1} \wedge E^{\prime}\)-label (COMPL \(\left.l\right) \rightarrow E_{2}\)
[PREFIX]
\(\vdash \forall E u . u . . E-u \rightarrow E\)
[REC]
\(\vdash \forall E u X E_{1}\). CCS_Subst \(E(\) rec \(X E) X-u \rightarrow E_{1} \Longrightarrow\) rec \(X E-u \rightarrow E_{1}\)
[REC_cases]
\(\vdash \forall X E\) u \(E^{\prime \prime}\).
rec \(X E-u \rightarrow E^{\prime \prime} \Longrightarrow\)
\(\exists E^{\prime} X^{\prime}\) 。
\(\left(\left(X=X^{\prime}\right) \wedge\left(E=E^{\prime}\right)\right) \wedge\)
CCS_Subst \(E^{\prime}\left(\right.\) rec \(\left.X^{\prime} E^{\prime}\right) X^{\prime}-u \rightarrow E^{\prime \prime}\)
[REC_cases_EQ]
```

\vdash}\forallX E u E'|
rec X E -u-> E'\prime}
\exists}\mp@subsup{E}{}{\prime}\mp@subsup{X}{}{\prime}
((X = X') ^ (E = E')) ^
CCS_Subst E' (rec X' E') X' -u-> E'\prime
[RELAB_cases]
\vdash}\forallErf al a a .
relab E rf -a, -> a a \Longrightarrow
\exists}\mp@subsup{E}{}{\prime
((E = E') ^ (rf = rf')) ^( (a1 = relabel rf' u) ^
(a2 = relab E'\primerf') ^ E' -u-> E'\prime
[RELAB_cases_EQ]
\vdash}\forallErf \mp@subsup{a}{1}{}\mp@subsup{a}{2}{}
relab E rf - -a, -> a a }
\exists}\mp@subsup{E}{}{\prime}u\quad\mp@subsup{E}{}{\prime\prime}r\mp@subsup{f}{}{\prime}
((E = E') ^(rf =rf')) ^((al = relabel rf' u) ^
(a2 = relab E' rf')^ ( ' -u->E E'

```
[Relab_label]
```

\vdash \forallrf u l. (relabel rf u = label l) \Longrightarrow \existsl'.u = label l'

```
[RELAB_NIL_NO_TRANS]
\(\vdash \forall r f u E . \neg(\) relab nil \(r f-u \rightarrow E)\)
[Relab_tau]
\[
\vdash \forall r f u .(\text { relabel } r f u=\tau) \Longrightarrow(u=\tau)
\]

\section*{[RELABELING]}
\(\vdash \forall E u E^{\prime} r f . E-u \rightarrow E^{\prime} \Longrightarrow\) relab \(E r f-\) relabel rf \(u \rightarrow\) relab \(E^{\prime} r f\)
[REP_Relabeling_THM]
\(\vdash \forall r f\). Is_Relabeling (REP_Relabeling rf)

\section*{[RESTR]}
\(\vdash \forall E u E^{\prime} l l\).
\(E-u \rightarrow E^{\prime} \wedge\)
\(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge \operatorname{COMPL} l \notin L) \Longrightarrow\) \(\nu L E-u \rightarrow \nu L E^{\prime}\)
```

[RESTR_cases]
$\vdash \forall D^{\prime} u L D$.
$\nu L D-u \rightarrow D^{\prime} \Longrightarrow$
$\exists E E^{\prime} l L^{\prime}$.
$\left(\left(L=L^{\prime}\right) \wedge(D=E)\right) \wedge\left(D^{\prime}=\nu L^{\prime} E^{\prime}\right) \wedge E-u \rightarrow E^{\prime} \wedge$
$\left((u=\tau) \vee(u=\right.$ label $l) \wedge l \notin L^{\prime} \wedge$ COMPL $\left.l \notin L^{\prime}\right)$
[RESTR_cases_EQ]
$\vdash \forall D^{\prime}$ u $L D$.
$\nu L D-u \rightarrow D^{\prime} \Longleftrightarrow$
$\exists E E^{\prime} l L^{\prime}$.
$\left(\left(L=L^{\prime}\right) \wedge(D=E)\right) \wedge\left(D^{\prime}=\nu L^{\prime} E^{\prime}\right) \wedge E-u \rightarrow E^{\prime} \wedge$
$\left((u=\tau) \vee(u=\right.$ label $l) \wedge l \notin L^{\prime} \wedge$ COMPL $\left.l \notin L^{\prime}\right)$

```
[RESTR_LABEL_NO_TRANS]
```

\vdash \foralll L.
l\inL\vee COMPL l\inL\Longrightarrow \ | | E'. \neg(\nuL (label l..E) -u-> (l)

```
[RESTR_NIL_NO_TRANS]
\(\vdash \forall L u E . \neg(\nu L\) nil \(-u \rightarrow E)\)
[SUM1]
\[
\vdash \forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E+E^{\prime}-u \rightarrow E_{1}
\]
[SUM2]
\[
\vdash \forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E^{\prime}+E-u \rightarrow E_{1}
\]
[SUM_cases]
\[
\begin{aligned}
\vdash \forall & D D^{\prime} u D^{\prime \prime} . \\
& D+D^{\prime}-u \rightarrow D^{\prime \prime} \Longrightarrow \\
& \left(\exists E E^{\prime} \cdot\left((D=E) \wedge\left(D^{\prime}=E^{\prime}\right)\right) \wedge E-u \rightarrow D^{\prime \prime}\right) \vee \\
& \exists E E^{\prime} \cdot\left(\left(D=E^{\prime}\right) \wedge\left(D^{\prime}=E\right)\right) \wedge E-u \rightarrow D^{\prime \prime}
\end{aligned}
\]
[SUM_cases_EQ]
```

\vdash}\forallD\mp@subsup{D}{}{\prime}u\mp@subsup{D}{}{\prime\prime}
D + D' -u-> D'咅\Longleftrightarrow
(\existsE E'. ((D = E) ^ (D' = E')) ^ E -u-> D')}
\existsE E'. ((D = E') ^ (D' = E)) ^ E -u-> D''

```
[TRANS_ASSOC_EQ]
\(\vdash \forall E E^{\prime} E^{\prime \prime} E_{1} u . E+E^{\prime}+E^{\prime \prime}-u \rightarrow E_{1} \Longleftrightarrow E+\left(E^{\prime}+E^{\prime \prime}\right)-u \rightarrow E_{1}\)
[TRANS_ASSOC_RL]
\(\vdash \forall E E^{\prime} E^{\prime \prime} E_{1} u . E+\left(E^{\prime}+E^{\prime \prime}\right)-u \rightarrow E_{1} \Longrightarrow E+E^{\prime}+E^{\prime \prime}-u \rightarrow E_{1}\)
[TRANS_cases]
\(\vdash \forall a_{0} a_{1} a_{2}\).
\(a_{0}-a_{1} \rightarrow a_{2} \Longleftrightarrow\)
\(\left(a_{0}=a_{1} \ldots a_{2}\right) \vee\left(\exists E E^{\prime} .\left(a_{0}=E+E^{\prime}\right) \wedge E-a_{1} \rightarrow a_{2}\right) \vee\)
\(\left(\exists E E^{\prime} .\left(a_{0}=E^{\prime}+E\right) \wedge E-a_{1} \rightarrow a_{2}\right) \vee\)
\(\left(\exists E E_{1} E^{\prime} .\left(a_{0}=E \| E^{\prime}\right) \wedge\left(a_{2}=E_{1} \| E^{\prime}\right) \wedge E-a_{1} \rightarrow E_{1}\right) \vee\)
\(\left(\exists E E_{1} E^{\prime} .\left(a_{0}=E^{\prime} \| E\right) \wedge\left(a_{2}=E^{\prime} \| E_{1}\right) \wedge E-a_{1} \rightarrow E_{1}\right) \vee\)
(\(\exists \mathrm{E} l E_{1} E^{\prime} E_{2}\).
\(\left(a_{0}=E \| E^{\prime}\right) \wedge\left(a_{1}=\tau\right) \wedge\left(a_{2}=E_{1} \| E_{2}\right) \wedge\)
\(E\)-label \(l \rightarrow E_{1} \wedge E^{\prime}\)-label (COMPL \(\left.\left.l\right) \rightarrow E_{2}\right) \vee\)
(\(\exists E E^{\prime} l\).
\[
\begin{aligned}
& \left(a_{0}=\nu L E\right) \wedge\left(a_{2}=\nu L E^{\prime}\right) \wedge E-a_{1} \rightarrow E^{\prime} \wedge \\
& \left.\left(\left(a_{1}=\tau\right) \vee\left(a_{1}=\text { label } l\right) \wedge l \notin L \wedge \operatorname{CompL} l \notin L\right)\right) \vee
\end{aligned}
\]
(\(\exists E\) u \(E^{\prime} r f\).
\[
\begin{aligned}
& \left(a_{0}=\text { relab } E r f\right) \wedge\left(a_{1}=\text { relabel } r f u\right) \wedge \\
& \left.\left(a_{2}=\text { relab } E^{\prime} r f\right) \wedge E-u \rightarrow E^{\prime}\right) \vee
\end{aligned}
\]
\(\exists E X .\left(a_{0}=\right.\) rec \(\left.X E\right) \wedge\) CCS_Subst \(E(\) rec \(X E) X-a_{1} \rightarrow a_{2}\)
[TRANS_COMM_EQ]
\[
\vdash \forall E E^{\prime} E^{\prime \prime} u \cdot E+E^{\prime}-u \rightarrow E^{\prime \prime} \Longleftrightarrow E^{\prime}+E-u \rightarrow E^{\prime \prime}
\]
[TRANS_IMP_NO_NIL]
\[
\vdash \forall E u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow E \neq \text { nil }
\]
[TRANS_IMP_NO_NIL']
\[
\vdash \forall E u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow E \neq \operatorname{nil}
\]
[TRANS_IMP_NO_RESTR_NIL]
\[
\vdash \forall E u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow \forall L . E \neq \nu L \text { nil }
\]

\section*{[TRANS_ind]}
\(\vdash \forall\) TRANS \({ }^{\prime}\).
\(\left(\forall E\right.\) u. TRANS \(\left.{ }^{\prime}(u . . E) u E\right) \wedge\)
\(\left(\forall E u E_{1} E^{\prime} . \operatorname{TRANS} S^{\prime} E E_{1} \Longrightarrow \operatorname{TRANS}^{\prime}\left(E+E^{\prime}\right) u E_{1}\right) \wedge\)
\(\left(\forall E\right.\) u \(E_{1} E^{\prime} . \operatorname{TRANS} S^{\prime} E\) и \(E_{1} \Longrightarrow \operatorname{TRANS}{ }^{\prime}\left(E^{\prime}+E\right)\) u \(\left.E_{1}\right) \wedge\)
\(\left(\forall E\right.\) u \(E_{1} E^{\prime} . T R A N S^{\prime} E\) u \(E_{1} \Longrightarrow \operatorname{TRANS}^{\prime}\left(E \| E^{\prime}\right)\) u \(\left.\left(E_{1} \| E^{\prime}\right)\right) \wedge\)
\(\left(\forall E\right.\) u \(E_{1} E^{\prime} . \operatorname{TRANS} S^{\prime} E\) u \(E_{1} \Longrightarrow \operatorname{TRANS}^{\prime}\left(E^{\prime} \| E\right)\) u \(\left.\left(E^{\prime} \| E_{1}\right)\right) \wedge\)
(\(\begin{array}{llll}E & l & E_{1} & E^{\prime} \\ E_{2}\end{array}\).
TRANS' \(E\) (label \(l\)) \(E_{1} \wedge T R A N S^{\prime} E^{\prime}(\) label (COMPL \(\left.l)\right) E_{2} \Longrightarrow\)
TRANS \(\left.{ }^{\prime}\left(E \| E^{\prime}\right) \tau\left(E_{1} \| E_{2}\right)\right) \wedge\)
(\(\forall E \quad u E^{\prime} l l\).
TRANS \(S^{\prime}\) e u \(E^{\prime} \wedge\)
\(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge \operatorname{COMPL} l \notin L) \Longrightarrow\)
TRANS \(\left.S^{\prime}(\nu L E) u\left(\nu L E^{\prime}\right)\right) \wedge\)
\(\left(\forall E u E^{\prime} r f\right.\).
TRANS \({ }^{\prime} E\) u \(E^{\prime} \Longrightarrow\)

TRANS' (relab E rf) (relabel rf \(u\)) (relab \(\left.\left.E^{\prime} r f\right)\right) \wedge\) \(\left(\forall E u X E_{1}\right.\).

TRANS \({ }^{\prime}\) (CSS_Subst \(E\) (rec \(\left.X E\right) X\)) u \(E_{1} \Longrightarrow\) \(T R A N S^{\prime}(\) rec \(X E)\) и \(\left.E_{1}\right) \Longrightarrow\) \(\forall a_{0} \quad a_{1} \quad a_{2} . a_{0}-a_{1} \rightarrow a_{2} \Longrightarrow\) TRANS \(a_{0} a_{0} a_{1}\)
[TRANS_P_RESTR]
\[
\vdash \forall E u E^{\prime} L . \nu L E-u \rightarrow \nu L E^{\prime} \Longrightarrow E-u \rightarrow E^{\prime}
\]
[TRANS_P_SUM_P]
\[
\vdash \forall E u E^{\prime} . E+E-u \rightarrow E^{\prime} \Longrightarrow E-u \rightarrow E^{\prime}
\]
[TRANS_P_SUM_P_EQ]
\[
\vdash \forall E u E^{\prime} . E+E-u \rightarrow E^{\prime} \Longleftrightarrow E-u \rightarrow E^{\prime}
\]
[TRANS_PAR]
```

$\vdash \forall E E^{\prime} u E^{\prime \prime}$.
$E \| E^{\prime}-u \rightarrow E^{\prime \prime} \Longrightarrow$
$\left(\exists E_{1} .\left(E^{\prime \prime}=E_{1} \| E^{\prime}\right) \wedge E-u \rightarrow E_{1}\right) \vee$
$\left(\exists E_{1} .\left(E^{\prime \prime}=E \| E_{1}\right) \wedge E^{\prime}-u \rightarrow E_{1}\right) \vee$
$\exists E_{1} E_{2} l$.
$(u=\tau) \wedge\left(E^{\prime \prime}=E_{1} \| E_{2}\right) \wedge E-$ label $l \rightarrow E_{1} \wedge$
$E^{\prime}$-label (COMPL $\left.l\right) \rightarrow E_{2}$

```
[TRANS_PAR_EQ]
```

$\vdash \forall E E^{\prime} u E^{\prime \prime}$.
$E \| E^{\prime}-u \rightarrow E^{\prime \prime} \Longleftrightarrow$
$\left(\exists E_{1} .\left(E^{\prime \prime}=E_{1} \| E^{\prime}\right) \wedge E-u \rightarrow E_{1}\right) \vee$
$\left(\exists E_{1} .\left(E^{\prime \prime}=E \| E_{1}\right) \wedge E^{\prime}-u \rightarrow E_{1}\right) \vee$
$\exists E_{1} E_{2} l$.
$(u=\tau) \wedge\left(E^{\prime \prime}=E_{1} \| E_{2}\right) \wedge E-$ label $l \rightarrow E_{1} \wedge$
$E^{\prime}$-label (COMPL $\left.l\right) \rightarrow E_{2}$

```
[TRANS_PAR_NO_SYNCR]
 \(\vdash \forall l l^{\prime}\).
 \(l \neq\) COMPL \(l^{\prime} \Longrightarrow\)
 \(\forall E E^{\prime} E^{\prime \prime} . \neg\left(\right.\) label \(l . . E \|\) label \(\left.l^{\prime} . . E^{\prime}-\tau \rightarrow E^{\prime \prime}\right)\)
[TRANS_PAR_P_NIL]
\[
\vdash \forall E u E^{\prime} . E \| \text { nil }-u \rightarrow E^{\prime} \Longrightarrow \exists E^{\prime \prime} . E-u \rightarrow E^{\prime \prime} \wedge\left(E^{\prime}=E^{\prime \prime} \| \text { nil }\right)
\]
[TRANS_PREFIX]
\[
\vdash \forall u E u^{\prime} E^{\prime} . u . . E-u^{\prime} \rightarrow E^{\prime} \Longrightarrow\left(u^{\prime}=u\right) \wedge\left(E^{\prime}=E\right)
\]
[TRANS_PREFIX_EQ]
\(\vdash \forall u E u^{\prime} E^{\prime} . u . . E-u^{\prime} \rightarrow E^{\prime} \Longleftrightarrow\left(u^{\prime}=u\right) \wedge\left(E^{\prime}=E\right)\)
［TRANS＿REC］
```

$\vdash \forall X E u E^{\prime} . \operatorname{rec} X E-u \rightarrow E^{\prime} \Longrightarrow$ CCS_Subst $E($ rec $X E) X-u \rightarrow E^{\prime}$

```
[TRANS_REC_EQ]
 \(\vdash \forall X E u E^{\prime}\). rec \(X E-u \rightarrow E^{\prime} \Longleftrightarrow\) CCS_Subst \(E\) (rec \(X E\)) \(X-u \rightarrow E^{\prime}\)
[TRANS_RELAB]
```

$\vdash \forall E r f u E^{\prime}$.
relab $E r f-u \rightarrow E^{\prime} \Longrightarrow$
$\exists u^{\prime} E^{\prime \prime}$ 。
$\left(u=\right.$ relabel $\left.r f u^{\prime}\right) \wedge\left(E^{\prime}=\right.$ relab $\left.E^{\prime \prime} r f\right) \wedge E-u^{\prime} \rightarrow E^{\prime \prime}$

```
［TRANS＿RELAB＿EQ］
```

$\vdash \forall E$ rf $u E^{\prime}$.
relab $E r f-u \rightarrow E^{\prime} \Longleftrightarrow$
$\exists u^{\prime} \quad E^{\prime \prime}$ 。
$\left(u=\right.$ relabel $\left.r f u^{\prime}\right) \wedge\left(E^{\prime}=\right.$ relab $\left.E^{\prime \prime} r f\right) \wedge E-u^{\prime} \rightarrow E^{\prime \prime}$

```
[TRANS_RELAB_labl]
 \(\vdash \forall E\) labl \(u E^{\prime}\).
 relab \(E\) (RELAB labl) \(-u \rightarrow E^{\prime} \Longrightarrow\)
 \(\exists u^{\prime} E^{\prime \prime}\) 。
 (\(u=\) relabel (RELAB labl) \(u^{\prime}\)) \(\wedge\)
 \(\left(E^{\prime}=\right.\) relab \(E^{\prime \prime}(\) RELAB \(\left.l a b l)\right) \wedge E-u^{\prime} \rightarrow E^{\prime \prime}\)
［TRANS＿RESTR］
\(\vdash \forall E L u E^{\prime}\).
\(\nu L E-u \rightarrow E^{\prime} \Longrightarrow\)
\(\exists E^{\prime \prime} l\) ．
\(\left(E^{\prime}=\nu L E^{\prime \prime}\right) \wedge E-u \rightarrow E^{\prime \prime} \wedge\)
\(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge\) COMPL \(l \notin L)\)
［TRANS＿RESTR＿EQ］
\(\vdash \forall E L u E^{\prime}\).
\(\nu L E-u \rightarrow E^{\prime} \Longleftrightarrow\) \(\exists E^{\prime \prime} l\) 。
\(\left(E^{\prime}=\nu L E^{\prime \prime}\right) \wedge E-u \rightarrow E^{\prime \prime} \wedge\)
\(((u=\tau) \vee(u=\) label \(l) \wedge l \notin L \wedge \operatorname{COMPL} l \notin L)\)
［TRANS＿RESTR＿NO＿NIL］
\(\vdash \forall E L u E^{\prime} . \nu L E-u \rightarrow \nu L E^{\prime} \Longrightarrow E \neq \mathrm{nil}\)
```

$\vdash(\forall E u . u . . E-u \rightarrow E) \wedge\left(\forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E+E^{\prime}-u \rightarrow E_{1}\right) \wedge$
$\left(\forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E^{\prime}+E-u \rightarrow E_{1}\right) \wedge$
$\left(\forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E\left\|E^{\prime}-u \rightarrow E_{1}\right\| E^{\prime}\right) \wedge$
$\left(\forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \Longrightarrow E^{\prime}\left\|E-u \rightarrow E^{\prime}\right\| E_{1}\right) \wedge$
( $\begin{array}{llll} & E & l & E_{1} \\ E^{\prime} & E_{2}\end{array}$.
$E$-label $l \rightarrow E_{1} \wedge E^{\prime}$-label (COMPL $\left.l\right) \rightarrow E_{2} \Longrightarrow$
$\left.E\left\|E^{\prime}-\tau \rightarrow E_{1}\right\| E_{2}\right) \wedge$
$\left(\forall E u E^{\prime} l l\right.$.
$E-u \rightarrow E^{\prime} \wedge$
$((u=\tau) \vee(u=$ label $l) \wedge l \notin L \wedge \operatorname{COMPL} l \notin L) \Longrightarrow$
$\left.\nu L E-u \rightarrow \nu L E^{\prime}\right) \wedge$
$\left(\forall E u E^{\prime} r f\right.$.
$E-u \rightarrow E^{\prime} \Longrightarrow$ relab $E r f$-relabel rf $u \rightarrow$ relab $\left.E^{\prime} r f\right) \wedge$
$\forall E u X E_{1}$. CCS_Subst $E($ rec $X E) X-u \rightarrow E_{1} \Longrightarrow \operatorname{rec} X E-u \rightarrow E_{1}$

```
[TRANS_strongind]
```

\vdash TRANS'.
(\forallE u. TRANS' (u..E) u E) ^
(}\forallE|u\mp@subsup{E}{1}{}\mp@subsup{E}{}{\prime}
E-u->\mp@subsup{E}{1}{}\wedge TRANS'E u E C CTRANS' (E + E') u E1 ) ^
(}\forallE||\mp@subsup{E}{1}{}\mp@subsup{E}{}{\prime}
E-u->\mp@subsup{E}{1}{}\wedge TRANS'E u E C CTRANS' (E' + E) u E1) ^
(}\forallE|\mp@code{E E E E '
E-u->E E ^ TRANS' E u E C \Longrightarrow
TRANS'(E| | E') u (E | | E'))^
(}\forallE|u\quad\mp@subsup{E}{1}{}\quad\mp@subsup{E}{}{\prime}
E-u->E E1 ^TRANS' E u E C \Longrightarrow
TRANS'(E'| | ) u (E'| | E1)) ^
(\forallE l l E E E E' E E.
E -label l }->\mp@subsup{E}{1}{}\wedge TRANS' E (label l) E E ^
E' -label (COMPL l)}->\mp@subsup{E}{2}{}
TRANS' E' (label (COMPL l)) E2 \Longrightarrow
TRANS'(E|E⿱)
(\forallE u E'l L.
E-u->E E'^TRANS' E u E'^
((u=\tau) \vee (u = label l) ^l \& L ^ COMPL l \# L) \Longrightarrow
TRANS' (\nu L E) u (\nu L E')) ^
(}\forallE|\mp@subsup{E}{}{\prime}rf
E-u->E E}^\mathrm{ \RANS' E u E' }
TRANS' (relab E rf) (relabel rf u) (relab E'rf)) ^
(\forallE u X E . .
CCS_Subst E (rec X E) X -u->E E1 ^
TRANS'(CCS_Subst E (rec X E) X) и E
TRANS'(rec X E) и E1 ) \Longrightarrow
\foralla0

```
[TRANS_SUM]
\[
\vdash \forall E E^{\prime} u E^{\prime \prime} \cdot E+E^{\prime}-u \rightarrow E^{\prime \prime} \Longrightarrow E-u \rightarrow E^{\prime \prime} \vee E^{\prime}-u \rightarrow E^{\prime \prime}
\]
[TRANS_SUM_EQ]
\[
\vdash \forall E E^{\prime} u E^{\prime \prime} \cdot E+E^{\prime}-u \rightarrow E^{\prime \prime} \Longleftrightarrow E-u \rightarrow E^{\prime \prime} \vee E^{\prime}-u \rightarrow E^{\prime \prime}
\]
[TRANS_SUM_EQ']
\(\vdash \forall E_{1} E_{2} u E . E_{1}+E_{2}-u \rightarrow E \Longleftrightarrow E_{1}-u \rightarrow E \vee E_{2}-u \rightarrow E\)
[TRANS_SUM_NIL]
\(\vdash \forall E u E^{\prime} . E+\mathrm{nil}-u \rightarrow E^{\prime} \Longrightarrow E-u \rightarrow E^{\prime}\)
[TRANS_SUM_NIL_EQ]
\[
\vdash \forall E u E^{\prime} \cdot E+\operatorname{nil}-u \rightarrow E^{\prime} \Longleftrightarrow E-u \rightarrow E^{\prime}
\]

\section*{[VAR_NO_TRANS]}
\[
\vdash \forall X \quad u E . \neg(\operatorname{var} X-u \rightarrow E)
\]

\subsection*{9.2 StrongEQ Theory}

Built: 08 Dicembre 2017
Parent Theories: CCS

\subsection*{9.2.1 Definitions}
```

[STRONG_BISIM_def]
\vdash \forall \mp@code { R . S T R O N G _ B I S I M ~ R } \Longleftrightarrow ~ S T R O N G _ S I M ~ R ~ ^ ~ S T R O N G _ S I M ~ ( r e l i n v ~ R )
[STRONG_EQUIV_def]
\vdash ~ S T R O N G \_ E Q U I V ~ = ~
(\lambda
\exists STRONG_EQUIV'.
STRONG_EQUIV' a
\forall\mp@subsup{a}{0}{}}\mp@subsup{a}{1}{}
STRONG_EQUIV' a a cll
\forall
(}\forall\mp@subsup{E}{1}{}
a}0-u->\mp@subsup{E}{1}{}
\exists}\mp@subsup{E}{2}{}.\mp@subsup{a}{1}{}-u->\mp@subsup{E}{2}{}\wedgeSTRONG_EQUIV' E E E E ) ^
* E.
a}-u->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}-u->\mp@subsup{E}{1}{}\wedgeSTRONG_EQUIV' E E E E )
[STRONG_SIM_def]
\vdash}\forallR
STRONG_SIM R}

```


\subsection*{9.2.2 Theorems}
```

[COMP_STRONG_BISIM]
\vdash}\forallBs\mp@subsup{m}{1}{}\quadBs\mp@subsup{m}{2}{}
STRONG_BISIM Bsm
STRONG_BISIM ( }\mp@subsup{Bsm}{2}{2}\mathrm{ O Bsm
[CONVERSE_STRONG_BISIM]
\vdash \forall B s m . ~ S T R O N G \_ B I S I M ~ B s m ~ \Longrightarrow ~ S T R O N G \_ B I S I M ~ ( r e l i n v ~ B s m )
[EQUAL_IMP_STRONG_EQUIV]
\vdash \mp@code { \vdash } E E ^ { \prime } . ( E = E ^ { \prime } ) \Longrightarrow STRONG_EQUIV E E

```
[IDENTITY_STRONG_BISIM]
\(\vdash\) STRONG_BISIM (=)
[PROPERTY_STAR]
\(\vdash \forall a_{0} a_{1}\).
 STRONG_EQUIV \(a_{0} \quad a_{1} \Longleftrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1} . a_{0}-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . a_{1}-u \rightarrow E_{2} \wedge\right.\) STRONG_EQUIV \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} \cdot a_{1}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . a_{0}-u \rightarrow E_{1} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[PROPERTY_STAR_LEFT]
 \(\vdash \forall E E^{\prime}\).
 STRONG_EQUIV \(E E^{\prime} \Longrightarrow\)
 \(\forall u E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}-u \rightarrow E_{2} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[PROPERTY_STAR_RIGHT]
 \(\vdash \forall E E^{\prime}\) 。
 STRONG_EQUIV \(E E^{\prime} \Longrightarrow\)
 \(\forall u E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E-u \rightarrow E_{1} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_BISIM]
 \(\vdash\) STRONG_BISIM \(\mathrm{Bsm} \Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Bsm \(E E^{\prime} \Longrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} \cdot E^{\prime}-u \rightarrow E_{2} \wedge B s m E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E-u \rightarrow E_{1} \wedge B s m E_{1} E_{2}\)
[STRONG_BISIM_SUBSET_STRONG_EQUIV]
 \(\vdash \forall B s m\). STRONG_BISIM \(B s m \Longrightarrow B s m\) RSUBSET STRONG_EQUIV
[STRONG_EQUIV]
 \(\vdash \forall E E^{\prime}\). STRONG_EQUIV \(E E^{\prime} \Longleftrightarrow \exists B s m . B s m E E^{\prime} \wedge\) STRONG_BISIM Bsm
[STRONG_EQUIV_cases]
\(\vdash \forall a_{0} a_{1}\).
STRONG_EQUIV \(a_{0} a_{1} \Longleftrightarrow\)
\(\forall u\).
\(\left(\forall E_{1} \cdot a_{0}-u \rightarrow E_{1} \Longrightarrow \exists E_{2} \cdot a_{1}-u \rightarrow E_{2} \wedge\right.\) STRONG_EQUIV \(\left.E_{1} E_{2}\right) \wedge\) \(\forall E_{2} . a_{1}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . a_{0}-u \rightarrow E_{1} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_EQUIV_coind]
\(\vdash \forall S T R O N G_{-} E Q U I V^{\prime}\).
\(\left(\forall a_{0} a_{1}\right.\).
STRONG_EQUIV \({ }^{\prime} a_{0} \quad a_{1} \Longrightarrow\) \(\forall u\).
\[
\left(\forall E_{1} .\right.
\]
\(\left.a_{0}-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . a_{1}-u \rightarrow E_{2} \wedge S T R O N G_{-} E Q U I V^{\prime} E_{1} E_{2}\right) \wedge\) \(\forall E_{2}\).
\(a_{1}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . a_{0}-u \rightarrow E_{1} \wedge\) STRONG_EQUIV \(\left.E_{1} E_{2}\right) \Longrightarrow\) \(\forall a_{0} a_{1}\). STRONG_EQUIV \(a_{0} a_{1} \Longrightarrow\) STRONG_EQUIV \(a_{0} a_{1}\)
[STRONG_EQUIV_equivalence]
\(\vdash\) equivalence STRONG_EQUIV
[STRONG_EQUIV_IS_STRONG_BISIM]
\(\vdash\) STRONG_BISIM STRONG_EQUIV
```

[STRONG_EQUIV_PRESD_BY_PAR]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime}\quad\mp@subsup{E}{2}{2}\mp@subsup{E}{2}{\prime}
STRONG_EQUIV E E E E1
STRONG_EQUIV ( }\mp@subsup{E}{1}{|}|\mp@subsup{E}{2}{\prime}\mathrm{ ) ( }\mp@subsup{E}{1}{\prime}|\mp@subsup{E}{2}{\prime}

```
[STRONG_EQUIV_PRESD_BY_SUM]
 \(\vdash \forall E_{1} E_{1}^{\prime} E_{2} E_{2}^{\prime}\).
 STRONG_EQUIV \(E_{1} E_{1}^{\prime} \wedge\) STRONG_EQUIV \(E_{2} E_{2}^{\prime} \Longrightarrow\)
 STRONG_EQUIV \(\left(E_{1}+E_{2}\right)\left(E_{1}^{\prime}+E_{2}^{\prime}\right)\)
[STRONG_EQUIV_REFL]
 \(\vdash \forall E\). STRONG_EQUIV \(E E\)
[STRONG_EQUIV_rules]
 \(\vdash \forall E E^{\prime}\).
 (\(\forall\).
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}-u \rightarrow E_{2} \wedge\right.\) STRONG_EQUIV \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E-u \rightarrow E_{1} \wedge\) STRONG_EQUIV \(\left.E_{1} E_{2}\right) \Longrightarrow\)
 STRONG_EQUIV \(E E^{\prime}\)
```

[STRONG_EQUIV_SUBST_PAR_L]
\vdash}\forallE E'
STRONG_EQUIV E E' \Longrightarrow \forallE'\prime. STRONG_EQUIV ( }\mp@subsup{E}{}{\prime\prime}|E\mathrm{ ) ( }\mp@subsup{E}{}{\prime\prime}|\mp@subsup{E}{}{\prime}
[STRONG_EQUIV_SUBST_PAR_R]
\vdash}\forallE E'
STRONG_EQUIV E E' \Longrightarrow \forallE'|}.\mathrm{ STRONG_EQUIV ( }E||\mp@subsup{E}{}{\prime\prime})(\mp@subsup{E}{}{\prime}|\mp@subsup{E}{}{\prime\prime}
[STRONG_EQUIV_SUBST_PREFIX]
\vdash \forallE E'. STRONG_EQUIV E E }
[STRONG_EQUIV_SUBST_RELAB]
\vdash}\forallE E'
STRONG_EQUIV E E
\forallrf. STRONG_EQUIV (relab E rf) (relab E'rf)
[STRONG_EQUIV_SUBST_RESTR]
\vdash \| E E ~ E ' . ~ S T R O N G \_ E Q U I V ~ E ~ E ' ~ \Longrightarrow ~ \forall L . ~ S T R O N G \_ E Q U I V ~ ( \nu ~ L ~ E ) ~ ( \nu ~ L ~ E ' )
[STRONG_EQUIV_SUBST_SUM_L]
\vdash \forall E ^ { \prime } E .
STRONG_EQUIV E E' \Longrightarrow \forallE'\prime. STRONG_EQUIV ( }\mp@subsup{E}{}{\prime\prime}+E)(\mp@subsup{E}{}{\prime\prime}+\mp@subsup{E}{}{\prime}
[STRONG_EQUIV_SUBST_SUM_R]
\vdash}\forall\mp@subsup{E}{}{\prime}E\mathrm{ .

```

```

[STRONG_EQUIV_SYM]
\vdash \forall \mp@code { E ~ E ' . ~ S T R O N G _ E Q U I V ~ E ~ E ' } \Longrightarrow STRONG_EQUIV E' E
[STRONG_EQUIV_TRANS]
\vdash}\forallE E E E'f
STRONG_EQUIV E E' ^ STRONG_EQUIV E' E' }
STRONG_EQUIV E E'
[UNION_STRONG_BISIM]
\vdash \forallBsm1 Bsm
STRONG_BISIM Bsm
STRONG_BISIM (Bsm1 RUNION Bsm2)

```

\subsection*{9.3 StrongLaws Theory}

Built: 08 Dicembre 2017
Parent Theories: StrongEQ

\subsection*{9.3.1 Definitions}
```

[ALL_SYNC_def]
\vdash \mp@code { \vdash } \forall f f f ^ { \prime } m .
ALL_SYNC }f0\mp@subsup{f}{}{\prime}m
SYNC (PREF_ACT (f 0)) (PREF_PROC (f 0)) f' m) ^
\forallf n f'm.
ALL_SYNC }f\mathrm{ (SUC n) f}\mp@subsup{f}{}{\prime}m
ALL_SYNC }f=n\mp@subsup{f}{}{\prime}m
SYNC (PREF_ACT (f (SUC n))) (PREF_PROC (f (SUC n))) f' m
[CCS_COMP_def]
\vdash ( \forall f . P I ~ f ~ 0 = f ~ 0 ) ~ \wedge ~ \forall f ~ n . ~ P I ~ f ~ ( S U C ~ n ) ~ = ~ P I ~ f ~ n ~ \| ~ f ~ ( S U C ~ n )

```
[CCS_SIGMA_def]
 \(\vdash(\forall f\). SIGMA \(f 0=f 0) \wedge\)
 \(\forall f n\). SIGMA \(f\) (SUC \(n\)) \(=\) SIGMA \(f n+f\) (SUC \(n\))
[Is_Prefix_def]
 \(\vdash \forall E\). Is_Prefix \(E \Longleftrightarrow \exists u E^{\prime} . E=u . . E^{\prime}\)
[PREF_ACT_def]
 \(\vdash \forall u\) E. PREF_ACT \((u . . E)=u\)
[PREF_PROC_def]
 \(\vdash \forall u\) E. PREF_PROC \((u . . E)=E\)
[SYNC_def]
 \(\vdash(\forall u P f\).
 SYNC \(u P f 0=\)
 if \((u=\tau) \vee\) (PREF_ACT \((f 0)=\tau)\) then nil
 else if LABEL \(u=\) COMPL (LABEL (PREF_ACT \((f 0)\))) then
 \(\tau .(P \|\) PREF_PROC (\(f 0)\))
 else nil) \(\wedge\)
 \(\forall u P f n\).
 SYNC \(u P f(\) SUC \(n)=\)
 if \((u=\tau) \vee(\) PREF_ACT \((f(\operatorname{SUC} n))=\tau)\) then SYNC \(u P f n\)
 else if LABEL \(u=\) COMPL (LABEL (PREF_ACT \((f\) (SUC \(n\))))) then
 \(\tau .(P \|\) PREF_PROC \((f(\operatorname{SUC} n)))+\operatorname{SYNC} u P f n\)
 else SYNC \(u P f n\)

\subsection*{9.3.2 Theorems}
```

[ALL_SYNC_BASE]
\vdash}\forallf\mp@subsup{f}{}{\prime}m\mathrm{ .
ALL_SYNC f 0 f
SYNC (PREF_ACT (f 0)) (PREF_PROC (f 0)) f' m

```
```

[ALL_SYNC_def_compute]
\vdash
ALL_SYNC f 0 f
SYNC (PREF_ACT (f 0)) (PREF_PROC (f 0)) f' m) ^
(}\forallfn\mp@subsup{f}{}{\prime}m\mathrm{ .
ALL_SYNC f (NUMERAL (BIT1 n)) f
ALL_SYNC f (NUMERAL (BIT1 n) - 1) f' m +
SYNC (PREF_ACT (f (NUMERAL (BIT1 n))))
(PREF_PROC (f (NUMERAL (BIT1 n)))) f' m) ^
\forallfn f
ALL_SYNC f (NUMERAL (BIT2 n)) f
ALL_SYNC }f\mathrm{ (NUMERAL (BIT1 n)) f}\mp@subsup{f}{}{\prime}m
SYNC (PREF_ACT (f (NUMERAL (BIT2 n))))
(PREF_PROC (f (NUMERAL (BIT2 n)))) f
[ALL_SYNC_INDUCT]
\vdash}\forallfn\mp@subsup{f}{}{\prime}m
ALL_SYNC f (SUC n) f
ALL_SYNC f n f f
SYNC (PREF_ACT (f (SUC n))) (PREF_PROC (f (SUC n))) f' m
[ALL_SYNC_TRANS_THM]
\vdashnmf f' u E.
ALL_SYNC f n f' m-u->E \Longrightarrow
\existsk k
k\leqn^k
(PREF_ACT (f' k
(E = PREF_PROC (f k)| |REF_PROC (f' }\mp@subsup{f}{}{\prime})
[ALL_SYNC_TRANS_THM_EQ]
\vdashnmf f' u E.
ALL_SYNC f n f }\mp@subsup{f}{}{\prime}m-u->E
\existsk k
k\leqn^k
(PREF_ACT (f}\mp@subsup{f}{}{\prime}\mp@subsup{k}{}{\prime})= label (COMPL l)) ^ (u=\tau) ^
(E = PREF_PROC (f k)| |REF_PROC (f }\mp@subsup{f}{}{\prime}\mp@subsup{k}{}{\prime})
[CCS_COMP_def_compute]
\vdash(\forallf. PI f 0 = f 0) ^
(\forallf n.
PI f (NUMERAL (BIT1 n)) =
PI f (NUMERAL (BIT1 n) - 1)|f(NUMERAL (BIT1 n))) ^
\forallf
PI f (NUMERAL (BIT2 n)) =
PI f (NUMERAL (BIT1 n)) || f (NUMERAL (BIT2 n))

```
```

[CCS_SIGMA_def_compute]
\vdash ( \forall f . ~ S I G M A ~ f 0 = f 0 ) \wedge ~
(\forallf n.
SIGMA f (NUMERAL (BIT1 n)) =
SIGMA f (NUMERAL (BIT1 n) - 1) + f (NUMERAL (BIT1 n))) ^
\forallf n.
SIGMA f (NUMERAL (BIT2 n)) =
SIGMA f (NUMERAL (BIT1 n)) + f (NUMERAL (BIT2 n))
[COMP_BASE]
\vdash}\forallf.PI f0=f
[COMP_INDUCT]
\vdash}\forallfn.\operatorname{PI }f(\operatorname{SUC}n)=\operatorname{PI }fn|f(\operatorname{SUC}n
[PREF_IS_PREFIX]
\vdash}\forallu E. Is_Prefix (u..E
[SIGMA_BASE]
\vdash}\forallf. SIGMA f 0 = f 0
[SIGMA_INDUCT]
\vdash \mp@code { \vdash f n . ~ S I G M A ~ f ( S U C ~ n ) ~ = ~ S I G M A ~ } f n + f ( \operatorname { S U C } n )
[SIGMA_TRANS_THM]
\vdash}\forallnfuE.SIGMA f n -u->E\Longrightarrow\existsk.k\leqn^fk-u->
[SIGMA_TRANS_THM_EQ]
\vdash}\forallnfuE. SIGMA f n -u->E\Longleftrightarrow\existsk.k\leqn^fk-u->
[STRONG_EXPANSION_LAW]
\vdash \vdash \forall f ~ n ~ f ' m .
(\foralli. i \leq n\Longrightarrow Is_Prefix (f i)) ^
(\forallj.j\leqm\Longrightarrow Is_Prefix ( }\mp@subsup{f}{}{\prime}j))
STRONG_EQUIV (SIGMA f n | SIGMA f' m)
(SIGMA
( }\lambdai.\mp@subsup{P}{\mathrm{ PREF_ACT ( }f i)..(PREF_PROC (f i)| SIGMA f' m))}{\prime
n +
SIGMA
( }\lambdaj.\mathrm{ PREF_ACT ( }\mp@subsup{f}{}{\prime}j)..(SIGMA f n | PREF_PROC ( f' j))
m + ALL_SYNC f n f' m)
[STRONG_LEFT_SUM_MID_IDEMP]
\vdash \vdash \forall E E E ^ { \prime } E ^ { \prime \prime } . STRONG_EQUIV (E + E' + E'' + E ^ { \prime } ) ( E + E ^ { \prime \prime } + E ^ { \prime } )

```
```

[STRONG_PAR_ASSOC]

```

```

[STRONG_PAR_COMM]
\vdash \forallE E'. STRONG_EQUIV (E| | E')(E'| |)
[STRONG_PAR_IDENT_L]
\vdash \& . STRONG_EQUIV (nil | E) E
[STRONG_PAR_IDENT_R]
\vdash \forallE. STRONG_EQUIV (E | nil) E
[STRONG_PAR_PREF_NO_SYNCR]
\forall \foralll l'.
l\not= COMPL l' \Longrightarrow
\forall E E'.
STRONG_EQUIV (label l..E | label l'..E')
(label l..(E | label l'..E') +
label l'..(label l..E || E'))
[STRONG_PAR_PREF_SYNCR]
\vdash \foralll l'.
(l = COMPL l') \Longrightarrow
| E'.
STRONG_EQUIV (label l..E | label l'..E')
(label l..(E| label l'..E') +
label l'..(label l..E | E E})+\tau..(E| | E')
[STRONG_PAR_PREF_TAU]
\vdash}\forallu E E '.
STRONG_EQUIV (u..E | \tau..E')
(u..(E| |..E') + \tau..(u..E| | E'))
[STRONG_PAR_TAU_PREF]
\vdash}\forallE u E'
STRONG_EQUIV (\tau..E | u..E')
(\tau..(E| |..E') + u..(\tau..E| | E'))
[STRONG_PAR_TAU_TAU]
\vdash}\forallE E'
STRONG_EQUIV (\tau..E | \tau..E')
(\tau..(E|\tau..E') + \tau..(\tau..E| | E'))
[STRONG_PREF_REC_EQUIV]
\vdash}\forallusv
STRONG_EQUIV (u..rec s (v..u..var s)) (rec s (u..v..var s))

```
[STRONG_REC_ACT2]
```

    \vdash \foralls u. STRONG_EQUIV (rec s (u..u..var s)) (rec s (u..var s))
    ```
[STRONG_RELAB_NIL]
 \(\vdash \forall r f\). STRONG_EQUIV (relab nil rf) nil
[STRONG_RELAB_PREFIX]
 \(\vdash \forall u\) E labl.
 STRONG_EQUIV (relab (u..E) (RELAB labl))
 (relabel (RELAB labl) u..relab E (RELAB labl))
[STRONG_RELAB_SUM]
 \(\vdash \forall E E^{\prime} r f\).
 STRONG_EQUIV (relab \(\left.\left(E+E^{\prime}\right) r f\right)(r e l a b E r f+r e l a b ~ E f r)\)
[STRONG_RESTR_NIL]
 \(\vdash \forall L\). STRONG_EQUIV (\(\nu L\) nil) nil
[STRONG_RESTR_PR_LAB_NIL]
 \(\vdash \forall l L\).
 \(l \in L \vee \operatorname{COMPL} l \in L \Longrightarrow\)
 \(\forall E\). STRONG_EQUIV (\(\nu\) L (label l..E)) nil
[STRONG_RESTR_PREFIX_LABEL]
 \(\vdash \forall l L\).
 \(l \notin L \wedge\) COMPL \(l \notin L \Longrightarrow\)
 \(\forall E\). STRONG_EQUIV (\(\nu L\) (label \(l . . E\))) (label \(l . . \nu L E\))
[STRONG_RESTR_PREFIX_TAU]
 \(\vdash \forall E L\). STRONG_EQUIV \((\nu L(\tau \ldots E))(\tau . . \nu L E)\)
[STRONG_RESTR_SUM]
 \(\vdash \forall E E^{\prime} L\). STRONG_EQUIV \(\left(\nu L\left(E+E^{\prime}\right)\right)\left(\nu L E+\nu L E^{\prime}\right)\)
[STRONG_SUM_ASSOC_L]
 \(\vdash \forall E E^{\prime} E^{\prime \prime}\). STRONG_EQUIV \(\left(E+\left(E^{\prime}+E^{\prime \prime}\right)\right)\left(E+E^{\prime}+E^{\prime \prime}\right)\)
[STRONG_SUM_ASSOC_R]
 \(\vdash \forall E E^{\prime} E^{\prime \prime}\). STRONG_EQUIV \(\left(E+E^{\prime}+E^{\prime \prime}\right)\left(E+\left(E^{\prime}+E^{\prime \prime}\right)\right)\)
 [STRONG_SUM_COMM]
 \(\vdash \forall E E^{\prime}\). STRONG_EQUIV \(\left(E+E^{\prime}\right)\left(E^{\prime}+E\right)\)
```

[STRONG_SUM_IDEMP]
\vdash}\forallE\mathrm{ . STRONG_EQUIV (E + E) E
[STRONG_SUM_IDENT_L]
\vdash \forallE. STRONG_EQUIV (nil + E) E
[STRONG_SUM_IDENT_R]
\vdash \forallE. STRONG_EQUIV (E + nil) E
[STRONG_SUM_MID_IDEMP]
\vdash \forallE E'. STRONG_EQUIV (E + E' + E) ( E' + E)
[STRONG_UNFOLDING]
\vdash}\forallX E. STRONG_EQUIV (rec X E) (CCS_Subst E (rec X E) X
[SYNC_BASE]
\vdash\forallu Pf.
SYNC u P f 0 =
if (u=\tau) \vee (PREF_ACT (f 0) = \tau) then nil
else if LABEL u= COMPL (LABEL (PREF_ACT (f 0))) then
\tau..(P || PREF_PROC (f 0))
else nil
[SYNC_def_compute]
\vdash
SYNC uPf0=
if (u=\tau)\vee (PREF_ACT (f 0) = \tau) then nil
else if LABEL u= COMPL (LABEL (PREF_ACT (f 0))) then
\tau..(P| |REF_PROC (f 0))
else nil) ^
(}\foralluPfn
SYNC u P f (NUMERAL (BIT1 n)) =
if (u=\tau) \vee (PREF_ACT (f (NUMERAL (BIT1 n))) = \tau) then
SYNC u P f (NUMERAL (BIT1 n) - 1)
else if
LABEL u =
COMPL (LABEL (PREF_ACT (f (NUMERAL (BIT1 n)))))
then
\tau..(P || PREF_PROC (f (NUMERAL (BIT1 n)))) +
SYNC u P f (NUMERAL (BIT1 n) - 1)
else SYNC u Pf(NUMERAL (BIT1 n) - 1)) ^
\forallu Pfn.
SYNC u P f (NUMERAL (BIT2 n)) =
if (u=\tau) \vee (PREF_ACT (f (NUMERAL (BIT2 n))) = \tau) then
SYNC u P f (NUMERAL (BIT1 n))
else if

```
```

    LABEL u = COMPL (LABEL (PREF_ACT (f (NUMERAL (BIT2 n)))))
    then
\tau..(P || PREF_PROC (f (NUMERAL (BIT2 n)))) +
SYNC u P f (NUMERAL (BIT1 n))
else SYNC u P f (NUMERAL (BIT1 n))
[SYNC_INDUCT]
\vdash}\foralluPfn
SYNC u P f (SUC n) =
if (u=\tau) \vee (PREF_ACT (f (SUC n)) = \tau) then SYNC u P f n
else if LABEL }u=\mathrm{ COMPL (LABEL (PREF_ACT ( }f(\mathrm{ (SUC n)))) then
\tau..(P| |REF_PROC (f (SUC n))) + SYNC u P f n
else SYNC u P f n
[SYNC_TRANS_THM]
\forallmu PfvQ.
SYNC u P fm-v->Q\Longrightarrow
\existsjl.
j\leqm^(u = label l) ^
(PREF_ACT (f j) = label (COMPL l)) ^ (v = \tau) ^
(Q = P| |REF_PROC (f j))
[SYNC_TRANS_THM_EQ]
\vdashmu Pfv Q.
SYNC u P f m-v->Q}
\existsjl.
j\leqm^(u = label l) ^
(PREF_ACT (f j) = label (COMPL l)) ^ (v=\tau) ^
(Q = P| | PREF_PROC (f j))

```

\subsection*{9.4 WeakEQ Theory}

Built: 08 Dicembre 2017
Parent Theories: StrongEQ

\subsection*{9.4.1 Definitions}
[EPS_def]
\(\vdash \mathrm{EPS}=\left(\lambda E E^{\prime} . E-\tau \rightarrow E^{\prime}\right)^{*}\)
[STABLE]
\(\vdash \forall E\). Stable \(E \Longleftrightarrow \forall u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow u \neq \tau\)
[WEAK_BISIM_def]
\(\vdash \forall R\). WEAK_BISIM \(R \Longleftrightarrow\) WEAK_SIM \(R \wedge\) WEAK_SIM (relinv \(R\))
[WEAK_EQUIV_def]
```

\vdash WEAK_EQUIV =
(\lambda \a a ar.
\exists WEAK_EQUIV'.
WEAK_EQUIV' a
\foralla}\mp@subsup{a}{0}{
WEAK_EQUIV' a
* }\forall\mathrm{ . .
(\forallE E .
a}0\mathrm{ -label l}->\mp@subsup{E}{1}{}
\exists}\mp@subsup{E}{2}{}.\mp@subsup{a}{1}{}=l\mathrm{ label l }=>\mp@subsup{E}{2}{}\wedge WEAK_EQUIV' E1 E E ) ^
\forall E2.
a
\exists E . a a =label l=> E1 ^ WEAK_EQUIV' E E E E ) ^
(\forallE E .
a}-\tau->\mp@subsup{E}{1}{}\Longrightarrow\exists\mp@subsup{E}{2}{}.EEPS \mp@subsup{a}{1}{}\mp@subsup{E}{2}{}\wedge\mathrm{ WEAK_EQUIV' E E E E ) ^
\forallE . . a < -\tau-> E2 \Longrightarrow\existsE . EPS a a E E ^ WEAK_EQUIV' E E E E )

```
[WEAK_SIM_def]
\(\vdash \forall R\).
 WEAK_SIM \(R \Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 \(R E E^{\prime} \Longrightarrow\)
 (\(\forall l E_{1}\).
 \(E-\) label \(l \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=\) label \(\left.l \Rightarrow E_{2} \wedge R E_{1} E_{2}\right) \wedge\)
 \(\forall E_{1} . E-\tau \rightarrow E_{1} \Longrightarrow \exists E_{2}\). EPS \(E^{\prime} E_{2} \wedge R E_{1} E_{2}\)
[WEAK_TRANS]
\(\vdash \forall E u E^{\prime} . E=u \Rightarrow E^{\prime} \Longleftrightarrow \exists E_{1} E_{2}\). EPS \(E E_{1} \wedge E_{1}-u \rightarrow E_{2} \wedge \operatorname{EPS} E_{2} E^{\prime}\)

\subsection*{9.4.2 Theorems}
```

[COMP_WEAK_BISIM]
\forall Wbsm
WEAK_BISIM Wbsm1 ^ WEAK_BISIM Wbsm}\mp@subsup{2}{2}{\Longrightarrow
WEAK_BISIM (Wbsm}\mp@subsup{\mp@code{L}}{2}{0}\mp@subsup{W}{bsm}{1
[CONVERSE_WEAK_BISIM]
\vdashWbsm. WEAK_BISIM Wbsm \Longrightarrow WEAK_BISIM (relinv Wbsm)
[EPS_AND_WEAK_TRANS]
\vdash}\forallE\mp@subsup{E}{1}{}u\mp@subsup{E}{2}{}\mathrm{ . EPS E E E }\wedge\mp@subsup{E}{1}{}=u=>\mp@subsup{E}{2}{}\LongrightarrowE=u=>\mp@subsup{E}{2}{
[EPS_cases]
\vdash}\forallE E'
EPS E E'\Longleftrightarrow E-\tau-> E'\vee (E = E') \vee \existsE . . EPS E E 左^ EPS E E E E

```
[EPS_cases1]
\(\vdash \forall x y\). EPS \(x y \Longleftrightarrow(x=y) \vee \exists u . x-\tau \rightarrow u \wedge\) EPS \(u y\)
[EPS_cases2]
\(\vdash \forall x y\). EPS \(x y \Longleftrightarrow(x=y) \vee \exists u\). EPS \(x u \wedge u-\tau \rightarrow y\)
[EPS_IMP_WEAK_TRANS]
\(\vdash \forall E E^{\prime}\). EPS \(E E^{\prime} \Longrightarrow\left(E=E^{\prime}\right) \vee E=\tau \Rightarrow E^{\prime}\)
[EPS_ind]
\(\vdash \forall P\).
\((\forall x . P x x) \wedge(\forall x y z . x-\tau \rightarrow y \wedge P y z \Longrightarrow P x z) \Longrightarrow\)
\(\forall x y\). EPS \(x y \Longrightarrow P x y\)
[EPS_ind_right]
\(\vdash \forall P\).
\((\forall x . P x x) \wedge(\forall x y z . P x y \wedge y-\tau \rightarrow z \Longrightarrow P x z) \Longrightarrow\)
\(\forall x y\). EPS \(x y \Longrightarrow P x y\)
[EPS_INDUCT]
\(\vdash \forall P\).
\(\left(\forall E E^{\prime} . E-\tau \rightarrow E^{\prime} \Longrightarrow P E E^{\prime}\right) \wedge(\forall E . P E E) \wedge\) \(\left(\forall E E_{1} E^{\prime} . P E E_{1} \wedge P E_{1} E^{\prime} \Longrightarrow P E E^{\prime}\right) \Longrightarrow\) \(\forall x y\). EPS \(x y \Longrightarrow P x y\)
[EPS_PAR]
\(\vdash \forall E E^{\prime}\).
EPS \(E E^{\prime} \Longrightarrow\)
\(\forall E^{\prime \prime}\). EPS \(\left(E \| E^{\prime \prime}\right)\left(E^{\prime} \| E^{\prime \prime}\right) \wedge \operatorname{EPS}\left(E^{\prime \prime} \| E\right)\left(E^{\prime \prime} \| E^{\prime}\right)\)
[EPS_PAR_PAR]
\(\vdash \forall E_{1} E_{2} F_{1} F_{2} . \operatorname{EPS} E_{1} E_{2} \wedge \operatorname{EPS} F_{1} F_{2} \Longrightarrow \operatorname{EPS}\left(E_{1} \| F_{1}\right)\left(E_{2} \| F_{2}\right)\)
[EPS_REFL]
\(\vdash \forall E\). EPS \(E E\)
[EPS_RELAB]
\(\vdash \forall E E^{\prime}\).
EPS \(E E^{\prime} \Longrightarrow\)
\(\forall l a b l\). EPS (relab \(E\) (RELAB labl)) (relab \(E^{\prime}\) (RELAB labl))
[EPS_RELAB_rf]
\(\vdash \forall E E^{\prime}\). EPS \(E E^{\prime} \Longrightarrow \forall r f\). EPS (relab \(E r f\)) (relab \(\left.E^{\prime} r f\right)\)

[EPS_STABLE]
```

\vdash}\forallE\mp@subsup{E}{}{\prime}.\mathrm{ EPS }E\mp@subsup{E}{}{\prime}\Longrightarrow\mathrm{ STABLE }E\Longrightarrow(\mp@subsup{E}{}{\prime}=E

```
[EPS_STABLE']
\(\vdash \forall E E^{\prime} . \operatorname{EPS} E E^{\prime} \wedge \operatorname{STABLE} E \Longrightarrow\left(E^{\prime}=E\right)\)
[EPS_strongind]
\(\vdash \forall P\).
 \((\forall x . P x x) \wedge(\forall x y z . x-\tau \rightarrow y \wedge\) EPS \(y z \wedge P y z \Longrightarrow P x z) \Longrightarrow\)
 \(\forall x y\). EPS \(x y \Longrightarrow P x y\)
[EPS_strongind_right]
\(\vdash \forall P\).
 \((\forall x . P x x) \wedge(\forall x y z . P x y \wedge \operatorname{EPS} x y \wedge y-\tau \rightarrow z \Longrightarrow P x z) \Longrightarrow\)
 \(\forall x y\). EPS \(x y \Longrightarrow P x y\)
[EPS_TRANS]
 \(\vdash \forall x y z . \operatorname{EPS} x y \wedge\) EPS \(y z \Longrightarrow \operatorname{EPS} x z\)
[EPS_TRANS_AUX]
 \(\vdash \forall E E_{1}\).
 EPS \(E \quad E_{1} \Longrightarrow\)
 \(\forall\) Wbsm \(E^{\prime}\).
 WEAK_BISIM Wbsm \(\wedge\) Wbsm \(E E^{\prime} \Longrightarrow \exists E_{2}\). EPS \(E^{\prime} E_{2} \wedge\) Wbsm \(E_{1} E_{2}\)
[EPS_TRANS_AUX_SYM]
 \(\vdash \forall E^{\prime} E_{1}\).
 EPS \(E^{\prime} E_{1} \Longrightarrow\)
 \(\forall W b s m\) E.
 WEAK_BISIM Wbsm \(\wedge\) Wbsm \(E E^{\prime} \Longrightarrow \exists E_{2}\). EPS \(E E_{2} \wedge\) Wbsm \(E_{2} E_{1}\)
[EPS_WEAK_EPS]
 \(\vdash \forall E E_{1} u E_{2} E^{\prime}\). EPS \(E E_{1} \wedge E_{1}=u \Rightarrow E_{2} \wedge \operatorname{EPS} E_{2} E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}\)
[EQUAL_IMP_WEAK_EQUIV]
 \(\vdash \forall E E^{\prime} .\left(E=E^{\prime}\right) \Longrightarrow\) WEAK_EQUIV \(E E^{\prime}\)
[IDENTITY_WEAK_BISIM]
 \(\vdash\) WEAK_BISIM \((\lambda x y . x=y)\)

\section*{[INVERSE_REL]}
\[
\vdash \forall R x y . \text { relinv } R x y \Longleftrightarrow R y x
\]
[ONE_TAU]
\(\vdash \forall E E^{\prime} . E-\tau \rightarrow E^{\prime} \Longrightarrow\) EPS \(E E^{\prime}\)
[STABLE_cases]
\(\vdash \forall E\). STABLE \(E \vee \neg\) STABLE \(E\)
[STABLE_NO_TRANS_TAU]
\(\vdash \forall E\). STABLE \(E \Longrightarrow \forall E^{\prime} . \neg\left(E-\tau \rightarrow E^{\prime}\right)\)
[STABLE_NO_WEAK_TRANS_TAU]
\(\vdash \forall E\). STABLE \(E \Longrightarrow \forall E^{\prime} . \neg\left(E=\tau \Rightarrow E^{\prime}\right)\)
[STRONG_EQUIV_EPS]
\(\vdash \forall E \quad E^{\prime}\) 。
STRONG_EQUIV \(E \quad E^{\prime} \Longrightarrow\) \(\forall E_{1}\). EPS \(E E_{1} \Longrightarrow \exists E_{2}\). EPS \(E^{\prime} E_{2} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_EQUIV_EPS']
\(\vdash \forall E \quad E^{\prime}\).
STRONG_EQUIV \(E \quad E^{\prime} \Longrightarrow\)
\(\forall E_{2}\). EPS \(E^{\prime} E_{2} \Longrightarrow \exists E_{1}\). EPS \(E E_{1} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_EQUIV_WEAK_TRANS]
\(\vdash \forall E \quad E^{\prime}\) 。
STRONG_EQUIV \(E \quad E^{\prime} \Longrightarrow\)
\(\forall u E_{1} . E=u \Rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=u \Rightarrow E_{2} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_EQUIV_WEAK_TRANS']
\(\vdash \forall E \quad E^{\prime}\). STRONG_EQUIV \(E \quad E^{\prime} \Longrightarrow\) \(\forall u E_{2} . E^{\prime}=u \Rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge\) STRONG_EQUIV \(E_{1} E_{2}\)
[STRONG_IMP_WEAK_BISIM]
\(\vdash \forall B s m\). STRONG_BISIM \(B s m \Longrightarrow\) WEAK_BISIM \(B s m\)
[STRONG_IMP_WEAK_EQUIV]
\(\vdash \forall E E^{\prime}\). STRONG_EQUIV \(E E^{\prime} \Longrightarrow\) WEAK_EQUIV \(E E^{\prime}\)
[TAU_PREFIX_EPS]
\(\vdash \forall E E^{\prime}\). EPS \(E E^{\prime} \Longrightarrow \operatorname{EPS}(\tau \ldots E) E^{\prime}\)
```

[TAU_PREFIX_WEAK_TRANS]
$\vdash \forall E u E^{\prime} . E=u \Rightarrow E^{\prime} \Longrightarrow \tau . . E=u \Rightarrow E^{\prime}$
[TRANS_AND_EPS]
$\vdash \forall E u E_{1} E^{\prime} . E-u \rightarrow E_{1} \wedge \operatorname{EPS} E_{1} E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}$
[TRANS_IMP_WEAK_TRANS]
$\vdash \forall E u E^{\prime} . E-u \rightarrow E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}$
[TRANS_TAU_AND_WEAK]
$\vdash \forall E E_{1} u E^{\prime} . E-\tau \rightarrow E_{1} \wedge E_{1}=u \Rightarrow E^{\prime} \Longrightarrow E=u \Rightarrow E^{\prime}$
[TRANS_TAU_IMP_EPS]
$\vdash \forall E E^{\prime} . E-\tau \rightarrow E^{\prime} \Longrightarrow \operatorname{EPS} E E^{\prime}$
[UNION_WEAK_BISIM]
$\vdash \forall$ Wbsm $_{1}$ Wbsm $_{2}$.
WEAK_BISIM $\mathrm{Wbsm}_{1} \wedge$ WEAK_BISIM $\mathrm{Wbsm}_{2} \Longrightarrow$
WEAK_BISIM (Wbsm RUNION Wbsm ${ }_{2}$ )
[WEAK_BISIM]
$\vdash$ WEAK_BISIM Wbsm $\Longleftrightarrow$
$\forall E E^{\prime}$.
Wbsm $E E^{\prime} \Longrightarrow$
( $\forall$ l.
$\left(\forall E_{1}\right.$.
$E$-label $l \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=$ label $l \Rightarrow E_{2} \wedge$ Wbsm $\left.E_{1} E_{2}\right) \wedge$
$\forall E_{2}$.
$E^{\prime}-$ label $l \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=$ label $l \Rightarrow E_{1} \wedge$ Wbsm $\left.E_{1} E_{2}\right) \wedge$
$\left(\forall E_{1} . E-\tau \rightarrow E_{1} \Longrightarrow \exists E_{2}\right.$. EPS $E^{\prime} E_{2} \wedge$ Wbsm $\left.E_{1} E_{2}\right) \wedge$
$\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1}$. EPS $E E_{1} \wedge W b s m E_{1} E_{2}$
[WEAK_BISIM_SUBSET_WEAK_EQUIV]
$\vdash \forall W b s m$. WEAK_BISIM $W b s m \Longrightarrow W b s m$ RSUBSET WEAK_EQUIV
[WEAK_EQUIV]
$\vdash \forall E E^{\prime}$. WEAK_EQUIV $E E^{\prime} \Longleftrightarrow \exists$ Wbsm. Wbsm $E E^{\prime} \wedge$ WEAK_BISIM Wbsm
[WEAK_EQUIV_cases]
$\vdash \forall a_{0} a_{1}$.
WEAK_EQUIV $a_{0} a_{1} \Longleftrightarrow$
( $\forall$ l.
( $\forall E_{1}$.
$a_{0}$-label $l \rightarrow E_{1} \Longrightarrow$
$\exists E_{2} . a_{1}=$ label $l \Rightarrow E_{2} \wedge$ WEAK_EQUIV $\left.E_{1} E_{2}\right) \wedge$
$\forall E_{2}$.
$a_{1}$-label $l \rightarrow E_{2} \Longrightarrow$
$\exists E_{1} . a_{0}=$ label $l \Rightarrow E_{1} \wedge$ WEAK_EQUIV $\left.E_{1} E_{2}\right) \wedge$
$\left(\forall E_{1} . a_{0}-\tau \rightarrow E_{1} \Longrightarrow \exists E_{2}\right.$. EPS $a_{1} E_{2} \wedge$ WEAK_EQUIV $\left.E_{1} E_{2}\right) \wedge$
$\forall E_{2} . a_{1}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1}$. EPS $a_{0} E_{1} \wedge$ WEAK_EQUIV $E_{1} E_{2}$

```
```

[WEAK_EQUIV_coind]
\vdash \forallWEAK_EQUIV'.
(\forall\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}.
WEAK_EQUIV' }\mp@subsup{a}{0}{}\quad\mp@subsup{a}{1}{}
(}\foralll\mathrm{ .
(\forallE E .
a0}\mathrm{ -label l }->\mp@subsup{E}{1}{}
\exists}\mp@subsup{E}{2}{}.\mp@subsup{a}{1}{}=l\mathrm{ label l }=>\mp@subsup{E}{2}{}\wedge WEAK_EQUIV' E1 E E ) ^
\forall E2.
a
\exists E . . a 0 =label l=> E1 ^ WEAK_EQUIV' E1 E E ) ^
(\forall\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}-\tau->\mp@subsup{E}{1}{}\Longrightarrow\exists\mp@subsup{E}{2}{}.EPSS \mp@subsup{a}{1}{}\mp@subsup{E}{2}{}\wedgeWEAK_EQUIV' E}\mp@subsup{E}{1}{}\mp@subsup{E}{2}{\prime})

```


```

[WEAK_EQUIV_EPS]
\vdash}\forallE E'
WEAK_EQUIV E E C
\forallE1. EPS E E
[WEAK_EQUIV_EPS']
\vdash}\forallE E'
WEAK_EQUIV E E' \Longrightarrow
\forallE2. EPS E E E 2 \Longrightarrow \exists E . EPS E E E ^ WEAK_EQUIV E E E E
[WEAK_EQUIV_equivalence]
equivalence WEAK_EQUIV
[WEAK_EQUIV_IS_WEAK_BISIM]
FEAK_BISIM WEAK_EQUIV
[WEAK_EQUIV_PRESD_BY_GUARDED_SUM]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime
WEAK_EQUIV E E E El
WEAK_EQUIV ( }\mp@subsup{a}{1}{}..E\mp@subsup{E}{1}{}+\mp@subsup{a}{2}{}..\mp@subsup{E}{2}{})(\mp@subsup{a}{1}{}..\mp@subsup{E}{1}{\prime}+\mp@subsup{a}{2}{}..E\mp@subsup{E}{2}{\prime}
[WEAK_EQUIV_PRESD_BY_PAR]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime}\mp@subsup{E}{2}{2}\mp@subsup{E}{2}{\prime}
WEAK_EQUIV E E E E1
WEAK_EQUIV ( }\mp@subsup{E}{1}{|}|\mp@subsup{E}{2}{2}\mathrm{ )( (E1| | E )
[WEAK_EQUIV_PRESD_BY_SUM]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime}\mp@subsup{E}{2}{2}\mp@subsup{E}{2}{\prime}
WEAK_EQUIV E E E El
WEAK_EQUIV E E E E',}^\mathrm{ STABLE E E2}^\mathrm{ STABLE }\mp@subsup{E}{2}{\prime}
WEAK_EQUIV ( }\mp@subsup{E}{1}{}+\mp@subsup{E}{2}{})(\mp@subsup{E}{1}{\prime}+\mp@subsup{E}{2}{\prime}

```
```

[WEAK_EQUIV_REFL]
\vdash \vdash \forall E . W E A K \_ E Q U I V ~ E ~ E
[WEAK_EQUIV_rules]
\vdash}\forallE E'
(}\foralll\mathrm{ .
(}\forall\mp@subsup{E}{1}{}
E -label l}->\mp@subsup{E}{1}{}
\exists E2. E' =label l=> E2 ^ WEAK_EQUIV E1 E E | | ^
* E2.
E' -label l}->\mp@subsup{E}{2}{}
\exists}\mp@subsup{E}{1}{}.E=label l=>\mp@subsup{E}{1}{}\wedge WEAK_EQUIV E E E E ) ^ \

```


```

    WEAK_EQUIV E E'
    [WEAK_EQUIV_SUBST_PAR_L]
\vdash \mp@code { \forall E ~ E ' . }
WEAK_EQUIV E E' \Longrightarrow \forall E'|}.WEAK_EQUIV ( E" | E) ( E'| | E'
[WEAK_EQUIV_SUBST_PAR_R]
\vdash}\forallE E'
WEAK_EQUIV E E'\Longrightarrow 洼'.WEAK_EQUIV (E| | E') ( E'| | | )
[WEAK_EQUIV_SUBST_PREFIX]
\vdash}\forallE E'. WEAK_EQUIV E E ' \Longrightarrow \forall . WEAK_EQUIV ( u..E) (u..E'E
[WEAK_EQUIV_SUBST_RELAB]
\vdash}\forallE E'
WEAK_EQUIV E E' \Longrightarrow
\forallrf. WEAK_EQUIV (relab E rf) (relab E'rf)
[WEAK_EQUIV_SUBST_RESTR]
\vdash}\forallE E'.WEAK_EQUIV E E'\Longrightarrow 渒.WEAK_EQUIV (\nu L E) ( \nu L E'
[WEAK_EQUIV_SUBST_SUM_R]
\vdash}\forallE E'
WEAK_EQUIV E E'^ STABLE E ^ STABLE E' }
\forall\mp@subsup{E}{}{\prime\prime}. WEAK_EQUIV (E + E') ( }\mp@subsup{E}{}{\prime}+\mp@subsup{E}{}{\prime\prime}
[WEAK_EQUIV_SYM]

```

```

[WEAK_EQUIV_SYM']
\vdash}\forallE E'.WEAK_EQUIV E E' \Longleftrightarrow WEAK_EQUIV E' E

```
```

[WEAK_EQUIV_TRANS]
\vdash}\forallE E' E'|
WEAK_EQUIV E E'^ WEAK_EQUIV E' E"}\Longrightarrow\mathrm{ WEAK_EQUIV E E'
[WEAK_EQUIV_TRANS_label]
\vdash}\forallE E'
WEAK_EQUIV E E' \Longrightarrow
\forall E .
E-label l->E E1\Longrightarrow\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}=label l=>E2}<br>mp@code{WEAK_EQUIV E E1 E2
[WEAK_EQUIV_TRANS_label']
\vdash}\forallE E'
WEAK_EQUIV E E C
\foralll E2.
E' -label l->E E2\Longrightarrow\existsE1. E =label l=> E1 ^ WEAK_EQUIV E1 E2
[WEAK_EQUIV_TRANS_tau]
\vdash \forallE E'.
WEAK_EQUIV E E'\Longrightarrow
\forallE1. E -\tau->E E1 \Longrightarrow\exists\mp@subsup{E}{2}{}. EPS E' E2 ^ WEAK_EQUIV E1 E E2
[WEAK_EQUIV_TRANS_tau']
\vdash}\forallE E '.
WEAK_EQUIV E E C

```

```

[WEAK_EQUIV_WEAK_TRANS_label]
\vdash}\forallE E '.
WEAK_EQUIV E E C
\forall E E.
E=label l=> E1 \Longrightarrow\existsE2. E' =label l=> E2 ^ WEAK_EQUIV E1 E E
[WEAK_EQUIV_WEAK_TRANS_label']
\vdash}\forallE E'
WEAK_EQUIV E E C
\foralll E2.

```

```

[WEAK_EQUIV_WEAK_TRANS_tau]
\vdash}\forallE E'
WEAK_EQUIV E E' \Longrightarrow
\forall\mp@subsup{E}{1}{}.E=\tau=> E1 \Longrightarrow\exists\mp@subsup{E}{2}{}. EPS E' E2 ^ WEAK_EQUIV E1 E E2
[WEAK_EQUIV_WEAK_TRANS_tau']
\vdash}\forallE E '.
WEAK_EQUIV E E' \Longrightarrow
\forallE2. E' =\tau=> E2\Longrightarrow\exists\mp@subsup{E}{1}{}. EPS E E1 ^ WEAK_EQUIV E1 E2

```

\section*{[WEAK_PAR]}
\[
\begin{aligned}
& \vdash \forall E u E^{\prime} . \\
& \quad E=u \Rightarrow E^{\prime} \Longrightarrow \\
& \quad \forall E^{\prime \prime} \cdot E\left\|E^{\prime \prime}=u \Rightarrow E^{\prime}\right\| E^{\prime \prime} \wedge E^{\prime \prime}\left\|E=u \Rightarrow E^{\prime \prime}\right\| E^{\prime}
\end{aligned}
\]
[WEAK_PREFIX]
\[
\vdash \forall E \quad u . u . . E=u \Rightarrow E
\]
[WEAK_PROPERTY_STAR]
\(\vdash \forall a_{0} a_{1}\).
WEAK_EQUIV \(a_{0} a_{1} \Longleftrightarrow\)
(\(\forall l\).
\(\left(\forall E_{1}\right.\).
\[
\begin{aligned}
& a_{0}-\text { label } l \rightarrow E_{1} \Longrightarrow \\
& \left.\exists E_{2} . a_{1}=\text { label } l \Rightarrow E_{2} \wedge \text { WEAK_EQUIV } E_{1} E_{2}\right) \wedge
\end{aligned}
\]
 \(\forall E_{2}\).
 \(a_{1}\)-label \(l \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1} . \quad a_{0}=\) label \(l \Rightarrow E_{1} \wedge\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \wedge\)
 \(\left(\forall E_{1} . a_{0}-\tau \rightarrow E_{1} \Longrightarrow \exists E_{2}\right.\). EPS \(a_{1} E_{2} \wedge\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} \cdot a_{1}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1}\). EPS \(a_{0} E_{1} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)
[WEAK_RELAB]
```

\vdash \forall E \| ~ u ~ E ' .
E=u=> E' \Longrightarrow
\foralllabl.
relab E (RELAB labl)
=relabel (RELAB labl) u=>
relab E' (RELAB labl)

```
[WEAK_RELAB_rf]
 \(\vdash \forall E u E^{\prime}\).
 \(E=u \Rightarrow E^{\prime} \Longrightarrow \forall r f\). relab \(E r f=\) relabel \(r f u \Rightarrow\) relab \(E^{\prime} r f\)
[WEAK_RESTR_label]
 \(\vdash \forall l L E E^{\prime}\).
 \(l \notin L \wedge\) COMPL \(l \notin L \wedge E=\) label \(l \Rightarrow E^{\prime} \Longrightarrow\)
 \(\nu L E=\) label \(l \Rightarrow \nu L E^{\prime}\)
[WEAK_RESTR_tau]
 \(\vdash \forall E E^{\prime} . E=\tau \Rightarrow E^{\prime} \Longrightarrow \forall L . \nu L E=\tau \Rightarrow \nu L E^{\prime}\)
[WEAK_SUM1]
 \(\vdash \forall E u E_{1} E^{\prime} . E=u \Rightarrow E_{1} \Longrightarrow E+E^{\prime}=u \Rightarrow E_{1}\)

\section*{[WEAK_SUM2]}
\[
\vdash \forall E u E_{1} E^{\prime} . E=u \Rightarrow E_{1} \Longrightarrow E^{\prime}+E=u \Rightarrow E_{1}
\]
[WEAK_TRANS_AND_EPS]
\[
\vdash \forall E_{1} u E_{2} E^{\prime} . E_{1}=u \Rightarrow E_{2} \wedge \operatorname{EPS} E_{2} E^{\prime} \Longrightarrow E_{1}=u \Rightarrow E^{\prime}
\]
[WEAK_TRANS_AUX]
\(\vdash \forall E l E_{1}\). \(E=\) label \(l \Rightarrow E_{1} \Longrightarrow\) \(\forall W b s m E^{\prime}\).

WEAK_BISIM Wbsm \(\wedge\) Wbsm \(E E^{\prime} \Longrightarrow\)
\(\exists E_{2} . E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\) Wbsm \(E_{1} E_{2}\)
[WEAK_TRANS_AUX_SYM]
\(\vdash \forall E^{\prime} l E_{1}\) 。
\(E^{\prime}=\) label \(l \Rightarrow E_{1} \Longrightarrow\)
\(\forall W b s m\) E.
WEAK_BISIM Wbsm \(\wedge\) Wbsm E \(E^{\prime} \Longrightarrow\) \(\exists E_{2} . E=\) label \(l \Rightarrow E_{2} \wedge\) Wbsm \(E_{2} E_{1}\)
[WEAK_TRANS_cases1]
\(\vdash \forall E u E_{1}\).
\(E=u \Rightarrow E_{1} \Longrightarrow\)
\(\left(\exists E^{\prime} . E-\tau \rightarrow E^{\prime} \wedge E^{\prime}=u \Rightarrow E_{1}\right) \vee \exists E^{\prime} . E-u \rightarrow E^{\prime} \wedge \operatorname{EPS} E^{\prime} E_{1}\)
[WEAK_TRANS_cases2]
\(\vdash \forall E l E_{1}\).
\(E=\) label \(l \Rightarrow E_{1} \Longrightarrow\)
\(\left(\exists E^{\prime} . E-\tau \rightarrow E^{\prime} \wedge E^{\prime}=\right.\) label \(\left.l \Rightarrow E_{1}\right) \vee\)
\(\exists E^{\prime} . E-\) label \(l \rightarrow E^{\prime} \wedge\) EPS \(E^{\prime} E_{1}\)
[WEAK_TRANS_IMP_EPS]
\(\vdash \forall E E^{\prime} . E=\tau \Rightarrow E^{\prime} \Longrightarrow \operatorname{EPS} E E^{\prime}\)
[WEAK_TRANS_STABLE]
\(\vdash \forall E l E^{\prime}\).
\(E=\) label \(l \Rightarrow E^{\prime} \wedge\) STABLE \(E \Longrightarrow\)
\(\exists E^{\prime \prime} . E\)-label \(l \rightarrow E^{\prime \prime} \wedge\) EPS \(E^{\prime \prime} E^{\prime}\)
[WEAK_TRANS_TAU]
\(\vdash \forall E E_{1} . E=\tau \Rightarrow E_{1} \Longleftrightarrow \exists E^{\prime} . E-\tau \rightarrow E^{\prime} \wedge \operatorname{EPS} E^{\prime} E_{1}\)
[WEAK_TRANS_TAU_IMP_TRANS_TAU]
\(\vdash \forall E E^{\prime} . E=\tau \Rightarrow E^{\prime} \Longrightarrow \exists E_{1} . E-\tau \rightarrow E_{1} \wedge E P S E_{1} E^{\prime}\)

\subsection*{9.5 WeakLaws Theory}

Built: 08 Dicembre 2017
Parent Theories: WeakEQ, StrongLaws

\subsection*{9.5.1 Theorems}
```

[TAU_WEAK]
\vdash \forallE. WEAK_EQUIV (\tau..E) E
[WEAK_EQUIV_SUBST_SUM_L]
\vdash}\forallE E'
WEAK_EQUIV E E' ^ STAbLE E ^ STABLE E' \Longrightarrow
\forall'\prime}\mathrm{ . WEAK_EQUIV ( }\mp@subsup{E}{}{\prime\prime}+E)(\mp@subsup{E}{}{\prime\prime}+\mp@subsup{E}{}{\prime}
[WEAK_EXPANSION_LAW]
\vdash
(\foralli. i \leq n \Longrightarrow Is_Prefix (f i)) ^
(\forallj.j \leqm\Longrightarrow Is_Prefix ( }\mp@subsup{f}{}{\prime}j))
WEAK_EQUIV (SIGMA f n| |IGMA f'm)
(SIGMA
(\lambdai. PREF_ACT (f i)..(PREF_PROC (f i)| |IGMA flm))
n+
SIGMA
( }\lambdaj.\operatorname{PREF_ACT ( }\mp@subsup{f}{}{\prime}j)..(SIGMA f n | PREF_PROC ( fl' j))
m + ALL_SYNC f n f f
[WEAK_PAR_ASSOC]
\vdash \forallE E' E'\prime}\mathrm{ . WEAK_EQUIV (E| | E'| | E') (E| | (E'| | E'))
[WEAK_PAR_COMM]
\vdash \forallE E '. WEAK_EQUIV (E| | E') (E'| | )
[WEAK_PAR_IDENT_L]
\vdash \forallE. WEAK_EQUIV (nil | E) E
[WEAK_PAR_IDENT_R]
\vdash \forallE. WEAK_EQUIV ( E | nil) E
[WEAK_PAR_PREF_NO_SYNCR]
\vdash \foralll l'.
l\not= COMPL l}\mp@subsup{l}{}{\prime}
\forall E E'.
WEAK_EQUIV (label l..E | label l'..E')
(label l..(E | label l'..E') +
label l'..(label l..E || E'))

```
```

[WEAK_PAR_PREF_SYNCR]
\vdash}\foralll l'
(l = COMPL l') \Longrightarrow
\forallE E'
WEAK_EQUIV (label l..E | label l'..E')
(label l..(E | label l'..E') +
label l'..(label l..E | | E') + \tau..(E| | E'))
[WEAK_PAR_PREF_TAU]
\vdash}\foralluE E E.
WEAK_EQUIV (u..E | \tau..E') (u..(E| \tau..E') + \tau..(u..E | E E')
[WEAK_PAR_TAU_PREF]
\vdash}\forallE u E '.
WEAK_EQUIV (\tau..E | u..E') (\tau..(E| |..E') + u..(\tau..E | E E')
[WEAK_PAR_TAU_TAU]
\vdash}\forallE E'
WEAK_EQUIV (\tau..E | \tau..E') (\tau..(E| |..E') + \tau..(\tau..E| | E'))
[WEAK_PREF_REC_EQUIV]
\vdash \forallu s v
WEAK_EQUIV (u..rec s (v..u..var s)) (rec s (u..v..var s))
[WEAK_RELAB_NIL]
\vdash \forallrf. WEAK_EQUIV (relab nil rf) nil
[WEAK_RELAB_PREFIX]
\vdash}\forallu E labl
WEAK_EQUIV (relab (u..E) (RELAB labl))
(relabel (RELAB labl) u..relab E (RELAB labl))
[WEAK_RELAB_SUM]
\vdash}\forallE E rf
WEAK_EQUIV (relab (E + E') rf) (relab E rf + relab E'rf)
[WEAK_RESTR_NIL]
\vdash \forallL. WEAK_EQUIV (\nu L nil) nil

```
[WEAK_RESTR_PR_LAB_NIL]
 \(\vdash \forall l L\).
 \(l \in L \vee\) COMPL \(l \in L \Longrightarrow \forall E\). WEAK_EQUIV (\(\nu L\) (label \(l . . E\))) nil
```

[WEAK_RESTR_PREFIX_LABEL]
\vdash \foralll L.
l\not\inL^ COMPL l \#L\Longrightarrow
\forallE. WEAK_EQUIV (\nu L (label l..E)) (label l..\nu L E)
[WEAK_RESTR_PREFIX_TAU]
\vdash}\forallE L. WEAK_EQUIV (\nu L (\tau..E)) (\tau..\nu L E
[WEAK_RESTR_SUM]
\vdash}\forallE E L L. WEAK_EQUIV (\nuL (E + E')) (\nu L E + \nu L E'
[WEAK_SUM_ASSOC_L]
\vdash}\forallE E ' E'|.WEAK_EQUIV (E + (E' + E'\prime)) (E + E' + E')
[WEAK_SUM_ASSOC_R]
\vdash}\forallE E' E'\prime. WEAK_EQUIV (E + E' + E') (E + ( E' + E' E')
[WEAK_SUM_COMM]
\vdash \forallE E'. WEAK_EQUIV (E + E') ( }\mp@subsup{E}{}{\prime}+E
[WEAK_SUM_IDEMP]
\vdash \forallE. WEAK_EQUIV ( }E+E)
[WEAK_SUM_IDENT_L]
\vdash}\forallE. WEAK_EQUIV (nil + E) E
[WEAK_SUM_IDENT_R]
\vdash \forallE. WEAK_EQUIV ( E + nil) E
[WEAK_UNFOLDING]
\vdash}\forallX E. WEAK_EQUIV (rec X E) (CCS_Subst E (rec X E) X

```

\subsection*{9.6 ObsCongr Theory}

Built: 08 Dicembre 2017
Parent Theories: WeakLaws

\subsection*{9.6.1 Definitions}
[OBS_CONGR]
\(\vdash \forall E E^{\prime}\).
OBS_CONGR \(E \quad E^{\prime} \Longleftrightarrow\)
\(\forall u\).
\(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} \cdot E^{\prime}=u \Rightarrow E_{2} \wedge\right.\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \wedge\) \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)

\subsection*{9.6.2 Theorems}
```

[EQUAL_IMP_OBS_CONGR]
\vdash \forallE E'. (E = E') \Longrightarrow OBS_CONGR E E E

```
[OBS_CONGR_BY_WEAK_BISIM]
 \(\vdash \forall W b s m\).
 WEAK_BISIM Wbsm \(\Longrightarrow\)
 \(\forall E E^{\prime}\).
 (\(\forall\) u.
 \(\left(\forall E_{1} . E-u \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=u \Rightarrow E_{2} \wedge\right.\) Wbsm \(\left.E_{1} E_{2}\right) \wedge\)
 \(\forall E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge\) Wbsm \(\left.E_{1} E_{2}\right) \Longrightarrow\)
 OBS_CONGR E E
[OBS_CONGR_EPS]
 \(\vdash \forall E E^{\prime}\).
 OBS_CONGR \(E E^{\prime} \Longrightarrow\)
 \(\forall E_{1}\). EPS \(E E_{1} \Longrightarrow \exists E_{2}\). EPS \(E^{\prime} E_{2} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)
[OBS_CONGR_EPS']
 \(\vdash \forall E E^{\prime}\).
 OBS_CONGR \(E E^{\prime} \Longrightarrow\)
 \(\forall E_{2}\). EPS \(E^{\prime} E_{2} \Longrightarrow \exists E_{1}\). EPS \(E E_{1} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)
[OBS_CONGR_equivalence]
 \(\vdash\) equivalence OBS_CONGR
[OBS_CONGR_IMP_WEAK_EQUIV]
 \(\vdash \forall E E^{\prime}\). OBS_CONGR \(E E^{\prime} \Longrightarrow\) WEAK_EQUIV \(E E^{\prime}\)
[OBS_CONGR_PRESD_BY_PAR]
 \(\vdash \forall E_{1} E_{1}^{\prime} E_{2} E_{2}^{\prime}\).
 OBS_CONGR \(E_{1} E_{1}^{\prime} \wedge\) OBS_CONGR \(E_{2} E_{2}^{\prime} \Longrightarrow\)
 OBS_CONGR \(\left(E_{1} \| E_{2}\right)\left(E_{1}^{\prime} \| E_{2}^{\prime}\right)\)
[OBS_CONGR_PRESD_BY_SUM]
 \(\vdash \forall E_{1} E_{1}^{\prime} E_{2} E_{2}^{\prime}\).
 OBS_CONGR \(E_{1} E_{1}^{\prime} \wedge\) OBS_CONGR \(E_{2} \quad E_{2}^{\prime} \Longrightarrow\)
 OBS_CONGR \(\left(E_{1}+E_{2}\right)\left(E_{1}^{\prime}+E_{2}^{\prime}\right)\)
[OBS_CONGR_REFL]
 \(\vdash \forall E\). OBS_CONGR \(E\) E
[OBS_CONGR_SUBST_PAR_L]
 \(\vdash \forall E E^{\prime}\). OBS_CONGR \(E E^{\prime} \Longrightarrow \forall E^{\prime \prime}\). OBS_CONGR \(\left(E^{\prime \prime} \| E\right)\left(E^{\prime \prime} \| E^{\prime}\right)\)
```

[OBS_CONGR_SUBST_PAR_R]

```

```

[OBS_CONGR_SUBST_PREFIX]
\vdash \forallE E'. OBS_CONGR E E'\Longrightarrow \Longrightarrowu. OBS_CONGR (u..E) (u..E')
[OBS_CONGR_SUBST_RELAB]
\vdash}\forallE E'
OBS_CONGR E E' \Longrightarrow \forallrf. OBS_CONGR (relab E rf) (relab E'rf)
[OBS_CONGR_SUBST_RESTR]
\vdash}\forallE E'. OBS_CONGR E E' \Longrightarrow \forallL. OBS_CONGR (\nu L E) (\nu L E'
[OBS_CONGR_SUBST_SUM_L]
\vdash}\forallE E'. OBS_CONGR E E E \Longrightarrow \forallE', OBS_CONGR ( ( E' + E) ( E'\prime' + E'
[OBS_CONGR_SUBST_SUM_R]
\vdash}\forallE E'. OBS_CONGR E E E'\Longrightarrow\forallE'\prime.OBS_CONGR (E + E'\prime) (E' + E')
[OBS_CONGR_SYM]
\vdash}\forallE E'. OBS_CONGR E E' \Longrightarrow OBS_CONGR E'
[OBS_CONGR_TRANS]
\vdash}\forallE E ' E'|
OBS_CONGR E E'^ OBS_CONGR E' E'\prime}\Longrightarrow\mathrm{ OBS_CONGR E E''
[OBS_CONGR_TRANS_LEFT]
\vdash}\forallE E '
OBS_CONGR E E C \Longrightarrow
\forallu E1. E -u-> E1 \Longrightarrow\existsE2. E' =u=> E2 ^ WEAK_EQUIV E1 E E2
[OBS_CONGR_TRANS_RIGHT]
\vdash}\forallE E'
OBS_CONGR E E C}
\forallu E2. E ' -u-> E2 \Longrightarrow\existsE . E =u=> E1 ^ WEAK_EQUIV E E E E
[OBS_CONGR_WEAK_TRANS]
\vdash}\forallE E'
OBS_CONGR E E C}
\forallu E1. E =u=> E1 \Longrightarrow\exists\mp@subsup{E}{2}{}. E' = | = E2 ^ WEAK_EQUIV E E E E2
[OBS_CONGR_WEAK_TRANS']
\vdash}\forallE E'
OBS_CONGR E E C}
\forallu E2. E
[PROP6]
\vdash}\forallE E'. WEAK_EQUIV E E E \Longrightarrow \forallu. OBS_CONGR (u..E) (u..E'
[STRONG_IMP_OBS_CONGR]
\vdash \forallE E'. STRONG_EQUIV E E 㐌\Longrightarrow OBS_CONGR E E'
[WEAK_EQUIV_STABLE_IMP_CONGR]
\vdash}\forallE E'
WEAK_EQUIV E E '}^\mathrm{ \ STABLE E ^ STABLE E' }\Longrightarrow\mathrm{ OBS_CONGR E E E

```

\subsection*{9.7 ObsCongrLaws Theory}

Built: 08 Dicembre 2017
Parent Theories: ObsCongr

\subsection*{9.7.1 Theorems}

\section*{[OBS_EXPANSION_LAW]}
\(\vdash \forall f n f^{\prime} m\).
\((\forall i . i \leq n \Longrightarrow\) Is_Prefix \((f i)) \wedge\)
\(\left(\forall j . j \leq m \Longrightarrow\right.\) Is_Prefix \(\left.\left(f^{\prime} j\right)\right) \Longrightarrow\)
OBS_CONGR (SIGMA \(f n \|\) SIGMA \(f^{\prime} m\)) (SIGMA
(\(\lambda i\). PREF_ACT \((f i) . .\left(\right.\) PREF_PROC \(\left.(f i) \| \operatorname{SIGMA} f^{\prime} m\right)\))
\(n+\)
SIGMA
(\(\lambda j\). PREF_ACT \(\left.\left(f^{\prime} j\right) \ldots\left(\operatorname{SIGMA} f n \| \operatorname{PREF} _\operatorname{PROC}\left(f^{\prime} j\right)\right)\right)\)
\(m+\) ALL_SYNC \(f n f^{\prime} m\))
[OBS_PAR_ASSOC]
\(\vdash \forall E E^{\prime} E^{\prime \prime}\). OBS_CONGR \(\left(E\left\|E^{\prime}\right\| E^{\prime \prime}\right)\left(E \|\left(E^{\prime} \| E^{\prime \prime}\right)\right)\)
[OBS_PAR_COMM]
\(\vdash \forall E E^{\prime}\) 。OBS_CONGR \(\left(E \| E^{\prime}\right)\left(E^{\prime} \| E\right)\)
[OBS_PAR_IDENT_L]
\(\vdash \forall E\). OBS_CONGR (nil \(\| E\)) \(E\)
[OBS_PAR_IDENT_R]
\(\vdash \forall E\). OBS_CONGR (\(E \|\) nil) \(E\)
[OBS_PAR_PREF_NO_SYNCR]
\(\vdash \forall l l^{\prime}\).
\(l \neq\) COMPL \(l^{\prime} \Longrightarrow\) \(\forall E \quad E^{\prime}\).

OBS_CONGR (label \(l . . E \|\) label \(l^{\prime} . . E^{\prime}\))
(label \(l . .\left(E \|\right.\) label \(\left.l^{\prime} . . E^{\prime}\right)+\)
label \(l^{\prime}\).. (label \(\left.l . . E \| E^{\prime}\right)\))
[OBS_PAR_PREF_SYNCR]
\(\vdash \forall l l^{\prime}\).
\(\left(l=\right.\) COMPL \(\left.l^{\prime}\right) \Longrightarrow\)
\(\forall E E^{\prime}\).
OBS_CONGR (label \(l . . E \|\) label \(l^{\prime} . . E^{\prime}\))
(label \(l . .\left(E \|\right.\) label \(\left.l^{\prime} . . E^{\prime}\right)+\)
label \(l^{\prime}\).. (label \(\left.\left.l . . E \| E^{\prime}\right)+\tau .\left(E \| E^{\prime}\right)\right)\)
```

[OBS_PAR_PREF_TAU]
\vdash}\foralluE E E
OBS_CONGR (u..E | \tau..E') (u..(E| |..E') + \tau..(u..E| | E'))
[OBS_PAR_TAU_PREF]
\vdash | u E'.
OBS_CONGR (\tau..E | u..E') (\tau..(E| |..E') + u..(\tau..E | E'))
[OBS_PAR_TAU_TAU]
\vdash}\forallE E'
OBS_CONGR (\tau..E| | ..E') (\tau..(E| | ..E') + \tau..(\tau..E | | E'))
[OBS_PREF_REC_EQUIV]
\vdash}\forallusv
OBS_CONGR (u..rec s (v..u..var s)) (rec s (u..v..var s))
[OBS_RELAB_NIL]
\vdash \forallrf. OBS_CONGR (relab nil rf) nil
[OBS_RELAB_PREFIX]
\vdash}\forallu E labl
OBS_CONGR (relab (u..E) (RELAB labl))
(relabel (RELAB labl) u..relab E (RELAB labl))
[OBS_RELAB_SUM]
f}\forallE E rf
OBS_CONGR (relab (E + E') rf) (relab E rf + relab E' rf)
[OBS_RESTR_NIL]
\vdash}\forallL. OBS_CONGR (\nu L nil) nil
[OBS_RESTR_PR_LAB_NIL]
\vdash \foralll L.
l\inL\vee COMPL l\inL\Longrightarrow \# . OBS_CONGR ( }\nuL\mathrm{ (label l..E)) nil
[OBS_RESTR_PREFIX_LABEL]
\vdashl L.
l\not\inL^ COMPL l\#L\Longrightarrow
\forallE. OBS_CONGR ( }\nuL\mathrm{ (label l..E)) (label l.. L L E)
[OBS_RESTR_PREFIX_TAU]
\vdash}\forallEL.OBS_CONGR (\nu L (\tau..E)) (\tau..\nu L E
[OBS_RESTR_SUM]
\vdash}\forallE E L. OBS_CONGR (\nuL (E + E')) (\nuLE + \nuL E'

```
```

[OBS_SUM_ASSOC_L]
\vdash}\forallE E ' E'| . OBS_CONGR (E + (E + + E')) (E + E' + E'\prime
[OBS_SUM_ASSOC_R]
\vdash}\forallE E ' E', OBS_CONGR (E + E' + E') (E + (E' + E'\prime))
[OBS_SUM_COMM]
\vdash}\forallE E'. OBS_CONGR (E + E') (E' + E
[OBS_SUM_IDEMP]
\vdash}\forallE. OBS_CONGR (E + E) E
[OBS_SUM_IDENT_L]
\vdash}\forallE. OBS_CONGR (nil + E) E
[OBS_SUM_IDENT_R]
\vdash}\forallE. OBS_CONGR (E + nil) E
[OBS_UNFOLDING]
\vdash}\forallX E. OBS_CONGR (rec X E) (CCS_Subst E (rec X E) X)

```
[TAU1]
 \(\vdash \forall u E\). OBS_CONGR \((u . . \tau \ldots E)(u . . E)\)
[TAU2]
 \(\vdash \forall E\). OBS_CONGR \((E+\tau . . E)(\tau . . E)\)
[TAU3]
 \(\vdash \forall u E E^{\prime}\). OBS_CONGR \(\left(u . .\left(E+\tau \ldots E^{\prime}\right)+u . . E^{\prime}\right)\left(u . .\left(E+\tau \ldots E^{\prime}\right)\right)\)
[WEAK_TAU1]
 \(\vdash \forall u E\). WEAK_EQUIV \((u . . \tau \ldots E)(u . . E)\)
[WEAK_TAU2]
 \(\vdash \forall E\). WEAK_EQUIV \((E+\tau . . E)(\tau . . E)\)
[WEAK_TAU3]
 \(\vdash \forall u E E^{\prime}\). WEAK_EQUIV \(\left(u . .\left(E+\tau \ldots E^{\prime}\right)+u . . E^{\prime}\right)\left(u . .\left(E+\tau \ldots E^{\prime}\right)\right)\)

\subsection*{9.8 Congruence Theory}

Built: 08 Dicembre 2017
Parent Theories: ObsCongrLaws, string

\subsection*{9.8.1 Definitions}
```

[CC_def]
\vdash}\forallR. CC R = (\lambdagh. \forallc. CONTEXT c\LongrightarrowR(c g) (c h)
[congruence1_def]
\vdash \forall R . congruence1 R \Longleftrightarrow equivalence R \wedge precongruence1 R
[congruence_def]
\vdash \forall \forall . congruence R \Longleftrightarrow equivalence R \wedge precongruence R
[CONTEXT_def]
F CONTEXT =
(\lambdaa,
\forallCONTEXT'.
(}\forall\mp@subsup{a}{0}{}
(a}=(\lambdat.t))\vee(\existsp. a a = (\lambdat. p)) \vee
(\existsae. (a = = (\lambdat.a..e t)) ^ CONTEXT' e) \vee
(\exists\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
(a0 = (\lambdat. e e t + e2 t)) ^CONTEXT' e}\mp@subsup{e}{1}{}
CONTEXT' en) v
(\exists e e e e.
(a0}=(\lambdat. \mp@subsup{e}{1}{}t|\mp@subsup{e}{2}{}t))\wedge CONTEXT' e e ^ ^
CONTEXT' en) \vee
(\existsLe. (a a = (\lambdat.\nu L (e t))) ^ CONTEXT' e) \vee
(\existsrf e. (a = ( \lambdat. relab (e t) rf)) ^CONTEXT' e)\Longrightarrow
CONTEXT' }\mp@subsup{a}{0}{})
CONTEXT' }\mp@subsup{a}{0}{\prime
[GCC_def]
\vdash \forallR.GCC R = (\lambdagh. \forallc. GCONTEXT c\LongrightarrowR(c g) (c h))
[GCONTEXT_def]
\vdash GCONTEXT =
(\lambda a a .
\forallCONTEXT'.
(}\forall\mp@subsup{a}{0}{
(a}=(\lambdat.t))\vee(\existsp. a a = (\lambdat. p)) \vee
(\existsa e. (a0 = (\lambdat.a..e t)) ^ GCONTEXT' e) \vee
(\exists\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
(a0}=(\lambdat. \mp@subsup{a}{1}{}..\mp@subsup{e}{1}{}t+\mp@subsup{a}{2}{}...\mp@subsup{e}{2}{}t))\wedge GCONTEXT' ( e < ^
GCONTEXT' ( en) v
(\exists e e e e .
(a0 = (\lambdat. e e t | e e t)) ^ GCONTEXT' e
GCONTEXT ( eq) v
(\existsLe. (a0 = (\lambdat.\nu L (e t))) ^GCONTEXT' e) \vee
(\existsrf e. (a a = (\lambdat. relab (et)rf)) ^ GCONTEXT' e) \Longrightarrow
GCONTEXT' a a ) \Longrightarrow
GCONTEXT' a a

```

\section*{[GSEQ_def]}
```

    FGSEQ =
        (\lambdaa0.
        GSEQ'.
            (}\forall\mp@subsup{a}{0}{}
                (a}=(\lambdat.t)) \vee (\existsp. a a = (\lambdat. p)) \vee
                (\existsae. (a0}=(\lambdat.a..e t)) \ GSEQ' e) \vee
                (\exists\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
    ```

```

                    GSEQ' ( e2) \Longrightarrow
                    GSEQ ' a () \Longrightarrow
                    GSEQ' a a)
    [OH_CONTEXT_def]
\vdashOH_CONTEXT =
(\lambdaa,
\forallOH_CONTEXT'.
(}\forall\mp@subsup{a}{0}{}
(a0}=(\lambdat.t))
(\existsac. (a0 = (\lambdat. a..c t)) ^ OH_CONTEXT' c) \vee
(\existsxc. (a a = (\lambdat.c t + x)) ^OH_CONTEXT' c) \vee
(\existsxc. (a a = (\lambdat.x + c t)) ^OH_CONTEXT' c) \vee
(\existsxc. (a a = (\lambdat.c ct|x)) ^OH_CONTEXT' c) \vee
(\existsxc. (a a = (\lambdat. x| ct)) ^OH_CONTEXT' c) \vee
(\existsLc. (a = (\lambdat.\nu L (c t))) ^OH_CONTEXT' c) \vee
(\existsrf c.
(a0 = (\lambdat. relab (c t) rf)) ^ OH_CONTEXT' c) \Longrightarrow
OH_CONTEXT' }\mp@subsup{a}{0}{})
OH_CONTEXT' a a)

```
[precongruence1_def]
 \(\vdash \forall R\).
 precongruence1 \(R \Longleftrightarrow\)
 \(\forall x y c t x\). GCONTEXT \(c t x \Longrightarrow R x y \Longrightarrow R(c t x x)(c t x y)\)
[precongruence_def]
 \(\vdash \forall R\).
 precongruence \(R \Longleftrightarrow\)
 \(\forall x y\) ctx. CONTEXT \(c t x \Longrightarrow R x y \Longrightarrow R(c t x x)(c t x y)\)
[SEQ_def]
 \(\vdash\) SEQ =
 (\(\lambda a_{0}\).
 \(\forall S E Q^{\prime}\).
 (\(\forall a_{0}\).
 \(\left(a_{0}=(\lambda t . t)\right) \vee\left(\exists p . a_{0}=(\lambda t . p)\right) \vee\)
```

        (\existsae. (a0 = (\lambdat.a..e t)) ^ SEQ' e) \vee
        (\exists el e}\mp@subsup{e}{2}{}
            (a}\mp@subsup{a}{0}{}=(\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))\wedgeSE\mp@subsup{Q}{}{\prime}\mp@subsup{e}{1}{}\wedgeSEQ\mp@subsup{Q}{}{\prime}\mp@subsup{e}{2}{})
        SEQ' }\mp@subsup{a}{0}{\prime})
        SEQ' a a )
    [SG_def]
FSG=
(\lambda a . .
\forallGG
(}\forall\mp@subsup{a}{0}{
(\existsp. a = = (\lambdat. p)) \vee
(\existsl e. (a0 = (\lambdat. label l..e t)) ^ CONTEXT e) \vee
(\existsae. (a0 = (\lambdat.a..e t)) ^ SG'e) \vee
(\exists el e}\mp@subsup{e}{2}{}

```

```

            (\exists el e}\mp@subsup{e}{2}{}
                    (a (a0 = (\lambdat. e e t t| e}\mp@subsup{e}{2}{}t))\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{})
                (\existsLe. (a = = (\lambdat. \nuL (e t))) ^SG'e) \vee
                (\existsrf e. (a a = (\lambdat. relab (e t)rf)) ^ SG' e) \Longrightarrow
                SG a}\mp@subsup{a}{0}{\prime})
            SG' a ( )
    [weakly_guarded1_def]
\vdash}\forallE
weakly_guarded1 }E

```

```

[weakly_guarded_def]
\vdash , \forall E s . ~ w e a k l y \_ g u a r d e d ~ E s ~ \Longleftrightarrow ~ E V E R Y ~ w e a k l y \_ g u a r d e d 1 ~ E s
[WG_def]
\vdashWG =
(\lambda a .
\forallWG'.
(\foralla,
(\existsp. a}=\mp@code{0}=(\lambdat.p))
(\existsae. (a = (\lambdat.a..e t)) ^ CONTEXT e) \vee
(\exists el e}\mp@subsup{e}{2}{}
(a}\mp@subsup{a}{0}{}=(\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{})
(\exists el e}\mp@subsup{e}{2}{}

```

```

                (\existsLe. (a a = (\lambdat.\nuL (et))) ^ WG'e)\vee
            (\existsrf e. (a = ( \lambdat. relab (e t)rf)) ^ WG'e) \Longrightarrow
            WG}\mp@subsup{G}{0}{\prime})
            WG' }\mp@subsup{a}{0}{
    ```
[WGS_def]
\(\vdash\) WGS \(=\)
(\(\lambda a_{0}\).
\(\forall W G S^{\prime}\).
(\(\forall a_{0}\).
\(\left(\exists p . a_{0}=(\lambda t . p)\right) \vee\)
\(\left(\exists a e .\left(a_{0}=(\lambda t . a . . e t)\right) \wedge\right.\) GCONTEXT \(\left.e\right) \vee\)
(\(\exists a_{1} a_{2} e_{1} e_{2}\).
\(\left(a_{0}=\left(\lambda t . a_{1} . . e_{1} t+a_{2} . . e_{2} t\right)\right) \wedge\) GCONTEXT \(e_{1} \wedge\)
GCONTEXT \(\left.e_{2}\right) \vee\)
\({ }^{\exists} e_{1} e_{2}\).
\(\left.\left(a_{0}=\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge W G S^{\prime} e_{1} \wedge W G S^{\prime} e_{2}\right) \vee\) \(\left(\exists L e .\left(a_{0}=(\lambda t . \nu L(e t))\right) \wedge W G S^{\prime} e\right) \vee\)
\(\left(\exists r f e .\left(a_{0}=(\lambda t\right.\right.\). relab \(\left.\left.(e t) r f)\right) \wedge W G S^{\prime} e\right) \Longrightarrow\) \(\left.W G S^{\prime} a_{0}\right) \Longrightarrow\)
\(W G S^{\prime} a_{0}\))

\subsection*{9.8.2 Theorems}
[CC_congruence]
\(\vdash \forall R\). equivalence \(R \Longrightarrow\) congruence (CC \(R\))
[CC_is_coarsest]
\(\vdash \forall R R^{\prime}\). congruence \(R^{\prime} \wedge R^{\prime}\) RSUBSET \(R \Longrightarrow R^{\prime}\) RSUBSET CC \(R\)
[CC_is_coarsest']
\(\vdash \forall R R^{\prime}\). precongruence \(R^{\prime} \wedge R^{\prime}\) RSUBSET \(R \Longrightarrow R^{\prime}\) RSUBSET CC \(R\)
[CC_is_finer]
\(\vdash \forall R\). CC \(R\) RSUBSET \(R\)
[CC_precongruence]
\(\vdash \forall R\). precongruence (CC \(R\))
[CONTEXT1]
\(\vdash \operatorname{CONTEXT}(\lambda t . t)\)
[CONTEXT2]
\(\vdash \forall p\). CONTEXT (\(\lambda t . p\))
[CONTEXT3]
\(\vdash \forall a e\). CONTEXT \(e \Longrightarrow \operatorname{CONTEXT}(\lambda t . a . . e t)\)
[CONTEXTZa]
\(\vdash \forall a . \operatorname{CONTEXT}(\lambda t . a . . t)\)
```

[CONTEXT4]
\vdash \forall e _ { 1 } e _ { 2 } . CONTEXT e _ { 1 } \wedge ~ C O N T E X T ~ e ~ e ~ \Longrightarrow ~ C O N T E X T ~ ( ~ \lambda t . ~ e ~ e ~ t ~ t ~ + ~ e ~ e ~ t ~ t )
[CONTEXT5]

```

```

[CONTEXT6]
\vdash}\forallLe. CONTEXT e\Longrightarrow CONTEXT (\lambdat. \nu L (e t)
[CONTEXT7]
\vdash}\forallrf e. CONTEXT e\Longrightarrow CONTEXT ( \lambdat. relab (e t) rf
[CONTEXT_cases]
\vdash}\forall\mp@subsup{a}{0}{}
CONTEXT a }\mp@subsup{a}{0}{}
(a0}=(\lambdat.t)) \vee (\existsp. a a = (\lambdat. p)) \vee
(\existsae. (a0 = (\lambdat.a..e t)) ^ CONTEXT e) \vee
(\exists e e e e2.
(a}\mp@subsup{a}{0}{\prime}=(\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))\wedge CONTEXT e e ^ CONTEXT e2) \vee
(\exists e e e e2.
(a (a = (\lambdat. e e t | e e t)) ^ CONTEXT e e ^ CONTEXT e}\mp@subsup{e}{2}{})
(\existsLe. (a0 = (\lambdat. \nu L (et))) ^ CONTEXT e) \vee
\existsrf e. (a a = (\lambdat. relab (e t)rf)) ^ CONTEXT e
[CONTEXT_combin]

```

```

[CONTEXT_ind]
\vdash \forallCONTEXT'.
CONTEXT' (\lambdat. t) ^ ( }\forall\textrm{p}.\operatorname{CONTEXT'}(\lambdat.p))
(\foralla e. CONTEXT' e \LongrightarrowCONTEXT' (\lambdat. a..e t)) ^
(\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
CONTEXT' }\mp@subsup{e}{1}{\wedge}\wedge CONTEXT' en < \Longrightarrow
CONTEXT'(\lambdat. e}\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))
(\forall e e e e .
CONTEXT' }\mp@subsup{e}{1}{\wedge}^\mathrm{ CONTEXT' }\mp@subsup{e}{2}{}
CONTEXT'(\lambdat. e e t | e e c t)) ^
(\forallL e. CONTEXT' e \LongrightarrowCONTEXT' (\lambdat.\nu L (e t))) ^
(\forallrf e. CONTEXT' e \Longrightarrow CONTEXT' ( }\lambdat\mathrm{ . relab (e t) rf)) >
\foralla}\mathrm{ . CONTEXT a a C CONTEXT' }\mp@subsup{a}{0}{
[CONTEXT_rules]
\vdashCONTEXT ( }\lambdat.t)\wedge(\forallp.\operatorname{CONTEXT ( }\lambdat.p))
(\foralla e. CONTEXT e\Longrightarrow CONTEXT (\lambdat. a..e t)) ^
* }\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
CONTEXT e}\mp@subsup{e}{1}{}\wedge CONTEXT e e \Longrightarrow CONTEXT ( \lambdat. e e l t + eq e t)) ^

```

```

            CONTEXT e}\mp@subsup{e}{1}{}\wedge CONTEXT e e2\Longrightarrow CONTEXT (\lambdat. e e t | e e t t) ) ^
        (\forallL e. CONTEXT e\Longrightarrow CONTEXT (\lambdat. \nu L (e t))) ^
        \forallrfe. CONTEXT e\Longrightarrow CONTEXT (\lambdat. relab (e t) rf)
    ```
[CONTEXT_strongind]
\(\vdash \forall C O N T E X T^{\prime}\).
\(\operatorname{CONTEXT} T^{\prime}(\lambda t . t) \wedge\left(\forall p . \operatorname{CONTEXT} T^{\prime}(\lambda t . p)\right) \wedge\)
\(\left(\forall a\right.\) e. CONTEXT \(e \wedge\) CONTEXT \({ }^{\prime} e \Longrightarrow\) CONTEXT \(^{\prime}(\lambda t\). a..e \(\left.t)\right) \wedge\) (\(\forall e_{1} e_{2}\).

CONTEXT \(e_{1} \wedge\) CONTEXT \({ }^{\prime} e_{1} \wedge\) CONTEXT \(e_{2} \wedge\) CONTEXT \(^{\prime} e_{2} \Longrightarrow\) CONTEXT \(\left.{ }^{\prime}\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge\)
(\(\forall e_{1} e_{2}\).
CONTEXT \(e_{1} \wedge\) CONTEXT \(e^{\prime} e_{1} \wedge\) CONTEXT \(e_{2} \wedge\) CONTEXT \(^{\prime} e_{2} \Longrightarrow\) CONTEXT \(\left.{ }^{\prime}\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\(\left(\forall L e\right.\). CONTEXT \(\left.e \wedge \operatorname{CONTEXT} T^{\prime} e \Longrightarrow C^{\prime} C O N T E X T^{\prime}(\lambda t . \nu L(e t))\right) \wedge\) (\(\forall r f e\).

CONTEXT \(e \wedge\) CONTEXT \({ }^{\prime} e \Longrightarrow\) \(\operatorname{CONTEXT}{ }^{\prime}(\lambda t\). relab (e t) rf)) \(\Longrightarrow\)
\(\forall a_{0}\). CONTEXT \(a_{0} \Longrightarrow\) CONTEXT \(^{\prime} a_{0}\)
[CONTEXT_WG_combin]
\(\vdash \forall c e . \operatorname{CONTEXT} c \wedge\) WG \(e \Longrightarrow\) WG \((c \circ e)\)
[GCONTEXT1]
\(\vdash \operatorname{GCONTEXT}(\lambda t . t)\)
[GCONTEXT2]
\(\vdash \forall p . \operatorname{GCONTEXT}(\lambda t . p)\)
[GCONTEXT3]
\(\vdash \forall a e\). GCONTEXT \(e \Longrightarrow \operatorname{GCONTEXT}\) (\(\lambda t\). a..e \(t\))
[GCONTEXT3a]
\(\vdash \forall a . \operatorname{GCONTEXT}(\lambda t . a . . t)\)
[GCONTEXT4]
\(\vdash \forall a_{1} a_{2} e_{1} e_{2}\). GCONTEXT \(e_{1} \wedge\) GCONTEXT \(e_{2} \Longrightarrow\) \(\operatorname{GCONTEXT}\left(\lambda t . a_{1} . . e_{1} t+a_{2} . . e_{2} t\right)\)
[GCONTEXT5]
\(\vdash \forall e_{1} e_{2}\).
GCONTEXT \(e_{1} \wedge\) GCONTEXT \(e_{2} \Longrightarrow \operatorname{GCONTEXT}\left(\lambda t . e_{1} t \| e_{2} t\right)\)
[GCONTEXT6]
\(\vdash \forall L e . \operatorname{GCONTEXT} e \Longrightarrow \operatorname{GCONTEXT}(\lambda t . \nu L(e t))\)
[GCONTEXT7]
\(\vdash \forall r f e\). GCONTEXT \(e \Longrightarrow\) GCONTEXT (\(\lambda t\). relab (\(e t\)) rf)
[GCONTEXT_cases]
```

\forall 的.
GCONTEXT a a <
(a}=(\lambdat.t)) \vee (\existsp. a a = (\lambdat. p)) \vee
(\existsae. (a0 = (\lambdat. a..e t)) ^ GCONTEXT e) \vee
(\existsa) a}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}

```

```

        GCONTEXT e2) \vee
    (\exists\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
        (a0 = (\lambdat. e e t t| e}\mp@subsup{e}{2}{}t))\wedge GCONTEXT e e ^ GCONTEXT e2) \vee
    (\existsLe. (a a = (\lambdat. \nuL (e t))) ^ GCONTEXT e) \vee
    \existsrf e. (a0 = (\lambdat. relab (e t) rf)) ^ GCONTEXT e
    ```
[GCONTEXT_combin]
 \(\vdash \forall c_{1} c_{2}\). GCONTEXT \(c_{1} \wedge \operatorname{GCONTEXT} c_{2} \Longrightarrow \operatorname{GCONTEXT}\left(c_{1} \circ c_{2}\right)\)
[GCONTEXT_ind]
 \(\vdash \forall G C O N T E X T^{\prime}\).
 GCONTEXT \(T^{\prime}(\lambda t . t) \wedge\left(\forall p . \operatorname{GCONTEXT} T^{\prime}(\lambda t . p)\right) \wedge\)
 \(\left(\forall a \quad e . G C O N T E X T T^{\prime} e \Longrightarrow G C O N T E X T T^{\prime}(\lambda t . a . . e t)\right) \wedge\)
 (\(\forall a_{1} a_{2} e_{1} e_{2}\).
 GCONTEXT \(e_{1} \wedge\) GCONTEXT \({ }^{\prime} e_{2} \Longrightarrow\)
 \(\left.\operatorname{GCONTEXT} T^{\prime}\left(\lambda t . a_{1} . . e_{1} t+a_{2} . . e_{2} t\right)\right) \wedge\)
 (\(\forall e_{1} e_{2}\).
 GCONTEXT \({ }^{\prime} e_{1} \wedge\) GCONTEXT \({ }^{\prime} e_{2} \Longrightarrow\)
 GCONTEXT \(\left.{ }^{\prime}\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
 \(\left(\forall L e . G C O N T E X T T^{\prime} e \Longrightarrow G C O N T E X T T^{\prime}(\lambda t . \nu L(e t))\right) \wedge\)
 \(\left(\forall r f e . G C O N T E X T T^{\prime} e \Longrightarrow G C O N T E X T^{\prime}(\lambda t . r e l a b(e t) r f)\right) \Longrightarrow\)
 \(\forall a_{0}\). GCONTEXT \(a_{0} \Longrightarrow\) GCONTEXT \({ }^{\prime} a_{0}\)
[GCONTEXT_IS_CONTEXT]
 \(\vdash \forall c\). GCONTEXT \(c \Longrightarrow\) CONTEXT \(c\)
[GCONTEXT_rules]
```

\vdashGCONTEXT ( }\lambdat.t)\wedge(\forallp.\operatorname{GCONTEXT}(\lambdat.p))
(\foralla e.GCONTEXT e\Longrightarrow GCONTEXT (\lambdat.a..e t)) ^
(\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
GCONTEXT }\mp@subsup{e}{1}{}\wedge GCONTEXT e e2
GCONTEXT ( }\lambdat.\mp@subsup{a}{1}{}..\mp@subsup{e}{1}{}t+\mp@subsup{a}{2}{}..\mp@subsup{e}{2}{}t))
(\forall \& el e
GCONTEXT }\mp@subsup{e}{1}{}\wedge GCONTEXT e e C GCONTEXT ( \lambdat. e e t t| er t)) ^
(\forallL e. GCONTEXT e\LongrightarrowGCONTEXT ( }\lambdat.\nuL(et))) ^
\forallf e. GCONTEXT e\LongrightarrowGCONTEXT ( }\lambdat\mathrm{ . relab (e t) rf)

```
```

[GCONTEXT_strongind]
\vdash GCONTEXT'.
GCONTEXT'}(\lambdat.t)^(\forallp.GCONTEXT' ( \lambdat. p)) ^
(\foralla e. GCONTEXT e ^ GCONTEXT' e \LongrightarrowGCONTEXT'}(\lambdat.a..e t)) ^
(\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}

```

```

            GCONTEXT' }\mp@subsup{e}{2}{\Longrightarrow
            GCONTEXT'}(\lambdat.\mp@subsup{a}{1}{}..\mp@subsup{e}{1}{}t+\mp@subsup{a}{2}{}..\mp@subsup{e}{2}{}t))
        (}\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{2}
            GCONTEXT }\mp@subsup{e}{1}{}\wedge GCONTEXT' 的 ^ GCONTEXT e e < ^
            GCONTEXT' }\mp@subsup{e}{2}{}
            GCONTEXT' (\lambdat. e e t | e e t)) ^
    (}\forallLe
            GCONTEXT e ^ GCONTEXT' e\LongrightarrowGCONTEXT' (\lambdat. \nu L (e t))) ^
    (\forallrf e.
            GCONTEXT e ^ GCONTEXT' e\Longrightarrow
            GCONTEXT' ( }\lambdat.\mathrm{ relab (e t) rf)) >
    \foralla.}\mathrm{ . GCONTEXT }\mp@subsup{a}{0}{}\Longrightarrow\mathrm{ GCONTEXT' }\mp@subsup{a}{0}{
    [GCONTEXT_WGS_combin]
\vdash \forallce.GCONTEXT c ^ WGS e\Longrightarrow WGS (c \circ e)
[GSEQ1]
fGSQ ( }\lambdat.t
[GSEQ2]
\vdash}\forallp.\operatorname{GSEQ}(\lambdat.p
[GSEQ3]
\vdash
[GSEQ3a]
\vdash \foralla.GSEQ ( }\lambdat.a..t
[GSEQ4]
\vdash\forall\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.

```

```

[GSEQ_cases]
\vdash}\forall\mp@subsup{a}{0}{
GSEQ a a <
(a = (\lambdat.t)) \vee (\existsp. a a = (\lambdat. p)) \vee
(\existsae. (a0 = (\lambdat.a..e t)) ^ GSEQ e)\vee
\existsa\mp@code{a}

```

```

[GSEQ_combin]
\vdash}\forallE.GSEQ E\Longrightarrow\forall\mp@subsup{E}{}{\prime}.GSEQ E' \Longrightarrow GSEQ (E \circ E'
[GSEQ_ind]
\vdash \forallGSEQ'.
GSEQ' (\lambdat.t) ^ (\forallp.GSEQ' (\lambdat. p)) ^
(\foralla e.GSEQ' e \LongrightarrowGSEQ' (\lambdat. a..e t)) ^
(\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
GSEQ' e e ^ GSEQ' e
\foralla
[GSEQ_IS_CONTEXT]
\vdash . GSEQ e C CONTEXT e
[GSEQ_rules]
GSEQ ( \lambdat.t) ^(\forallp.GSEQ ( }\lambdat.p))
(\foralla e.GSEQ e\Longrightarrow GSEQ (\lambdat.a..e t)) ^
\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}

```

```

[GSEQ_strongind]
\vdash GSEQ'.
GSEQ' (\lambdat. t) ^(\forallp.GSEQ' (\lambdat. p)) ^
(\foralla e.GSEQ e ^ GSEQ' e \LongrightarrowGSEQ' (\lambdat.a..e t)) ^
(\forall\mp@subsup{a}{1}{}}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}

```

```

            GSEQ' (\lambdat. a a ..e e t t a a ..e e t)) \Longrightarrow
        \foralla0. GSEQ a a C GSEQ' }\mp@subsup{a}{0}{
    [OBS_CONGR_congruence]
congruence OBS_CONGR
[OBS_CONGR_SUBST_CONTEXT]
\vdash \forallP Q. OBS_CONGR P Q \Longrightarrow . CONTEXT E OBS_CONGR (E P) (E Q)
[OBS_CONGR_SUBST_SEQ]
\vdash}\forallPQ. OBS_CONGR P Q \forallE. SEQ E OBS_CONGR (E P) (E Q
[OH_CONTEXT1]
\vdash ~ O H = C O N T E X T ~ ( ~ \lambda t . ~ t )
[OH_CONTEXT2]
\vdash}\forallac.0H_CONTEXT c\Longrightarrow OH_CONTEXT ( \lambdat.a..c t

```

\section*{[OH_CONTEXT3]}
```

    \vdash \forallx c. OH_CONTEXT c \Longrightarrow OH_CONTEXT ( }\lambdat.ct+x
    [OH_CONTEXT4]
\vdash}\forallxc.0H_CONTEXT c\Longrightarrow OH_CONTEXT ( \lambdat. x + c t
[OH_CONTEXT5]
\vdash}\forallx c. OH_CONTEXT c \Longrightarrow OH_CONTEXT ( \lambdat. c t| |
[OH_CONTEXT6]
\vdash}\forallx c. OH_CONTEXT c\Longrightarrow OH_CONTEXT ( \lambdat. x | c t
[OH_CONTEXT7]
\vdash \forallL c. OH_CONTEXT c\Longrightarrow OH_CONTEXT ( }\lambdat.\nuL(ct)
[OH_CONTEXT8]
\vdash \forallrf c. OH_CONTEXT c \Longrightarrow OH_CONTEXT ( }\lambdat.\mathrm{ relab (c t) rf)
[OH_CONTEXT_cases]
\vdash}\forall\mp@subsup{a}{0}{
OH_CONTEXT a }\mp@subsup{a}{0}{}
(a0}=(\lambdat.t))
(\existsac. (a0 = (\lambdat.a..c t)) ^ OH_CONTEXT c) \vee
(\existsx c. (a0 = (\lambdat.c t + x)) ^ OH_CONTEXT c) \vee
(\existsx c. (a0 = (\lambdat. x + c t)) ^ OH_CONTEXT c) \vee
(\existsx c. (a (a = (\lambdat.c t| | ) ) ^ OH_CONTEXT c) \vee
(\existsx c. (a0= (\lambdat.x| | t)) ^ OH_CONTEXT c) \vee
(\existsLc. (a0 = ( \lambdat.\nu L (c t))) ^ OH_CONTEXT c) \vee
\existsrf c. (a a = ( \lambdat. relab (c t) rf)) ^ OH_CONTEXT c

```
[OH_CONTEXT_combin]
 \(\vdash \forall c_{1} c_{2}\). OH_CONTEXT \(c_{1} \wedge\) OH_CONTEXT \(c_{2} \Longrightarrow\) OH_CONTEXT \(\left(c_{1} \circ c_{2}\right)\)
[OH_CONTEXT_ind]
\(\vdash \forall O H_{-} C O N T E X T T^{\prime}\).
 \(O H_{-} C O N T E X T T^{\prime}(\lambda t . t) \wedge\)
 \(\left(\forall a c . O H_{-} C O N T E X T T^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . a . . c t)\right) \wedge\)
 \(\left(\forall x\right.\) c. OH_CONTEXT \(\left.{ }^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . c t+x)\right) \wedge\)
 \(\left(\forall x\right.\) c. OH_CONTEXT \(\left.{ }^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . x+c t)\right) \wedge\)
 \(\left(\forall x c . O H_{-} C O N T E X T T^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . c t \| x)\right) \wedge\)
 \(\left(\forall x ~ c . O H_{-} C O N T E X T T^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . x \| c t)\right) \wedge\)
 \(\left(\forall L\right.\) c. OH_CONTEXT \(\left.{ }^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t . \nu L(c t))\right) \wedge\)
 \(\left(\forall r f\right.\) c. OH_CONTEXT \({ }^{\prime} c \Longrightarrow O H_{-} C O N T E X T T^{\prime}(\lambda t\). relab (c t) rf)) \(\Longrightarrow\)
 \(\forall a_{0}\). OH_CONTEXT \(a_{0} \Longrightarrow O H_{-} C O N T E X T T^{\prime} a_{0}\)
[OH_CONTEXT_IS_CONTEXT]
```

    \vdash}\forallc. OH_CONTEXT c\Longrightarrow CONTEXT 
    [OH_CONTEXT_rules]
\vdash ~ O H - C O N T E X T ~ ( ~ \lambda t . ~ t ) ~ \wedge ~
(\foralla c. OH_CONTEXT c\Longrightarrow OH_CONTEXT (\lambdat. a..c t)) ^
(\forallx c. OH_CONTEXT c\LongrightarrowOH_CONTEXT ( }\lambdat.ct+x))
(\forallx c. OH_CONTEXT c\LongrightarrowOH_CONTEXT ( }\lambdat.x+ct))
(\forallx c. OH_CONTEXT c\Longrightarrow OH_CONTEXT ( }\lambdat.ct|x))
(\forallx c. OH_CONTEXT c \LongrightarrowOH_CONTEXT ( }\lambdat.x|ct))
(\forallL c. OH_CONTEXT c\LongrightarrowOH_CONTEXT ( }\lambdat.\nuL(ct)))
\forallrf c. OH_CONTEXT c OOH_CONTEXT ( }\lambdat.\mathrm{ relab (c t) rf)
[OH_CONTEXT_strongind]
\vdash \forallOH_CONTEXT'.
OH_CONTEXT' ( }\lambdat.t)
(\foralla c.
OH_CONTEXT c ^ OH_CONTEXT' c \Longrightarrow
OH_CONTEXT'(\lambdat.a..c t)) ^
(}\forallx\quadc
OH_CONTEXT c ^ OH_CONTEXT' c \Longrightarrow
OH_CONTEXT' (\lambdat. c t + x)) ^
(}\forallx c
OH_CONTEXT c ^OH_CONTEXT' c \Longrightarrow
OH_CONTEXT' (\lambdat. x + c t)) ^
* }\forall\textrm{x
OH_CONTEXT c ^OH_CONTEXT' c \Longrightarrow
OH_CONTEXT'(\lambdat. c t|x)) ^
* }\forall\textrm{x
OH_CONTEXT c ^ OH_CONTEXT' c \Longrightarrow
OH_CONTEXT' (\lambdat.x|ct)) ^
(}\forallLc
OH_CONTEXT c ^ OH_CONTEXT' c \Longrightarrow
OH_CONTEXT' (\lambdat. \nu L (c t))) ^
(\forallrf c.
OH_CONTEXT c ^ OH_CONTEXT' c \Longrightarrow
OH_CONTEXT' (\lambdat. relab (c t) rf)) \Longrightarrow
\foralla}

```
[SEQ1]
```

    \vdash \operatorname { S E Q } ( \lambda t . t )
    ```
[SEQ2]
```

\vdash

```
```

[SEQ3]
\vdash}\forallae.\operatorname{SEQ}e\Longrightarrow\operatorname{SEQ}(\lambdat.a..et

```
[SEQ3a]
 \(\vdash \forall a . \operatorname{SEQ}(\lambda t . a . . t)\)
[SEQ4]
\(\vdash \forall e_{1} e_{2} . \operatorname{SEQ} e_{1} \wedge \operatorname{SEQ} e_{2} \Longrightarrow \operatorname{SEQ}\left(\lambda t . e_{1} t+e_{2} t\right)\)
[SEQ_cases]
\(\vdash \forall a_{0}\).
SEQ \(a_{0} \Longleftrightarrow\)
 \(\left(a_{0}=(\lambda t . t)\right) \vee\left(\exists p . a_{0}=(\lambda t . p)\right) \vee\)
 \(\left(\exists a e . \quad\left(a_{0}=(\lambda t . a . . e t)\right) \wedge\right.\) SEQ e) \(\vee\)
 \(\exists e_{1} e_{2} . \quad\left(a_{0}=\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge \operatorname{SEQ} e_{1} \wedge \operatorname{SEQ} e_{2}\)
[SEQ_combin]
\(\vdash \forall E\). SEQ \(E \Longrightarrow \forall E^{\prime}\). SEQ \(E^{\prime} \Longrightarrow \operatorname{SEQ}\left(E \circ E^{\prime}\right)\)
[SEQ_ind]
\(\vdash \forall S E Q^{\prime}\).
 \(S E Q^{\prime}(\lambda t . t) \wedge\left(\forall p . S E Q^{\prime}(\lambda t . p)\right) \wedge\)
 \(\left(\forall a e . S E Q^{\prime} e \Longrightarrow S E Q^{\prime}(\lambda t . a . e e t)\right) \wedge\)
 \(\left(\forall e_{1} e_{2} \cdot S E Q^{\prime} e_{1} \wedge S E Q^{\prime} e_{2} \Longrightarrow S E Q^{\prime}\left(\lambda t . e_{1} t+e_{2} t\right)\right) \Longrightarrow\)
 \(\forall a_{0}\). SEQ \(a_{0} \Longrightarrow S E Q^{\prime} a_{0}\)
[SEQ_IS_CONTEXT]
 \(\vdash \forall e . \operatorname{SEQ} e \Longrightarrow\) CONTEXT \(e\)
[SEQ_rules]
 \(\vdash \operatorname{SEQ}(\lambda t . t) \wedge(\forall p . \operatorname{SEQ}(\lambda t . p)) \wedge\)
 \((\forall a e . \operatorname{SEQ} e \Longrightarrow \operatorname{SEQ}(\lambda t . a \ldots e t)) \wedge\)
 \(\forall e_{1} e_{2} \cdot \operatorname{SEQ} e_{1} \wedge \operatorname{SEQ} e_{2} \Longrightarrow \operatorname{SEQ}\left(\lambda t . e_{1} t+e_{2} t\right)\)
[SEQ_strongind]
 \(\vdash \forall S E Q^{\prime}\).
 \(S E Q^{\prime}(\lambda t . t) \wedge\left(\forall p . S E Q^{\prime}(\lambda t . p)\right) \wedge\)
 \(\left(\forall a \quad e . S E Q \quad e \wedge S E Q^{\prime} e \Longrightarrow S E Q^{\prime}(\lambda t . a \ldots e t)\right) \wedge\)
 (\(\forall e_{1} e_{2}\).
 \(\operatorname{SEQ} e_{1} \wedge S E Q^{\prime} e_{1} \wedge \operatorname{SEQ} e_{2} \wedge S E Q^{\prime} e_{2} \Longrightarrow\)
 \(\left.S E Q^{\prime}\left(\lambda t . e_{1} t+e_{2} t\right)\right) \Longrightarrow\)
 \(\forall a_{0}\). SEQ \(a_{0} \Longrightarrow S E Q^{\prime} a_{0}\)
[SG1]
 \(\vdash \forall p . \mathrm{SG}(\lambda t . p)\)
[SG10]
\[
\vdash \forall e e^{\prime} . \mathrm{SG}\left(\lambda t . \tau \ldots e t+\tau \ldots e^{\prime} t\right) \Longrightarrow \operatorname{SG} e \wedge \operatorname{SG} e^{\prime}
\]
[SG11]
\(\vdash \forall e e^{\prime} L . \operatorname{SG}\left(\lambda t . \tau \ldots e t+\right.\) label \(\left.L . . e^{\prime} t\right) \Longrightarrow \operatorname{SG} e\)
[SG11']
\(\vdash \forall e e^{\prime} L\). SG \(\left(\lambda t\right.\). label L..e \(\left.t+\tau \ldots e^{\prime} t\right) \Longrightarrow \operatorname{SG} e^{\prime}\)
[SG2]
\(\vdash \forall l\) e. CONTEXT \(e \Longrightarrow \operatorname{SG}(\lambda t\). label \(l . . e t)\)
[SG3]
\(\vdash \forall a e . \operatorname{SG} e \Longrightarrow \operatorname{SG}(\lambda t . a \ldots e t)\)
[SG4]
\(\vdash \forall e_{1} e_{2} . \operatorname{SG} e_{1} \wedge \operatorname{SG} e_{2} \Longrightarrow \operatorname{SG}\left(\lambda t . e_{1} t+e_{2} t\right)\)
[SG5]
\[
\vdash \forall e_{1} e_{2} . \operatorname{SG} e_{1} \wedge \operatorname{SG} e_{2} \Longrightarrow \operatorname{SG}\left(\lambda t . e_{1} t \| e_{2} t\right)
\]
[SG6]
\[
\vdash \forall L e . \operatorname{SG} e \Longrightarrow \operatorname{SG}(\lambda t . \nu L(e t))
\]
[SG7]
\[
\vdash \forall r f e . \operatorname{SG} e \Longrightarrow \operatorname{SG}(\lambda t . \text { relab }(e t) r f)
\]
[SG8]
\(\vdash \forall e . \operatorname{SG}(\lambda t . \tau \ldots e t) \Longrightarrow \operatorname{SG} e\)
[SG9]
\(\vdash \forall e e^{\prime} . \mathrm{SG}\left(\lambda t . e t+e^{\prime} t\right) \Longrightarrow \mathrm{SG} e \wedge \mathrm{SG} e^{\prime}\)
[SG_cases]
\(\vdash \forall a_{0}\).
SG \(a_{0} \Longleftrightarrow\)
\(\left(\exists p . a_{0}=(\lambda t . p)\right) \vee\)
\(\left(\exists l e .\left(a_{0}=(\lambda t\right.\right.\). label l..e t)) \(\wedge\) CONTEXT e) \(\vee\)
\(\left(\exists a e .\left(a_{0}=(\lambda t . a . . e t)\right) \wedge S G e\right) \vee\)
\(\left(\exists e_{1} e_{2} . \quad\left(a_{0}=\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge \mathrm{SG} e_{1} \wedge \mathrm{SG} e_{2}\right) \vee\)
\(\left(\exists e_{1} e_{2} .\left(a_{0}=\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge \mathrm{SG} e_{1} \wedge \mathrm{SG} e_{2}\right) \vee\)
\(\left(\exists L e .\left(a_{0}=(\lambda t . \nu L(e t))\right) \wedge \mathrm{SG} e\right) \vee\)
\(\exists r f e .\left(a_{0}=(\lambda t\right.\). relab \(\left.(e t) r f)\right) \wedge \mathrm{SG} e\)
```

[SG_GSEQ_combin]
\vdash \forallE.SG E^GSEQ E\Longrightarrow\forallH.GSEQ H\Longrightarrow SG (H ○ E) ^ GSEQ (H ○ E)
[SG_GSEQ_strong_induction]
\vdash
(\forallp.R (\lambdat. p)) ^(\foralll e.GSEQ e\LongrightarrowR (\lambdat. label l..e t)) ^
(\foralla e.SG e ^ GSEQ e ^ Re\LongrightarrowR (\lambdat.a..e t)) ^
(\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
SG e
R (\lambdat. \tau..e.e1 t + \tau..e e t)) ^
(\foralll)
SG e}\mp@subsup{e}{1}{}\wedge\mathrm{ GSEQ }\mp@subsup{e}{1}{}\wedgeR \mp@subsup{e}{1}{}\wedge GSEQ e e2
R(\lambdat.\tau..e el t + label l l..e2 t)) ^
(\foralll)

```

```

            R (\lambdat. label l l..el }t+\tau..\mp@subsup{e}{2}{}t))
        (\foralll lll
            GSEQ e}\mp@subsup{e}{1}{\wedge}\\mathrm{ GSEQ e}\mp@subsup{e}{2}{\Longrightarrow
            R(\lambdat. label l}\mp@subsup{l}{1}{}..\mp@subsup{e}{1}{}t+\mathrm{ label }\mp@subsup{l}{2}{}\ldots\mp@subsup{e}{2}{}t))
        \forall. SG e^GSEQ e\LongrightarrowRe
    [SG_IMP_WG]
\vdash \forall e . ~ S G ~ e \Longrightarrow ~ W G ~ e
[SG_ind]
\vdash}\forallS\mp@subsup{G}{}{\prime}
(\forallp.SG' (\lambdat. p))^
(\foralll e. CONTEXT e\LongrightarrowSG
(\foralla e.SG' e\LongrightarrowSG
(\forall\mp@subsup{e}{1}{}}\mp@subsup{e}{2}{}.S\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{}\LongrightarrowS\mp@subsup{G}{}{\prime}(\lambdat. e\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))
(\forall\mp@subsup{e}{1}{}}\mp@subsup{e}{2}{}.S\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{\Longrightarrow}\LongrightarrowS\mp@subsup{G}{}{\prime}(\lambdat.\mp@subsup{e}{1}{}t|\mp@subsup{e}{2}{}t))
(\forallLe.SG' e\LongrightarrowSG'(\lambdat.\nuL}(et)))
(\forallrf e.SG' e\LongrightarrowSG
\forall\mp@subsup{a}{0}{}. SG }\mp@subsup{a}{0}{}\LongrightarrowS\mp@subsup{G}{}{\prime}\mp@subsup{a}{0}{
[SG_IS_CONTEXT]
\vdash \mp@code { \vdash . ~ S G ~ e ~ C O N T E X T ~ e }
[SG_rules]
\vdash(\forallp. SG (\lambdat. p)) ^
(\foralll e. CONTEXT e\Longrightarrow SG (\lambdat. label l..e t)) ^
(\foralla e. SG e \Longrightarrow SG (\lambdat.a..e t)) ^
(\forall\mp@subsup{e}{1}{}}\mp@subsup{e}{2}{}.SG \mp@subsup{e}{1}{}\wedge \G e e \ SG (\lambdat. e e t t e e e t)) ^

```

```

        (\forallLe. SG e\Longrightarrow SG (\lambdat.\nuL (et))) ^
        \forallf e. SG e\Longrightarrow SG (\lambdat. relab (et)rf)
    ```
```

[SG_SEQ_combin]
\vdash}\forallE.SGE\wedge SEQ E\Longrightarrow\forallH.SEQ H\Longrightarrow SG(H\circE)^ SEQ (H \circ E)
[SG_SEQ_strong_induction]
\vdash}\forallR\mathrm{ .
(\forallp.R (\lambdat. p)) ^(\foralll e. SEQ e \Longrightarrow R (\lambdat. label l..e t)) ^
(\foralla e. SG e ^ SEQ e ^ Re\LongrightarrowR (\lambdat. a..e t)) ^
(\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.
SG e
R (\lambdat. e}\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))
\forall. SG e ^ SEQ e\LongrightarrowRe
[SG_strongind]
\vdash}\forallS\mp@subsup{G}{}{\prime}
(\forallp.SG' (\lambdat. p)) ^
(\foralll e. CONTEXT e\LongrightarrowSG
(\forallae.SG e^SG'}e\LongrightarrowS\mp@subsup{G}{}{\prime}(\lambdat.a..et))
(\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}.

```

```

        SG
    (\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
        SG e}\mp@subsup{e}{1}{}\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedge SG \mp@subsup{e}{2}{}\wedgeS\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{}
        SG
    (\forallL e. SG e^SG' e\LongrightarrowSG
    (\forallrf e. SG e ^SG' e\LongrightarrowSG
    \foralla0. SG a a \LongrightarrowSG
    [STRONG_EQUIV_congruence]
congruence STRONG_EQUIV
[STRONG_EQUIV_SUBST_CONTEXT]
\vdash}\forallPQ
STRONG_EQUIV P Q \# V . CONTEXT E CTRONG_EQUIV (E P) (E Q)
[WEAK_EQUIV_congruence]
\vdash congruence1 WEAK_EQUIV
[WEAK_EQUIV_SUBST_GCONTEXT]
\vdash}\forallPQ
WEAK_EQUIV P Q \# F . GCONTEXT E \Longrightarrow WEAK_EQUIV (E P) (E Q)
[WEAK_EQUIV_SUBST_GSEQ]
\vdash}\forallPQ.WEAK_EQUIV P Q 沫E.G.GSEQ E \ WEAK_EQUIV (E P) (E Q
[WG1]
\vdash}\foralla.WG (\lambdat. a..t

```

\section*{[WG2]}
\[
\vdash \forall p . \text { WG }(\lambda t . p)
\]

\section*{[WG3]}
\[
\vdash \forall a e . \text { CONTEXT } e \Longrightarrow \text { WG }(\lambda t . a \ldots e t)
\]
[WG4]
\[
\vdash \forall e_{1} e_{2} \text {. WG } e_{1} \wedge \text { WG } e_{2} \Longrightarrow \text { WG }\left(\lambda t . e_{1} t+e_{2} t\right)
\]
[WG5]
\[
\vdash \forall e_{1} e_{2} \text {. WG } e_{1} \wedge \text { WG } e_{2} \Longrightarrow \text { WG }\left(\lambda t . e_{1} t \| e_{2} t\right)
\]
[WG6]
\[
\vdash \forall L e . W G e \Longrightarrow W G(\lambda t . \nu L(e t))
\]
[WG7]
\(\vdash \forall r f e\). WG \(e \Longrightarrow\) WG (\(\lambda t\). relab (et) rf)
[WG_cases]
\(\vdash \forall a_{0}\).
WG \(a_{0} \Longleftrightarrow\)
\(\left(\exists p . a_{0}=(\lambda t . p)\right) \vee\)
(\(\exists a\) e. \(\left(a_{0}=(\lambda t . a . . e t)\right) \wedge\) CONTEXT e) \(\vee\)
\(\left(\exists e_{1} e_{2} .\left(a_{0}=\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge W G e_{1} \wedge W G e_{2}\right) \vee\)
\(\left(\exists e_{1} e_{2} .\left(a_{0}=\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge W G e_{1} \wedge W G e_{2}\right) \vee\)
\(\left(\exists L e .\left(a_{0}=(\lambda t . \nu L(e t))\right) \wedge W G e\right) \vee\)
\(\exists r f e .\left(a_{0}=(\lambda t . r e l a b(e t) r f)\right) \wedge W G e\)
[WG_ind]
\(\vdash \forall W G^{\prime}\).
\(\left(\forall p . W G^{\prime}(\lambda t . p)\right) \wedge\left(\forall a e . \operatorname{CONTEXT} e \Longrightarrow W G^{\prime}(\lambda t . a . . e t)\right) \wedge\)
\(\left(\forall e_{1} e_{2} . W G^{\prime} e_{1} \wedge W G^{\prime} e_{2} \Longrightarrow W G^{\prime}\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge\)
\(\left(\forall e_{1} e_{2} . W G^{\prime} e_{1} \wedge W G^{\prime} e_{2} \Longrightarrow W G^{\prime}\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\(\left(\forall L e . W G^{\prime} e \Longrightarrow W G^{\prime}(\lambda t . \nu L(e t))\right) \wedge\)
\(\left(\forall r f e . W G^{\prime} e \Longrightarrow W G^{\prime}(\lambda t\right.\). relab (e t) rf)) \(\Longrightarrow\)
\(\forall a_{0}\). WG \(a_{0} \Longrightarrow W G^{\prime} a_{0}\)
[WG_IS_CONTEXT]
\(\vdash \forall e\). WG \(e \Longrightarrow\) CONTEXT \(e\)
[WG_rules]
\(\vdash(\forall p . W G(\lambda t . p)) \wedge(\forall a e . \operatorname{CONTEXT} e \Longrightarrow W G(\lambda t . a . . e t)) \wedge\)
\(\left(\forall e_{1} e_{2}\right.\). WG \(e_{1} \wedge\) WG \(e_{2} \Longrightarrow\) WG \(\left.\left(\lambda t . e_{1} t+e_{2} t\right)\right) \wedge\)
\(\left(\forall e_{1} e_{2}\right.\). WG \(e_{1} \wedge\) WG \(e_{2} \Longrightarrow\) WG \(\left.\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\((\forall L e . W G e W G(\lambda t . \nu L(e t))) \wedge\)
\(\forall r f e\). WG \(e \Longrightarrow\) WG (\(\lambda t\). relab (et) rf)
```

[WG_strongind]
\vdash}\forallW\mp@subsup{G}{}{\prime}
(\forallp.WG' (\lambdat. p)) ^(\forallae. CONTEXT e\LongrightarrowWG
(\forall \mp@subsup{e}{1}{}}\mp@subsup{e}{2}{}
WG e}\mp@subsup{e}{1}{}\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedge WG \mp@subsup{e}{2}{}\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{}
WG}\mp@subsup{G}{}{\prime}(\lambdat.\mp@subsup{e}{1}{}t+\mp@subsup{e}{2}{}t))
(\forall\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}
WG e}\mp@subsup{e}{1}{}\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{1}{}\wedge WG \mp@subsup{e}{2}{}\wedgeW\mp@subsup{G}{}{\prime}\mp@subsup{e}{2}{}
WG}\mp@subsup{G}{}{\prime}(\lambdat.\mp@subsup{e}{1}{}t|\mp@subsup{e}{2}{}t))
(\forallL e.WG e^WG' e\LongrightarrowWG'(\lambdat.\nuL (e t))) ^
(\forallrf e.WG e ^ WG' e\LongrightarrowWG'(\lambdat. relab (e t) rf)) \Longrightarrow
\foralla}
[WGS1]
\vdash}\foralla.WGS (\lambdat.a..t
[WGS2]
\vdash . WGS (\lambdat. p)
[WGS3]
\vdash}\forallae.GCONTEXT e\Longrightarrow WGS (\lambdat.a..e t
[WGS4]
\vdash}\forall\mp@subsup{a}{1}{}\mp@subsup{a}{2}{}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{2}

```

```

[WGS5]

```

```

[WGS6]
\vdash}\forallLe.WGS e\Longrightarrow WGS (\lambdat.\nuL (et)
[WGS7]
\vdash \forall r f e . W G S ~ e \Longrightarrow ~ W G S ~ ( \lambda t . ~ r e l a b ~ ( e ~ t ) ~ r f )
[WGS_cases]
\vdash}\forall\mp@subsup{a}{0}{}
WGS a }\mp@subsup{a}{0}{}
(\existsp. a}\mp@subsup{a}{0}{}=(\lambdat.p))
(\existsae. (a = = (\lambdat.a..e t)) ^ GCONTEXT e) \vee
(\exists all a
(a0 = (\lambdat. a a ..e.e t + a a .. e e t)) ^ GCONTEXT }\mp@subsup{e}{1}{}
GCONTEXT e}\mp@subsup{e}{2}{})

```

```

        (\existsLe. (a0 = (\lambdat.\nuL (e t))) ^ WGS e) \vee
        \existsrfe. (a0 = (\lambdat. relab (e t)rf)) ^ WGS e
    ```
[WGS_ind]
\(\vdash \forall W G S^{\prime}\).
\(\left(\forall p . W G S^{\prime}(\lambda t . p)\right) \wedge\)
(\(\forall a \quad e\). GCONTEXT \(e \Longrightarrow W G S^{\prime}(\lambda t\). a..e \(\left.t)\right) \wedge\)
(\(\forall a_{1} a_{2} e_{1} e_{2}\).
GCONTEXT \(e_{1} \wedge\) GCONTEXT \(e_{2} \Longrightarrow\)
\(\left.W G S^{\prime}\left(\lambda t . a_{1} . . e_{1} t+a_{2} \ldots e_{2} t\right)\right) \wedge\)
\(\left(\forall e_{1} e_{2} . W G S^{\prime} e_{1} \wedge W G S^{\prime} e_{2} \Longrightarrow W G S^{\prime}\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\(\left(\forall L e . W G S^{\prime} e \Longrightarrow W G S^{\prime}(\lambda t . \nu L(e t))\right) \wedge\)
\(\left(\forall r f e . W G S^{\prime} e \Longrightarrow W G S^{\prime}(\lambda t\right.\). relab (e t) rf)) \(\Longrightarrow\)
\(\forall a_{0}\). WGS \(a_{0} \Longrightarrow W G S^{\prime} a_{0}\)
[WGS_IS_CONTEXT]
\(\vdash \forall e\). WGS \(e \Longrightarrow\) CONTEXT \(e\)
[WGS_IS_GCONTEXT]
\(\vdash \forall e\). WGS \(e \Longrightarrow\) GCONTEXT \(e\)
[WGS_rules]
\(\vdash(\forall p\). WGS \((\lambda t . p)) \wedge(\forall a e . \operatorname{GCONTEXT} e \Longrightarrow \operatorname{WGS}(\lambda t . a . . e t)) \wedge\) \(\left(\forall a_{1} a_{2} \quad e_{1} \quad e_{2}\right.\).

GCONTEXT \(e_{1} \wedge\) GCONTEXT \(e_{2} \Longrightarrow\)
WGS \(\left.\left(\lambda t . a_{1} \ldots e_{1} t+a_{2} \ldots e_{2} t\right)\right) \wedge\)
\(\left(\forall e_{1} e_{2}\right.\). WGS \(e_{1} \wedge\) WGS \(e_{2} \Longrightarrow\) WGS \(\left.\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\((\forall L e\). WGS \(e \Longrightarrow\) WGS \((\lambda t . \nu L(e t))) \wedge\)
\(\forall r f e\). WGS \(e \Longrightarrow\) WGS (\(\lambda t\). relab (\(e t\)) rf)
[WGS_strongind]
\(\vdash \forall W G S^{\prime}\).
\(\left(\forall p . W G S^{\prime}(\lambda t . p)\right) \wedge\)
\(\left(\forall a e . \operatorname{GCONTEXT} e \Longrightarrow W G S^{\prime}(\lambda t . a . . e t)\right) \wedge\)
(\(\forall a_{1} a_{2} e_{1} e_{2}\).
GCONTEXT \(e_{1} \wedge\) GCONTEXT \(e_{2} \Longrightarrow\) \(\left.W G S^{\prime}\left(\lambda t . a_{1} \ldots e_{1} t+a_{2} \ldots e_{2} t\right)\right) \wedge\)
\(\left(\forall e_{1} e_{2}\right.\).
WGS \(e_{1} \wedge W G S^{\prime} e_{1} \wedge\) WGS \(e_{2} \wedge W G S^{\prime} e_{2} \Longrightarrow\) \(\left.W G S^{\prime}\left(\lambda t . e_{1} t \| e_{2} t\right)\right) \wedge\)
\(\left(\forall L e\right.\). WGS \(\left.e \wedge W G S^{\prime} e \Longrightarrow W G S^{\prime}(\lambda t . \nu L(e t))\right) \wedge\)
\(\left(\forall r f e\right.\). WGS \(e \wedge W G S^{\prime} e \Longrightarrow W G S^{\prime}(\lambda t\). relab (e t) rf)) \(\Longrightarrow\) \(\forall a_{0}\). WGS \(a_{0} \Longrightarrow W G S^{\prime} a_{0}\)

\subsection*{9.9 CoarsestCongr Theory}

Built: 08 Dicembre 2017
Parent Theories: Trace, Congruence

\subsection*{9.9.1 Definitions}
```

[free_action_def]
\vdash \mp@code { \vdash } . ~ f r e e _ a c t i o n ~ p \Longleftrightarrow \exists a . \forall p ^ { \prime } . \neg ( p = l a b e l ~ a \Rightarrow ~ p ' )
[KLOP_def]
\vdash ( \forall a . ~ K L O P ~ a ~ 0 ~ = ~ n i l ) ~ \wedge ~
\forallan. KLOP a (SUC n) = KLOP a n + label a..KLOP a n
[SUM_EQUIV]
\vdash SUM_EQUIV = ( }\lambdapq.\forallr.WEAK_EQUIV (p + r) ( q + r))
[WEAK_CONGR]
\vdash WEAK_CONGR = CC WEAK_EQUIV

```

\subsection*{9.9.2 Theorems}
```

[COARSEST_CONGR_FINITE]
\vdash \forallpq.
finite_state p ^ finite_state q \Longrightarrow
(OBS_CONGR p q \Longleftrightarrow \forallr. WEAK_EQUIV (p +r) (q+r))
[COARSEST_CONGR_LR]
\vdash}\forallpq. OBS_CONGR p q\Longrightarrow\forallr. WEAK_EQUIV ( p + r) ( q + r
[COARSEST_CONGR_RL]
\vdash}\forallpq
free_action p ^ free_action q \Longrightarrow
(\forallr. WEAK_EQUIV ( }p+r\mathrm{ ) (q+r)) }
OBS_CONGR p q
[COARSEST_CONGR_THM]
\vdash}\forallpq
free_action p}^\mathrm{ free_action q \#
(OBS_CONGR p q \Longleftrightarrow \forallr. WEAK_EQUIV ( }p+r\mathrm{ ) (q + r))
[DENG_LEMMA]
\vdash}\forallpq
WEAK_EQUIV p q \Longrightarrow
( \exists p '. p -\tau-> p
( \existsq\mp@subsup{q}{}{\prime}.q-\tau-> q

```
[HENNESSY_LEMMA]
 \(\vdash \forall p q\).
 WEAK_EQUIV \(p q \Longleftrightarrow\)
 OBS_CONGR \(p q \vee\) OBS_CONGR \(p(\tau \ldots q) \vee\) OBS_CONGR (\(\tau . p\)) \(q\)
```

[HENNESSY_LEMMA_LR]
\vdash}\forallpq
WEAK_EQUIV p q \Longrightarrow
OBS_CONGR p q\vee OBS_CONGR p ( }\tau..q)\vee OBS_CONGR (\tau..p)
[HENNESSY_LEMMA_RL]
\vdash}\forallpq
OBS_CONGR p q\vee OBS_CONGR p (\tau..q) V OBS_CONGR ( }\tau..p) q
WEAK_EQUIV p q
[INFINITE_EXISTS_LEMMA]
\vdash \mp@code { \forall } A B .
equivalence R\Longrightarrow
FINITE }A\wedge\mathrm{ INFINITE }B
(}\forallxy.x\inB\wedgey\inB\wedgex\not=y\Longrightarrow\negR x y)
\existsk. k\inB^\foralln. n \in A\Longrightarrow\negR n k
[KO_NO_TRANS]
\vdash , \forall a ~ u ~ E . ~ \neg ( K L O P ~ a ~ 0 ~ - u \rightarrow E )
[KLOP_def_compute]
\vdash(\foralla. KLOP a 0 = nil) ^
(}\forallan
KLOP a (NUMERAL (BIT1 n)) =
KLOP a (NUMERAL (BIT1 n) - 1) +
label a..KLOP a (NUMERAL (BIT1 n) - 1)) ^
\foralla n.
KLOP a (NUMERAL (BIT2 n)) =
KLOP a (NUMERAL (BIT1 n)) +
label a..KLOP a (NUMERAL (BIT1 n))
[KLOP_LEMMA_FINITE]
\vdash}\forallpq
finite_state p ^ finite_state q \Longrightarrow
\exists
STABLE }k\wedge(\forall\mp@subsup{p}{}{\prime}u.p=u=> \mp@subsup{p}{}{\prime}\Longrightarrow\neg\mathrm{ WEAK_EQUIV p p}k)
\forallq
[KLOP_ONE_ONE]
\vdash}\foralla. ONE_ONE (KLOP a)
[KLOP_PROPO]
\vdash \mp@code { \vdash a n . ~ S T A B L E ( K L O P ~ a ~ n ) }
[KLOP_PROP1]
\vdash}\forallan E. KLOP a n -label a->E\Longleftrightarrow\existsm.m<n^(E= KLOP a m

```
```

[KLOP_PROP1']
\vdash}\forallanE. KLOP a n =label a=>E \Longleftrightarrow \existsm.m<n^(E=KLOP a m
[KLOP_PROP1_LR]
\vdash \foralla n E. KLOP a n -label a->E\Longrightarrow\existsm. m<n^(E=KLOP a m)
[KLOP_PROP1_RL]
\vdash \forallan E. (\existsm.m<n^(E=KLOP a m)) \Longrightarrow KLOP a n -label a->E
[KLOP_PROP2]
\vdash \forallan m. m<n\Longrightarrow -STRONG_EQUIV (KLOP a m)(KLOP a n)
[KLOP_PROP2']
\vdash \foralla n m. m<n\Longrightarrow \WEAK_EQUIV (KLOP a m) (KLOP a n)
[OBS_CONGR_IMP_WEAK_CONGR]
\vdash \forall p q . ~ O B S \_ C O N G R ~ p ~ q ~ \Longrightarrow ~ W E A K \ C O N G R ~ p ~ q ~
[PROP3_COMMON]
\vdash}\forallpq
( }\exists\textrm{k}\mathrm{ .
STABLE k^(\forall p
\forallq}u.q=u=>\mp@subsup{q}{}{\prime}\Longrightarrow \negWEAK_EQUIV q' k)
(\forallr. WEAK_EQUIV ( }p+r\mathrm{ ) ( }q+r\mathrm{ )) }
OBS_CONGR p q
[TAU_STRAT]
\vdash \forall E ~ E ~ E ~ . ~ O B S \_ C O N G R ~ ( E ~ + ~ \tau . . ( E ' ~ + ~ E ) ) ~ ( \tau . . ( E ' ~ + ~ E ) ) ~
[WEAK_CONGR_congruence]
congruence WEAK_CONGR
[WEAK_CONGR_IMP_SUM_EQUIV]
\vdashp q. WEAK_CONGR p q\Longrightarrow SUM_EQUIV p q
[WEAK_CONGR_THM]
\vdashWEAK_CONGR = (\lambda g h. \forallc. CONTEXT c \# WEAK_EQUIV (c g) (ch))

```

\subsection*{9.10 BisimulationUpto Theory}

Built: 08 Dicembre 2017
Parent Theories: Congruence

\section*{9．10．1 Definitions}
```

[OBS_BISIM_UPTO]

```
\(\vdash \forall O b s m\) ．
 OBS_BISIM_UPTO Obsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\).
 Obsm E \(E^{\prime} \Longrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1}\right.\).
 \(E-u \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\) 。
 \(E^{\prime}=u \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV 0 Obsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}-u \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\) 。
 \(E=u \Rightarrow E_{1} \wedge\) (STRONG_EQUIV 0 Obsm 0 WEAK_EQUIV) \(E_{1} E_{2}\)
[STRONG_BISIM_UPTO]
 \(\vdash \forall B s m\).
 STRONG_BISIM_UPTO \(B s m \Longleftrightarrow\)
 \(\forall E E^{\prime}\) 。
 Bsm E \(E^{\prime} \Longrightarrow\)
 \(\forall u\).
 \(\left(\forall E_{1}\right.\).
 \(E-u \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\) 。
 \(E^{\prime}-u \rightarrow E_{2} \wedge\)
 (STRONG_EQUIV 0 Bsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)) \(\wedge\)
 \(\forall E_{2}\).
 \(E^{\prime}-u \rightarrow E_{2} \Longrightarrow\)
 \(\exists E_{1}\).
 \(E-u \rightarrow E_{1} \wedge\)
 (STRONG_EQUIV 0 Bsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)
[WEAK_BISIM_UPTO]
 \(\vdash \forall W b s m\).
 WEAK_BISIM_UPTO Wbsm \(\Longleftrightarrow\)
 \(\forall E E^{\prime}\) 。
 Wbsm \(E E^{\prime} \Longrightarrow\)
 (\(\forall l\).
 (\(\forall E_{1}\).
 \(E\)-label \(l \rightarrow E_{1} \Longrightarrow\)
 \(\exists E_{2}\).
 \(E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\)
 (WEAK_EQUIV 0 Wbsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)) ^
 \(\forall E_{2}\).
```

    \(E^{\prime}-\) label \(l \rightarrow E_{2} \Longrightarrow\)
    \(\exists E_{1}\).
    \(E=\) label \(l \Rightarrow E_{1} \wedge\)
    (STRONG_EQUIV O Wbsm O WEAK_EQUIV) \(E_{1} E_{2}\) ) \(\wedge\)
    ( \(\forall E_{1}\)
    \(E-\tau \rightarrow E_{1} \Longrightarrow\)
    \(\exists E_{2}\).
        EPS \(E^{\prime} E_{2} \wedge\)
        (WEAK_EQUIV O Wbsm O STRONG_EQUIV) \(E_{1} E_{2}\) ) ^
    \(\forall E_{2}\).
        \(E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow\)
        \(\exists E_{1}\).
    ```

```

[WEAK_BISIM_UPTO_ALT]
$\vdash \forall W b s m$.
WEAK_BISIM_UPTO_ALT Wbsm $\Longleftrightarrow$
$\forall E E^{\prime}$.
Wbsm $E E^{\prime} \Longrightarrow$
( $\forall l$.
( $\forall E_{1}$.
$E=$ label $l \Rightarrow E_{1} \Longrightarrow$
$\exists E_{2}$.
$E^{\prime}=$ label $l \Rightarrow E_{2} \wedge$
(WEAK_EQUIV O Wbsm O WEAK_EQUIV) $E_{1} E_{2}$ ) ^
$\forall E_{2}$.
$E^{\prime}=$ label $l \Rightarrow E_{2} \Longrightarrow$
$\exists E_{1}$.
$E=$ label $l \Rightarrow E_{1} \wedge$
(WEAK_EQUIV O Wbsm O WEAK_EQUIV) $E_{1} E_{2}$ ) $\wedge$
( $\forall E_{1}$.
$E=\tau \Rightarrow E_{1} \Longrightarrow$
$\exists E_{2}$.
EPS $E^{\prime} E_{2} \wedge$
(WEAK_EQUIV O Wbsm O WEAK_EQUIV) $E_{1} E_{2}$ ) ^
$\forall E_{2}$.
$E^{\prime}=\tau \Rightarrow E_{2} \Longrightarrow$
$\exists E_{1}$. EPS $E E_{1} \wedge$ (WEAK_EQUIV 0 Wbsm 0 WEAK_EQUIV) $E_{1} E_{2}$

```

\subsection*{9.10.2 Theorems}
```

[CONVERSE_OBS_BISIM_UPTO]
\vdashObsm. OBS_BISIM_UPTO Obsm \Longrightarrow OBS_BISIM_UPTO (relinv Obsm)
[CONVERSE_STRONG_BISIM_UPTO]
\vdash Wbsm.
STRONG_BISIM_UPTO Wbsm \Longrightarrow STRONG_BISIM_UPTO (relinv Wbsm)

```
[CONVERSE_WEAK_BISIM_UPTO]
```

    \vdash \forallWbsm. WEAK_BISIM_UPTO Wbsm \Longrightarrow WEAK_BISIM_UPTO (relinv Wbsm)
    [CONVERSE_WEAK_BISIM_UPTO_lemma]
\vdash \forallWbsm E E '.
(WEAK_EQUIV O relinv Wbsm O STRONG_EQUIV) E E' \Longleftrightarrow
(STRONG_EQUIV O Wbsm O WEAK_EQUIV) E' E
[CONVERSE_WEAK_BISIM_UPTO_lemma']
\vdash Wbsm E E E
(STRONG_EQUIV O relinv Wbsm O WEAK_EQUIV) E E' \Longleftrightarrow
(WEAK_EQUIV O Wbsm O STRONG_EQUIV) E' E
[IDENTITY_OBS_BISIM_UPTO]
\vdash OBS_BISIM_UPTO (=)
[IDENTITY_STRONG_BISIM_UPTO]
\& STRONG_BISIM_UPTO (=)
[IDENTITY_STRONG_BISIM_UPTO_lemma]
\vdash \forallE. (STRONG_EQUIV O (=) O STRONG_EQUIV) E E
[IDENTITY_WEAK_BISIM_UPTO]
\EAK_BISIM_UPTO (=)
[IDENTITY_WEAK_BISIM_UPTO_lemma]
\vdash \forallE. (WEAK_EQUIV O (=) O STRONG_EQUIV) E E
[IDENTITY_WEAK_BISIM_UPTO_lemma']
\vdash \forallE. (STRONG_EQUIV O (=) O WEAK_EQUIV) E E
[OBS_BISIM_UPTO_EPS]
\forall Obsm.
OBS_BISIM_UPTO Obsm \Longrightarrow
\forallE E'
Obsm E E' \Longrightarrow
E
EPS E E
\exists}\mp@subsup{E}{2}{}\mathrm{ .
EPS E' E E ^ (WEAK_EQUIV O Obsm O STRONG_EQUIV) E E E E

```
[OBS_BISIM_UPTO_EPS']
\(\vdash \forall\) Obsm.
OBS_BISIM_UPTO Obsm \(\Longrightarrow\)
\(\forall E E^{\prime}\).
Obsm \(E E^{\prime} \Longrightarrow\)
\(\forall E_{2}\).
EPS \(E^{\prime} E_{2} \Longrightarrow\)
\(\exists E_{1}\). EPS \(E E_{1} \wedge\) (STRONG_EQUIV 0 Obsm 0 WEAK_EQUIV) \(E_{1} E_{2}\)
[OBS_BISIM_UPTO_THM]
\(\vdash \forall\) Obsm. OBS_BISIM_UPTO Obsm \(\Longrightarrow\) Obsm RSUBSET OBS_CONGR
[OBS_BISIM_UPTO_TRANS]
\(\vdash \forall\) Obsm.
OBS_BISIM_UPTO Obsm \(\Longrightarrow\)
\(\forall E E^{\prime}\).
Obsm \(E E^{\prime} \Longrightarrow\)
\(\forall u E_{1}\).
\(E-u \rightarrow E_{1} \Longrightarrow\)
\(\exists E_{2}\).
\(E^{\prime}=u \Rightarrow E_{2} \wedge\) (WEAK_EQUIV 0 Obsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)
[OBS_BISIM_UPTO_TRANS']
\(\vdash \forall\) Obsm.
OBS_BISIM_UPTO Obsm \(\Longrightarrow\)
\(\forall E E^{\prime}\).
Obsm E \(E^{\prime} \Longrightarrow\)
\(\forall u E_{2}\).
\(E^{\prime}-u \rightarrow E_{2} \Longrightarrow\)
\(\exists E_{1}\).
\(E=u \Rightarrow E_{1} \wedge\) (STRONG_EQUIV 0 Obsm 0 WEAK_EQUIV) \(E_{1} E_{2}\)
[OBS_BISIM_UPTO_WEAK_TRANS_label]
\(\vdash \forall\) Obsm.
OBS_BISIM_UPTO Obsm \(\Longrightarrow\)
\(\forall E E^{\prime}\).
Obsm \(E E^{\prime} \Longrightarrow\)
\(\forall l E_{1}\).
\(E=\) label \(l \Rightarrow E_{1} \Longrightarrow\)
\(\exists E_{2}\).
\(E^{\prime}=\) label \(l \Rightarrow E_{2} \wedge\)
(WEAK_EQUIV 0 Obsm 0 STRONG_EQUIV) \(E_{1} E_{2}\)
```

[OBS_BISIM_UPTO_WEAK_TRANS_label']
\vdash \forallObsm.
OBS_BISIM_UPTO Obsm \Longrightarrow
\forallE E'.
Obsm E E' \Longrightarrow
\foralll E .
E'}=l\mathrm{ label l}=>\mp@subsup{E}{2}{}
\exists}\mp@subsup{E}{1}{}\mathrm{ .
E =label l=> El ^
(STRONG_EQUIV O Obsm O WEAK_EQUIV) E E E E
[STRONG_BISIM_UPTO_LEMMA]
\vdash}\forallBsm
STRONG_BISIM_UPTO Bsm \Longrightarrow
STRONG_BISIM (STRONG_EQUIV O Bsm O STRONG_EQUIV)
[STRONG_BISIM_UPTO_THM]
\vdash \mp@code { \forall B s m . ~ S T R O N G _ B I S I M _ U P T O ~ B s m ~ \Longrightarrow ~ B s m ~ R S U B S E T ~ S T R O N G _ E Q U I V }
[WEAK_BISIM_UPTO_ALT_EPS]
\vdash Wbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
\forallE E'.
Wbsm E E'\Longrightarrow
\forallE
EPS E E C \Longrightarrow
\exists E2. EPS E' E E ^ (WEAK_EQUIV 0 Wbsm 0 WEAK_EQUIV) E El E E
[WEAK_BISIM_UPTO_ALT_EPS']
\vdash Wbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
\forallE E'.
Wbsm E E'\Longrightarrow
\forallE .
EPS E' E E C
\exists E . EPS E E E ^ (WEAK_EQUIV O Wbsm O WEAK_EQUIV) E E E E E
[WEAK_BISIM_UPTO_ALT_LEMMA]
\vdash Wbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
WEAK_BISIM (WEAK_EQUIV O Wbsm O WEAK_EQUIV)
[WEAK_BISIM_UPTO_ALT_THM]
\vdash \forallWbsm. WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow Wbsm RSUBSET WEAK_EQUIV

```
```

[WEAK_BISIM_UPTO_ALT_WEAK_TRANS_label]
\vdash \forallWbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
| E'.
Wbsm E E' \Longrightarrow
\foralll E1.
E =label l=> E1 \Longrightarrow
\exists E2.
E' =label l=> E2 ^
(WEAK_EQUIV O Wbsm O WEAK_EQUIV) E1 E E
[WEAK_BISIM_UPTO_ALT_WEAK_TRANS_label']
\vdash \forallWbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
| E'.
Wbsm E E C
\foralll E2.
E' =label l=> E2 \Longrightarrow
\exists}\mp@subsup{E}{1}{}\mathrm{ .
E =label l=> E1 ^
(WEAK_EQUIV O Wbsm O WEAK_EQUIV) E1 E E
[WEAK_BISIM_UPTO_ALT_WEAK_TRANS_tau]
\vdash Wbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
| E'.
Wbsm E E' \Longrightarrow
* .
E=\tau=> E C \Longrightarrow
\exists}\mp@subsup{E}{2}{}\mathrm{ . EPS E E E E \ (WEAK_EQUIV 0 Wbsm 0 WEAK_EQUIV) E1 E E
[WEAK_BISIM_UPTO_ALT_WEAK_TRANS_tau']
\vdash \forallWbsm.
WEAK_BISIM_UPTO_ALT Wbsm \Longrightarrow
| E'.
Wbsm E E' \Longrightarrow
\forallE .
E}=\tau=>\mp@subsup{E}{2}{}
\exists E1. EPS E E E ^ (WEAK_EQUIV O Wbsm O WEAK_EQUIV) E E E E
[WEAK_BISIM_UPTO_EPS]
\vdash \forallWbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
| E'.
Wbsm E E' \Longrightarrow
E .
EPS E E E \Longrightarrow
\exists}\mp@subsup{E}{2}{}\mathrm{ .
EPS E E E < ^ (WEAK_EQUIV 0 Wbsm 0 STRONG_EQUIV) E E E E2

```
```

[WEAK_BISIM_UPTO_EPS']
\vdash Wbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
| E'.
Wbsm E E C}
*E
EPS E' E E C
\exists E1.
EPS E E E ^(STRONG_EQUIV O Wbsm O WEAK_EQUIV) E E E E2
[WEAK_BISIM_UPTO_LEMMA]
\vdash Wbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
WEAK_BISIM (WEAK_EQUIV O Wbsm O WEAK_EQUIV)
[WEAK_BISIM_UPTO_THM]
\vdash \forallWbsm. WEAK_BISIM_UPTO Wbsm \Longrightarrow Wbsm RSUBSET WEAK_EQUIV
[WEAK_BISIM_UPTO_TRANS_label]
\vdash \forallWbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
\forall E E
Wbsm E E C}
\foralll E1.
E -label l}->\mp@subsup{E}{1}{}
\exists E2.
E' =label l=> E E2 ^
(WEAK_EQUIV O Wbsm O STRONG_EQUIV) E1 E2
[WEAK_BISIM_UPTO_TRANS_label']
\vdash}\forallWbsm
WEAK_BISIM_UPTO Wbsm \Longrightarrow
| E'
Wbsm E E C}
\foralll E2.
E' - label l->E E2\Longrightarrow
\exists}\mp@subsup{E}{1}{}\mathrm{ .
E =label l=> E \ ^
(STRONG_EQUIV O Wbsm O WEAK_EQUIV) E1 E E
[WEAK_BISIM_UPTO_TRANS_tau]
\vdash \forallWbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
| E'.
Wbsm E E C}
\forallE .
E-\tau-> E C \Longrightarrow
\exists}\mp@subsup{E}{2}{}\mathrm{ .
EPS E' E2 ^(WEAK_EQUIV O Wbsm O STRONG_EQUIV) E1 E E

```
```

[WEAK_BISIM_UPTO_TRANS_tau']
\vdash Wbsm.
WEAK_BISIm_UPTO Wbsm \Longrightarrow
| E'.
Wbsm E E C}
* E
E
\exists}\mp@subsup{E}{1}{}\mathrm{ .
EPS E E
[WEAK_BISIM_UPTO_WEAK_TRANS_label]
\vdash Wbsm.
WEAK_BISIm_UPTO Wbsm \Longrightarrow
\forall E E'
Wbsm E E' \Longrightarrow
\foralll E1.
E =label l=> E C C
\exists E2.
E' =label l=> E2 ^
(WEAK_EQUIV O Wbsm O STRONG_EQUIV) E1 E E
[WEAK_BISIM_UPTO_WEAK_TRANS_label']
\vdash Wbsm.
WEAK_BISIM_UPTO Wbsm \Longrightarrow
| E'.
Wbsm E E' \Longrightarrow
\foralll E2.
E}=\mathrm{ =label l}=>\mp@subsup{E}{2}{}
\exists}\mp@subsup{E}{1}{}\mathrm{ .
E label l=> E | ^
(STRONG_EQUIV O Wbsm O WEAK_EQUIV) E1 E E

```

\subsection*{9.11 Trace Theory}

Built: 08 Dicembre 2017
Parent Theories: WeakEQ

\subsection*{9.11.1 Definitions}
[finite_state_def]
```

\vdash \mp@code { \vdash p . ~ f i n i t e _ s t a t e ~ p \Longleftrightarrow ~ F I N I T E ~ ( N O D E S ~ p ) }

```

\section*{[LRTC_DEF]}
\(\vdash \forall R\) alb.
LRTC \(R a l b \Longleftrightarrow\)
\(\forall P\).
\((\forall x . P x[] x) \wedge\)
\((\forall x h y t z . R x h y \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow\) Palb
[NO_LABEL_def]
\(\vdash \forall L\). NO_LABEL \(L \Longleftrightarrow \neg \exists l\). MEM (label \(l\)) \(L\)
[NODES_def]
\(\vdash \forall p\). NODES \(p=\{q \mid\) Reach \(p q\}\)
```

[Reach_def]

```
\(\vdash\) Reach \(=\left(\lambda E E^{\prime} \cdot \exists u . E-u \rightarrow E^{\prime}\right)^{*}\)
[STEP_def]
\(\vdash \forall P n Q . \operatorname{STEP} P n Q \Longleftrightarrow \operatorname{NRC}\left(\lambda E E^{\prime} . \exists u . E-u \rightarrow E^{\prime}\right) n P Q\)
[TRACE_def]
\(\vdash\) TRACE \(=\) LRTC TRANS
[UNIQUE_LABEL_def]
\(\vdash \forall u L\).
UNIQUE_LABEL \(u \quad L \Longleftrightarrow\)
\(\exists L_{1} L_{2}\).
\(\left(L_{1}++[u]++L_{2}=L\right) \wedge\)
\(\neg \exists l\). MEM (label \(l\)) \(L_{1} \vee \operatorname{MEM}(\) label \(l) L_{2}\)

\subsection*{9.11.2 Theorems}
[EPS_AND_STEP]
\(\vdash \forall E E^{\prime}\). EPS \(E E^{\prime} \Longrightarrow \exists n\). STEP \(E n E^{\prime}\)
[EPS_AND_TRACE]
\(\vdash \forall E E^{\prime}\). EPS \(E E^{\prime} \Longleftrightarrow \exists x s\). TRACE \(E\) xs \(E^{\prime} \wedge\) NO_LABEL \(x s\)
[EPS_IN_NODES]
\(\vdash \forall p q . \operatorname{EPS} p q \Longrightarrow q \in \operatorname{NODES} p\)
[EPS_Reach]
\(\vdash \forall p q\). EPS \(p q \Longrightarrow\) Reach \(p q\)
```

[EPS_TRACE]
\vdash}\forallE\mp@subsup{E}{}{\prime}.\mathrm{ EPS E E E C ヨxs. TRACE E xs E'
[LRTC_APPEND_CASES]
\vdash}\forallR\mp@subsup{l}{1}{}\mp@subsup{l}{2}{}xy
LRTC R x (l ++ l ) y \Longleftrightarrow \existsu. LRTC R x l l u^ LRTC R u l l y
[LRTC_CASES1]
\vdash}\forallRxly
LRTC R x l y \Longleftrightarrow
if NULL l then }x=
else \existsu.R x (HD l) u^ LRTC R u(TL l) y
[LRTC_CASES2]
\vdash}\forallRxly
LRTC R x l y \Longleftrightarrow
if NULL l then }x=
else \existsu. LRTC R x (FRONT l) u^Ru(LAST l) y
[LRTC_CASES_LRTC_TWICE]
\vdash}\forallRxly
LRTC R x l y \Longleftrightarrow
\existsu l l l . LRTC R x l u u ^ LRTC R u l l y ^(l= l l ++ l )
[LRTC_INDUCT]
\vdash}\forallRP
(\forallx. P x [] x) ^
(\forallxhytz. R x hy^Pytz\LongrightarrowPx(h::t)z)\Longrightarrow
\forallxly. LRTC R x l y \LongrightarrowP x l y
[LRTC_LRTC]
\vdash}\forallRxmy
LRTC R x m y \Longrightarrow \forallnz. LRTC R y n z\Longrightarrow LRTC R x (m++ n) z
[LRTC_NIL]
\vdash}\forallRxy.\operatorname{LRTC R x [] y \Longleftrightarrow (x=y)
[LRTC_ONE]
\vdash}\forallRxty.\operatorname{LRTC}Rx[t]y\LongleftrightarrowRxt
[LRTC_REFL]
\vdash}\forallR. LRTC R x [] x

```

\section*{[LRTC_RULES]}
\(\vdash \forall R\).
\((\forall x . \operatorname{LRTC} R x\) [] \(x) \wedge\)
\(\forall x h y t z . R x h y \wedge \operatorname{LRTC} R y t z \Longrightarrow \operatorname{LRTC} R x(h:: t) z\)

\section*{[LRTC_SINGLE]}
\(\vdash \forall R x t y . R x t y \Longrightarrow \operatorname{LRTC} R x[t] y\)
[LRTC_STRONG_INDUCT]
\(\vdash \forall R P\).
\((\forall x . P x[] x) \wedge\)
(\(\forall x h y t z\).
\(R x h y \wedge\) LRTC \(R y t z \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow\) \(\forall x l y\). LRTC \(R x l y \Longrightarrow P x l y\)

\section*{[LRTC_TRANS]}
\(\vdash \forall R x m y n z\).
LRTC \(R x m y \wedge \operatorname{LRTC} R y n z \Longrightarrow \operatorname{LRTC} R x(m++n) z\)
[MORE_NODES]
\(\vdash \forall p q q^{\prime} . q \in \operatorname{NODES} p \wedge \operatorname{Reach} q q^{\prime} \Longrightarrow q^{\prime} \in \operatorname{NODES} p\)
[NO_LABEL_cases]
\(\vdash \forall x\) xs. NO_LABEL \((x:: x s) \Longleftrightarrow(x=\tau) \wedge\) NO_LABEL \(x s\)
[Reach_cases1]
\(\vdash \forall x y\). Reach \(x y \Longleftrightarrow(x=y) \vee \exists u .\left(\exists u^{\prime} \cdot x-u^{\prime} \rightarrow u\right) \wedge\) Reach \(u y\)
[Reach_cases2]
\(\vdash \forall x y . \operatorname{Reach} x y \Longleftrightarrow(x=y) \vee \exists u \cdot \operatorname{Reach} x u \wedge \exists u^{\prime} \cdot u-u^{\prime} \rightarrow y\)
[Reach_ind]
\(\vdash \forall P\).
\((\forall x . P x x) \wedge(\forall x y z .(\exists u . x-u \rightarrow y) \wedge P y z \Longrightarrow P x z) \Longrightarrow\) \(\forall x y\). Reach \(x y \Longrightarrow P x y\)
[Reach_ind_right]
\(\vdash \forall P\).
\((\forall x . P x x) \wedge\left(\begin{array}{lll}\forall & y & z . P x y \wedge(\exists u . y-u \rightarrow z) \Longrightarrow P x z\end{array}\right) \Longrightarrow\) \(\forall x y\). Reach \(x y \Longrightarrow P x y\)
[Reach_NODES]
\(\vdash \forall p q\). Reach \(p q \Longrightarrow q \in \operatorname{NODES} p\)
```

[Reach_one]
\vdash}\forallE\mp@subsup{E}{}{\prime}.(\existsu.E-u->\mp@subsup{E}{}{\prime})\Longrightarrow\mathrm{ Reach E E'
[Reach_self]
\vdash}\forallE\mathrm{ . Reach E E
[Reach_strongind]
\vdash}\forallP\mathrm{ .
(\forallx. P x x)^
(\forallx y z. (\existsu.x -u->y) ^ Reach y z^Pyz\LongrightarrowPxz)\Longrightarrow
\forallxy. Reach x y CPxy
[Reach_strongind_right]
\vdash}\forallP\mathrm{ .
(\forallx. P x x)^
(\forallxyzz. P x y ^ Reach x y ^( }\exists\textrm{u}\cdot\textrm{y}-u->z)\LongrightarrowPxz)
\forallxy. Reach x y \LongrightarrowPxy
[Reach_trans]
\vdash}\forallxyz. Reach x y ^ Reach y z\Longrightarrow Reach xz
[SELF_NODES]
\vdash}\forallp.p\in\operatorname{NODES p
[STEP0]

$$
\vdash \forall x y . \operatorname{STEP} x 0 y \Longleftrightarrow(x=y)
$$

[STEP1]

$$
\vdash \operatorname{STEP} x 1 y \Longleftrightarrow \exists u \cdot x-u \rightarrow y
$$

[STEP_ADD_E]

$$
\vdash \forall m n x z . \operatorname{STEP} x(m+n) z \Longrightarrow \exists y . \operatorname{STEP} x m y \wedge \operatorname{STEP} y n z
$$

[STEP_ADD_EQN]

$$
\vdash \forall m n x z . \operatorname{STEP} x(m+n) z \Longleftrightarrow \exists y . \operatorname{STEP} x m y \wedge \operatorname{STEP} y n z
$$

[STEP_ADD_I]

$$
\vdash \forall m n x y z . \operatorname{STEP} x m y \wedge \operatorname{STEP} y n z \Longrightarrow \operatorname{STEP} x(m+n) z
$$

[STEP_SUC]
$\vdash \forall n x y . \operatorname{STEP} x(\operatorname{SUC} n) y \Longleftrightarrow \exists z .(\exists u \cdot x-u \rightarrow z) \wedge \operatorname{STEP} z n y$ [STEP_SUC_LEFT]
$\vdash \forall n x y$. STEP $x(\operatorname{SUC} n) y \Longleftrightarrow \exists z . \operatorname{STEP} x n z \wedge \exists u . z-u \rightarrow y$

```
[TRACE1]
```

    \(\vdash \forall x t y . x-t \rightarrow y \Longrightarrow\) TRACE \(x[t] y\)
    ```
[TRACE2]
\(\vdash \forall E x E_{1} x s E^{\prime} . E-x \rightarrow E_{1} \wedge \operatorname{TRACE} E_{1} x s E^{\prime} \Longrightarrow \operatorname{TRACE} E(x:: x s) E^{\prime}\)
```

[TRACE_APPEND_cases]

```
\(\vdash \forall l_{1} l_{2} x \quad y\).
\(\operatorname{TRACE} x\left(l_{1}++l_{2}\right) y \Longleftrightarrow \exists u . \operatorname{TRACE} x l_{1} u \wedge \operatorname{TRACE} u l_{2} y\)
[TRACE_cases1]
\(\vdash \forall x l y\).
TRACE \(x l y \Longleftrightarrow\)
if NULL \(l\) then \(x=y\) else \(\exists u . x-\operatorname{HD} l \rightarrow u \wedge \operatorname{TRACE} u(T L l) y\)
[TRACE_cases2]
\(\vdash \forall x l y\).
TRACE \(x l y \Longleftrightarrow\)
if NULL \(l\) then \(x=y\)
else \(\exists u\). TRACE \(x\) (FRONT \(l\)) \(u \wedge u\)-LAST \(l \rightarrow y\)
[TRACE_cases_twice]
\(\vdash \forall x l y\).
TRACE \(x l y \Longleftrightarrow\)
\(\exists u l_{1} l_{2}\). TRACE \(x l_{1} u \wedge\) TRACE \(u l_{2} y \wedge\left(l=l_{1}++l_{2}\right)\)
[TRACE_ind]
\(\vdash \forall P\).
\((\forall x . P x \in x) \wedge\)
\((\forall x h y t z . x-h \rightarrow y \wedge P y t z \Longrightarrow P x(h:: t) z) \Longrightarrow\) \(\forall x l y\). TRACE \(x l y \Longrightarrow P x l y\)
[TRACE_NIL]
\(\vdash \forall x y\). TRACE \(x \in y \Longleftrightarrow(x=y)\)
[TRACE_ONE]
\(\vdash \forall x\) t \(y\). TRACE \(x[t] y \Longleftrightarrow x-t \rightarrow y\)
[TRACE_REFL]
\(\vdash \forall E\). TRACE \(E \in E\)
[TRACE_rule0]
\(\vdash \forall x\). TRACE \(x \in x\)
[TRACE_rule1]
```

\vdash}\forallx y y tz. x -h->y^ TRACE y t z\Longrightarrow TRACE x (h::t) z
[TRACE_rules]
\vdash(\forallx. TRACE x \epsilon x) ^
\forall h y t z. x -h->y^ TRACE y tz\Longrightarrow TRACE x (h::t) z
[TRACE_strongind]
\vdash}\forallP\mathrm{ .
(\forallx. P x \epsilon x) ^
(}\forallxhytz
x-h->y^ TRACE y tz^P y tz\LongrightarrowPx(h::t)z)\Longrightarrow
\forallxly.TRACE x l y \LongrightarrowPxly
[TRACE_trans]
\vdash}\forallxmy.TRACE x m y \Longrightarrow\forallnz. TRACE y n z\Longrightarrow TRACE x (m++ n) z
[TRACE_trans_applied]
\vdash
TRACE E xs E E ^ TRACE E E ys E
[TRANS_IN_NODES]
\vdash
[UNIQUE_LABEL_cases1]
\vdash}\foralll xs
UNIQUE_LABEL (label l) ( }\tau::xs)\Longleftrightarrow\mathrm{ UNIQUE_LABEL (label l) xs
[UNIQUE_LABEL_cases2]
\vdash}\foralll l' xs
UNIQUE_LABEL (label l) (label l'::xs) \Longleftrightarrow
(l = l') ^ NO_LABEL xs
[UNIQUE_LABEL_IMP_MEM]
\vdash}\forallu L. UNIQUE_LABEL u L\Longrightarrow MEM u L
[UNIQUE_LABEL_NOT_NULL]
\vdash \forallu L. UNIQUE_LABEL }uL\Longrightarrow \negNULL L
[WEAK_TRANS_AND_STEP]
\vdash}\forallEu\mp@subsup{E}{}{\prime}.E=u=>\mp@subsup{E}{}{\prime}\Longrightarrow\existsn.STEP E n E'

```
[WEAK_TRANS_AND_TRACE]
```

$\vdash \forall E u E^{\prime}$.
$E=u \Rightarrow E^{\prime} \Longleftrightarrow$
$\exists$ us.
TRACE $E$ us $E^{\prime} \wedge \neg$ NULL us $\wedge$
if $u=\tau$ then NO_LABEL $u s$ else UNIQUE_LABEL $u$ us

```
[WEAK_TRANS_IN_NODES]
\[
\vdash \forall p q u \cdot p=u \Rightarrow q \Longrightarrow q \in \operatorname{NODES} p
\]
[WEAK_TRANS_Reach]
\(\vdash \forall p q u . p=u \Rightarrow q \Longrightarrow\) Reach \(p q\)
[WEAK_TRANS_TRACE]
\(\vdash \forall E u E^{\prime} . E=u \Rightarrow E^{\prime} \Longrightarrow \exists x s\). TRACE \(E\) xs \(E^{\prime}\)

\subsection*{9.12 Expansion Theory}

Built: 08 Dicembre 2017
Parent Theories: Trace, Congruence

\subsection*{9.12.1 Definitions}
```

[expands_def]
\vdash(expands) =
(\lambda a a a a .
\exists expands'.
expands'}\mp@subsup{a}{0}{\prime}\mp@subsup{a}{1}{}
\foralla a al.
expands' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}
(}\foralll\mathrm{ .
(\forallE E.
a}0\mathrm{ -label l}->\mp@subsup{E}{1}{}
\existsE2.a, a -label l->E E2 ^ expands' E1 E E ) ^
\forallE.
a
\exists}\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}=l\mathrm{ label }l=>\mp@subsup{E}{1}{}\wedge \mp@subsup{expands'}{}{\prime}\mp@subsup{E}{1}{}\mp@subsup{E}{2}{})
(}\forall\mp@subsup{E}{1}{}\mathrm{ .
a}0-\tau->\mp@subsup{E}{1}{}
expands' E1 a
\forallE2. a }\mp@subsup{a}{1}{}-\tau->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}=\tau=>\mp@subsup{E}{1}{}\wedge\mathrm{ expands' E1 E E )

```

\section*{[EXPANSION]}
```

$\vdash \forall E x p$.
EXPANSION Exp $\Longleftrightarrow$
$\forall E E^{\prime}$.
$\operatorname{Exp} E E^{\prime} \Longrightarrow$
( $\forall l$.
$\left(\forall E_{1}\right.$.
$E$-label $l \rightarrow E_{1} \Longrightarrow$
$\exists E_{2} . E^{\prime}$-label $\left.l \rightarrow E_{2} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
$\forall E_{2}$.
$E^{\prime}-$ label $l \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=$ label $\left.l \Rightarrow E_{1} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
( $\forall E_{1}$.
$\left.E-\tau \rightarrow E_{1} \Longrightarrow \operatorname{Exp} E_{1} E^{\prime} \vee \exists E_{2} \cdot E^{\prime}-\tau \rightarrow E_{2} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
$\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=\tau \Rightarrow E_{1} \wedge \operatorname{Exp} E_{1} E_{2}$

```

\subsection*{9.12.2 Theorems}
```

[COMP_EXPANSION]
\vdash Exp }\mp@subsup{\mp@code{Exp}}{2}{}
EXPANSION Exp
[EQ_IMP_expands]
\vdash}\forallE\mp@subsup{E}{}{\prime}.(E=\mp@subsup{E}{}{\prime})\LongrightarrowE\mathrm{ expands E'
[expands_AND_TRACE_label]
\vdash}\forallE E'
E expands E C }
*s l E .
TRACE E xs E1 ^ UNIQUE_LABEL (label l) xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{\prime}
TRACE E E xs' E}\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mathrm{ expands E}\mp@subsup{E}{2}{}
LENGTH }x\mp@subsup{s}{}{\prime}\leq\mathrm{ LENGTH xs ^ UNIQUE_LABEL (label l) xs'
[expands_AND_TRACE_tau]
\vdash}\forallE E'
E expands E' }
\foralls l E E.
TRACE E xs E E \ ^NO_LABEL xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}
TRACE E E xs' E E \ ^ E E expands E E }
LENGTH xs '

```
```

[expands_cases]
\vdash}\forall\mp@subsup{a}{0}{}\quad\mp@subsup{a}{1}{}
a}\mp@subsup{a}{0}{}\mathrm{ expands }\mp@subsup{a}{1}{}
* }\forall\mathrm{ .
(\forallE E.
a0}\mathrm{ -label l}->\mp@subsup{E}{1}{}
\existsE2. a ( - label l->E E2 ^ E1 expands E E ) ^
\forallE .
a
\exists E
(\forallE E .
a}0-\tau->\mp@subsup{E}{1}{}
E1 expands a
\forallE2. a
[expands_cases']
\vdash}\forallE E'
E expands E}\mp@subsup{E}{}{\prime}
(}\foralll\mp@subsup{E}{1}{}
E - label l->E 盾\Longrightarrow\existsE2. E' - label l->E E2^ E1 expands E E ) ^
(}\forall\mp@subsup{E}{1}{}\mathrm{ .
E-\tau-> E C \Longrightarrow
E1 expands E' }\mp@subsup{E}{}{\prime}\vee\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-\tau->\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mathrm{ expands E2) ^

```

```

[expands_coind]
\vdash expands'.
(\foralla a a al.
expands' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}
(}\foralll\mathrm{ .
(\forallE E.
a}0\mathrm{ -label l}->\mp@subsup{E}{1}{}
\existsE2. a ( - label l->E E2 ^ expands' E E E E ) ^
\forallE .
a
\existsE
(}\forall\mp@subsup{E}{1}{}
a}
expands' E E a

```

```

        \foralla a ar . expands' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}\Longrightarrow\mp@subsup{a}{0}{}\mathrm{ expands }\mp@subsup{a}{1}{
    [expands_EPS]
\vdash}\forallE\mp@subsup{E}{}{\prime}
E expands E' }
\forallE . EPS E E C \Longrightarrow\exists\mp@subsup{E}{2}{}. EPS E E E E2}^\mp@subsup{E}{1}{}\mathrm{ expands E E

```
```

[expands_EPS']
\vdash}\forallE\mp@subsup{E}{}{\prime}
E expands E E \Longrightarrow
\forallE2. EPS E E E C \Longrightarrow\existsE1. . EPS E E
[expands_IMP_WEAK_EQUIV]
\vdash}\forallPQ.P expands Q\Longrightarrow WEAK_EQUIV P Q
[expands_is_EXPANSION]
\vdash ~ E X P A N S I O N ~ ( e x p a n d s )
[expands_precongruence]
\vdash ~ p r e c o n g r u e n c e 1 ~ ( e x p a n d s )
[expands_PreOrder]
PreOrder (expands)
[expands_PRESD_BY_GUARDED_SUM]
\vdash\forallE E E Ellllll
E
a
[expands_PRESD_BY_PAR]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime}\quad\mp@subsup{E}{2}{}\quad\mp@subsup{E}{2}{\prime}
E1 expands }\mp@subsup{E}{1}{\prime}\wedge\mp@subsup{E}{2}{}\mathrm{ expands }\mp@subsup{E}{2}{\prime}\Longrightarrow\mp@subsup{E}{1}{}|\mp@subsup{E}{2}{}\mathrm{ expands }\mp@subsup{E}{1}{\prime}|\mp@subsup{E}{2}{\prime
[expands_REFL]
\vdash \forall x . x ~ e x p a n d s ~ x
[expands_reflexive]
reflexive (expands)
[expands_rules]
\vdash}\forallE E'
(}\foralll\mathrm{ .
(}\forall\mp@subsup{E}{1}{}
E - label l}->\mp@subsup{E}{1}{}
\existsE2. E' -label l->E E2}\wedge (E1 expands E E ) ^
\forall2.
E
\exists}\mp@subsup{E}{1}{}.E=label l=>\mp@subsup{E}{1}{}\wedge\mp@subsup{E}{1}{}\mathrm{ expands E E ) ^
(\forallE E .
E-\tau-> E C \Longrightarrow
E
(\forall\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-\tau->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}.E=\tau=>\mp@subsup{E}{1}{}\wedge\mp@subsup{E}{1}{}\mathrm{ expands E E2) }\Longrightarrow
E expands E'

```
```

[expands_SUBST_GCONTEXT]
\vdash}\forallPQ.P expands Q\Longrightarrow\forallE. GCONTEXT E\LongrightarrowEP expands E Q
[expands_SUBST_PREFIX]
\vdash}\forallE E'.E expands E' \Longrightarrow \forallu.u..E expands u..E'
[expands_SUBST_RELAB]
\vdash}\forallE\mp@subsup{E}{}{\prime}.E\mathrm{ expands E E ` }\Longrightarrowrf. relab E rf expands relab E rf
[expands_SUBST_RESTR]
\vdash \mp@code { \vdash E ~ E ' . ~ E ~ e x p a n d s ~ E ' ~ \Longrightarrow ~ \forall L . \nu ~ L ~ E ~ e x p a n d s ~ \nu L ~ E ' }
[expands_thm]
\vdash}\forallPQ.P expands Q\Longleftrightarrow\existsExp. Exp P Q^ EXPANSION Ex
[expands_TRANS]
\vdash \forall \mp@code { \vdash ~ y ~ z . ~ x ~ e x p a n d s ~ y ~ ^ ~ y ~ e x p a n d s ~ z \Longrightarrow x ~ e x p a n d s ~ z }
[expands_TRANS_action']
\vdash}\forallE E'
E expands E' \Longrightarrow
\forallu E2. E' -u-> E2 \Longrightarrow\existsE⿱亠䒑⿱日十
[expands_TRANS_label]
\vdash}\forallE E'
E expands E' }
\foralll E1.
E -label l->E E1 \Longrightarrow\existsE2. E' -label l->E E2\wedge E E expands E E
[expands_TRANS_label']
\vdash}\forallE E'
E expands E' }
\foralll E2.
E'
[expands_TRANS_tau]
\vdash}\forallE E'
E expands E' }
\forall El.

```

```

[expands_TRANS_tau']
\vdash}\forallE E'
E expands E' \Longrightarrow

```

```

[expands_transitive]
$\vdash$ transitive (expands)
[expands_WEAK_TRANS']
$\vdash \forall E \quad E^{\prime}$.
$E$ expands $E^{\prime} \Longrightarrow$
$\forall u E_{2} . E^{\prime}=u \Rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge E_{1}$ expands $E_{2}$
[expands_WEAK_TRANS_label]
$\vdash \forall E E^{\prime}$.
$E$ expands $E^{\prime} \Longrightarrow$
$\forall l E_{1}$.
$E=$ label $l \Rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}=$ label $l \Rightarrow E_{2} \wedge E_{1}$ expands $E_{2}$
[expands_WEAK_TRANS_tau]
$\vdash \forall E E^{\prime}$.
$E$ expands $E^{\prime} \Longrightarrow$
$\forall E_{1} . E=\tau \Rightarrow E_{1} \Longrightarrow \exists E_{2}$. EPS $E^{\prime} E_{2} \wedge E_{1}$ expands $E_{2}$
[EXPANSION_ALT]
$\vdash$ EXPANSION Exp $\Longleftrightarrow$
$\forall E E^{\prime}$.
$\operatorname{Exp} E E^{\prime} \Longrightarrow$
( $\forall l E_{1}$.
$E$-label $l \rightarrow E_{1} \Longrightarrow \exists E_{2} . E^{\prime}$-label $\left.l \rightarrow E_{2} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
$\left(\forall E_{1} . E-\tau \rightarrow E_{1} \Longrightarrow \operatorname{Exp} E_{1} E^{\prime} \vee \exists E_{2} . E^{\prime}-\tau \rightarrow E_{2} \wedge \operatorname{Exp} E_{1} E_{2}\right) \wedge$
$\forall u E_{2} . E^{\prime}-u \rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge E x p E_{1} E_{2}$
[EXPANSION_EPS]
$\vdash \forall E x p$.
EXPANSION $\operatorname{Exp} \Longrightarrow$
$\forall E E^{\prime}$.
$\operatorname{Exp} E E^{\prime} \Longrightarrow \forall E_{1}$. EPS $E E_{1} \Longrightarrow \exists E_{2}$. EPS $E^{\prime} E_{2} \wedge \operatorname{Exp} E_{1} E_{2}$
[EXPANSION_EPS']
$\vdash \forall$ Exp.
EXPANSION $\operatorname{Exp} \Longrightarrow$
$\forall E E^{\prime}$.
$\operatorname{Exp} E E^{\prime} \Longrightarrow \forall E_{2}$. EPS $E^{\prime} E_{2} \Longrightarrow \exists E_{1}$. EPS $E E_{1} \wedge \operatorname{Exp} E_{1} E_{2}$
[EXPANSION_IMP_WEAK_BISIM]
$\vdash \forall E x p$. EXPANSION Exp WEAK_BISIM Exp
[EXPANSION_SUBSET_expands]
$\vdash \forall E x p$. EXPANSION $E x p \Longrightarrow E x p$ RSUBSET (expands)

```
[EXPANSION_WEAK_TRANS']
```

    \(\vdash \forall E x p\).
        EXPANSION Exp \(\Longrightarrow\)
        \(\forall E E^{\prime}\).
            \(\operatorname{Exp} E E^{\prime} \Longrightarrow \forall u E_{2} . E^{\prime}=u \Rightarrow E_{2} \Longrightarrow \exists E_{1} . E=u \Rightarrow E_{1} \wedge \operatorname{Exp} E_{1} E_{2}\)
    ```
[IDENTITY_EXPANSION]
 \(\vdash\) EXPANSION (=)
[STRONG_BISIM_IMP_EXPANSION]
 \(\vdash \forall E x p\). STRONG_BISIM Exp \(\Longrightarrow\) EXPANSION Exp
[STRONG_EQUIV_IMP_expands]
 \(\vdash \forall P Q\). STRONG_EQUIv \(P Q \Longrightarrow P\) expands \(Q\)

\subsection*{9.13 Contraction Theory}

Built: 08 Dicembre 2017
Parent Theories: Expansion

\subsection*{9.13.1 Definitions}
```

[C_contracts]
C_contracts = CC (contracts)

```
[CONTRACTION]
\(\vdash \forall C o n\).
CONTRACTION Con \(\Longleftrightarrow\)
\(\forall E E^{\prime}\).
Con \(E E^{\prime} \Longrightarrow\)
(\(\forall l\).
(\(\forall E_{1}\).
\(E\)-label \(l \rightarrow E_{1} \Longrightarrow\)
\(\exists E_{2} . E^{\prime}-\) label \(\left.l \rightarrow E_{2} \wedge \operatorname{Con} E_{1} E_{2}\right) \wedge\) \(\forall E_{2}\).
\(E^{\prime}\)-label \(l \rightarrow E_{2} \Longrightarrow\) \(\exists E_{1} . E=\) label \(l \Rightarrow E_{1} \wedge\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \wedge\) (\(\forall E_{1}\). \(E-\tau \rightarrow E_{1} \Longrightarrow\) Con \(E_{1} E^{\prime} \vee \exists E_{2} . E^{\prime}-\tau \rightarrow E_{2} \wedge\) Con \(\left.E_{1} E_{2}\right) \wedge\) \(\forall E_{2} . E^{\prime}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1}\). EPS \(E E_{1} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)
```

[contracts_def]
f(contracts) =
(\lambda a a a al.
\exists contracts'.
contracts' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}
\foralla a al.
contracts' }\mp@subsup{a}{0}{}\quad\mp@subsup{a}{1}{}
* }\forall\mathrm{ l.
(\forallE E.
a}0\mathrm{ -label l}->\mp@subsup{E}{1}{}
\exists}\mp@subsup{E}{2}{}.\mp@subsup{a}{1}{}-l\mathrm{ label l}->\mp@subsup{E}{2}{}\wedge\mp@subsup{c}{contracts'}{\prime}\mp@subsup{E}{1}{}\mp@subsup{E}{2}{\prime})
\forall2.
a
\existsE . . a = label l=> E1 ^ WEAK_EQUIV E E E E ) ^
(}\forall\mp@subsup{E}{1}{}\mathrm{ .
a}0\mp@code{~
contracts' E E a a \vee
\exists}\mp@subsup{E}{2}{}.\mp@subsup{a}{1}{}-\tau->\mp@subsup{E}{2}{}\wedge\mp@subsup{c}{contracts'}{\prime}\mp@subsup{E}{1}{}\mp@subsup{E}{2}{\prime})
\forallE . . a }-\tau->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}\mathrm{ . EPS }\mp@subsup{a}{0}{}\mp@subsup{E}{1}{}\wedge\mathrm{ WEAK_EQUIV E E E E )
[OBS_contracts]
\vdash}\forallE E'
OBS_contracts E E E}
\forallu.
(\forall\mp@subsup{E}{1}{}.E-u->\mp@subsup{E}{1}{}\Longrightarrow\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-u->\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mathrm{ contracts E E ) ^}
\forall2. E' -u-> E2 \Longrightarrow\existsE . E =u=> E1 ^ WEAK_EQUIV E1 E E
[SUM_contracts]
\& SUM_contracts = ( }\lambdapq.\forallr.p+r contracts q + r

```

\subsection*{9.13.2 Theorems}
```

[C_contracts_IMP_SUM_contracts]
\vdashpq. C_contracts p q\Longrightarrow SUM_contracts p q
[C_contracts_precongruence]
\vdash precongruence C_contracts
[C_contracts_thm]
C_contracts = (\lambdagh.\forallc. CONTEXT c\Longrightarrowcg contracts ch)
[COARSEST_PRECONGR_THM]
\vdash}\forallpq
free_action p}^\mathrm{ free_action q }
(OBS_contracts pq\Longleftrightarrow SUM_contracts p q)

```
```

[COARSEST_PRECONGR_THM']

```
```

    \vdash}\forallpq
        free_action p}^\mathrm{ free_action q 
        (OBS_contracts pq\Longleftrightarrow \Longleftrightarrowr.p+r contracts q+r)
    [COMP_CONTRACTION]
\vdash \forallCon1 Con .
CONTRACTION Con ^ ^ CONTRACTION Con 2 \Longrightarrow
CONTRACTION (Con2 O Con
[CONTRACTION_EPS]
\vdash Con.
CONTRACTION Con \Longrightarrow
| E'.

```

```

[CONTRACTION_EPS']
\vdash Con.
CONTRACTION Con \Longrightarrow
| E'.
Con E E C}
\forallu E2. EPS E E E E \Longrightarrow\existsE1. EPS E E E ^ \EAK_EQUIV E E E E
[CONTRACTION_SUBSET_contracts]
\vdash Con. CONTRACTION Con \Longrightarrow Con RSUBSET (contracts)
[CONTRACTION_WEAK_TRANS_label']
\vdash Con.
CONTRACTION Con \Longrightarrow
| E E
Con E E C}
\foralll E2.
E

```

```

[contracts_AND_TRACE1]
\vdash}\forallE E'
E contracts E' \Longrightarrow
*s El.
TRACE E xs E E C

```

```

[contracts_AND_TRACE2]
f \forallE E'.
E contracts E C \Longrightarrow
\forallss El.
TRACE E xs E E C
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{\prime}
TRACE E E xs' E E \ ^ E1 contracts E E2}
LENGTH xs'
[contracts_AND_TRACE_label]
\vdash}\forallE E'
E contracts E C \Longrightarrow
\foralls l E .
TRACE E xs E E ^ UNIQUE_LABEL (label l) xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}\mathrm{ .
TRACE E E xs' E E \ ^ E contracts E E2 ^
LENGTH xs' }\leq LENGTH xs ^ UNIQUE_LABEL (label l) xs'
[contracts_AND_TRACE_tau]
\vdash}\forallE E'
E contracts E' \Longrightarrow
*s E1.
TRACE E xs E E ^ NO_LABEL xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}\mathrm{ .
TRACE E' xs' E E \ ^ E E contracts E E2 ^
LENGTH xs'
[contracts_cases]
\vdash}\forall\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}
a}\mp@code{contracts }\mp@subsup{a}{1}{}
(}\foralll\mathrm{ .
(}\forall\mp@subsup{E}{1}{}
a}0\mathrm{ -label l}->\mp@subsup{E}{1}{}
\existsE2. a ( - label l->E E2 ^ E1 contracts E E ) ^
* E.
a
\exists}\mp@subsup{E}{1}{}.\mp@subsup{a}{0}{}=label l=>\mp@subsup{E}{1}{}\wedge\mathrm{ WEAK_EQUIV E E E E 2 ) ^
(\forallE E .
a}
E1 contracts a a \vee \existsE 2. a a -\tau-> E2^ 庳 contracts E E ) ^
\forallE2. a }\mp@subsup{a}{1}{}-\tau->\mp@subsup{E}{2}{}\Longrightarrow\exists\mp@subsup{E}{1}{}.\mathrm{ EPS }\mp@subsup{a}{0}{}\mp@subsup{E}{1}{}\wedge\mathrm{ WEAK_EQUIV }\mp@subsup{E}{1}{}\mp@subsup{E}{2}{
[contracts_coind]
\forall contracts'.
(\forall\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}.
contracts' }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}

```
\((\forall l\).
(\(\forall E_{1}\).
\(a_{0}\)-label \(l \rightarrow E_{1} \Longrightarrow\)
\(\exists E_{2} . a_{1}\)-label \(l \rightarrow E_{2} \wedge\) contracts \(\left.^{\prime} E_{1} E_{2}\right) \wedge\)
\(\forall E_{2}\).
\(a_{1}\)-label \(l \rightarrow E_{2} \Longrightarrow\)
\(\exists E_{1} . a_{0}=\) label \(l \Rightarrow E_{1} \wedge\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \wedge\) (\(\forall E_{1}\).
\(a_{0}-\tau \rightarrow E_{1} \Longrightarrow\)
contracts \({ }^{\prime} E_{1} a_{1} \vee\)
\(\exists E_{2} . a_{1}-\tau \rightarrow E_{2} \wedge\) contracts \(\left.E_{1} E_{2}\right) \wedge\)
\(\forall E_{2} . a_{1}-\tau \rightarrow E_{2} \Longrightarrow \exists E_{1}\). EPS \(a_{0} E_{1} \wedge\) WEAK_EQUIV \(\left.E_{1} E_{2}\right) \Longrightarrow\)
\(\forall a_{0} a_{1}\). contracts \({ }^{\prime} a_{0} a_{1} \Longrightarrow a_{0}\) contracts \(a_{1}\)

\section*{[contracts_EPS]}
\(\vdash \forall E E^{\prime}\).
\(E\) contracts \(E^{\prime} \Longrightarrow\)
\(\forall E_{1}\). EPS \(E E_{1} \Longrightarrow \exists E_{2}\). EPS \(E^{\prime} E_{2} \wedge E_{1}\) contracts \(E_{2}\)
[contracts_EPS']
\(\vdash \forall E E^{\prime}\).
\(E\) contracts \(E^{\prime} \Longrightarrow\)
\(\forall E_{2}\). EPS \(E^{\prime} E_{2} \Longrightarrow \exists E_{1}\). EPS \(E E_{1} \wedge\) WEAK_EQUIV \(E_{1} E_{2}\)
[contracts_IMP_WEAK_EQUIV]
\(\vdash \forall P Q . P\) contracts \(Q \Longrightarrow\) WEAK_EQUIV \(P Q\)
[contracts_is_CONTRACTION]
\(\vdash\) CONTRACTION (contracts)
[contracts_precongruence]
\(\vdash\) precongruence1 (contracts)
[contracts_PreOrder]
\(\vdash\) PreOrder (contracts)
[contracts_PRESD_BY_GUARDED_SUM]
\(\vdash \forall E_{1} E_{1}^{\prime} E_{2} E_{2}^{\prime} a_{1} a_{2}\).
\(E_{1}\) contracts \(E_{1}^{\prime} \wedge E_{2}\) contracts \(E_{2}^{\prime} \Longrightarrow\) \(a_{1} \ldots E_{1}+a_{2} \ldots E_{2}\) contracts \(a_{1} \ldots E_{1}^{\prime}+a_{2} \ldots E_{2}^{\prime}\)
[contracts_PRESD_BY_PAR]
\(\vdash \forall E_{1} E_{1}^{\prime} E_{2} E_{2}^{\prime}\).
\(E_{1}\) contracts \(E_{1}^{\prime} \wedge E_{2}\) contracts \(E_{2}^{\prime} \Longrightarrow\) \(E_{1} \| E_{2}\) contracts \(E_{1}^{\prime} \| E_{2}^{\prime}\)
```

[contracts_PROP6]
\vdash\forallE E'.E contracts E' \Longrightarrow \forallu. OBS_contracts (u..E) (u..E')
[contracts_REFL]
\vdash \forall x . x ~ c o n t r a c t s ~ x
[contracts_reflexive]
reflexive (contracts)
[contracts_rules]
\vdash}\forallE E'
(}\foralll\mathrm{ .
(\forall E1.
E -label l-> E1 \Longrightarrow
\existsE2. E' -label l->E E2 ^ E1 contracts E E ) ^
\forallE.
E' -label l->E E2 \Longrightarrow
\exists}\mp@subsup{E}{1}{}.E=label l=>\mp@subsup{E}{1}{}\wedge\mathrm{ WEAK_EQUIV E1 E E ) \
(\forallE E .
E-\tau-> E C \Longrightarrow
E1 contracts E}\mp@subsup{E}{}{\prime}\vee\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-\tau->\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mathrm{ contracts E E ) ^
(\forall\mp@subsup{E}{2}{}. E E}-\tau->\mp@subsup{E}{2}{\prime}\Longrightarrow\exists\mp@subsup{E}{1}{}. EPS E E E1 ^ WEAK_EQUIV E E1 E2)
E contracts E'
[contracts_SUBST_GCONTEXT]
\vdash}\forallPQ.P\mathrm{ contracts }Q\Longrightarrow\forallE.GCONTEXT E\LongrightarrowE P contracts E Q
[contracts_SUBST_PAR_L]
\vdash \vdash \forall E E ^ { \prime } . E contracts E' \Longrightarrow \forall E ^ { \prime \prime } . E ^ { \prime \prime } \| E contracts E'\| \| E ^ { \prime }
[contracts_SUBST_PAR_R]
\vdash}\forallE\mp@subsup{E}{}{\prime}.E\mathrm{ contracts E' }\Longrightarrow\forall\mp@subsup{E}{}{\prime\prime}.E|\mp@subsup{E}{}{\prime\prime}\mathrm{ contracts E'| | E'
[contracts_SUBST_PREFIX]
\vdash \forall E ~ E ' . E ~ c o n t r a c t s ~ E ~ C ~ \Longrightarrow ~ \forall u . u . . E ~ c o n t r a c t s ~ u . . E ' \
[contracts_SUBST_RELAB]
\vdash}\forallE\mp@subsup{E}{}{\prime}.E\mathrm{ contracts E E >
[contracts_SUBST_RESTR]
\vdash \| E E ^ { \prime } . E contracts E E ^ { \prime } \Longrightarrow \forall L . \nu L E ~ c o n t r a c t s ~ \nu L ~ E ~ E '
[contracts_thm]
\vdash}\forallPQ.P\mathrm{ contracts }Q\Longleftrightarrow\exists\mathrm{ Con. Con P Q^ CONTRACTION Con

```
```

[contracts_TRANS]
\vdash}\forallxyz.x contracts y^y contracts z\Longrightarrowx contracts z
[contracts_TRANS_label]
f}\forallE E'
E contracts E' \Longrightarrow
\foralll E1.

```

```

[contracts_TRANS_label']
\vdash}\forallE E '.
E contracts E' \Longrightarrow
\foralll E2.
E' -label l->E E2\Longrightarrow\existsE . E =label l=> E1 ^ WEAK_EQUIV E1 E E
[contracts_TRANS_tau]
\vdash}\forallE E'
E contracts E' \Longrightarrow
\forallE .
E-\tau-> E1 \Longrightarrow
E1 contracts E' }\mp@subsup{E}{}{\prime}\vee\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-\tau->\mp@subsup{E}{2}{}\wedge\mp@subsup{E}{1}{}\mathrm{ contracts E}\mp@subsup{E}{2}{
[contracts_TRANS_tau']
\vdash}\forallE E'
E contracts E' \Longrightarrow

```

```

[contracts_transitive]
\vdash ~ t r a n s i t i v e ~ ( c o n t r a c t s )
[contracts_WEAK_TRANS_label]
\vdash \forallE E'.
E contracts E C C
\foralll E1.
E =label l=> E1 \Longrightarrow \existsE E2. E' =label l=> E2 ^ E E contracts E E
[contracts_WEAK_TRANS_label']
f}\forallE E'
E contracts E' \Longrightarrow
\foralll E2.

```

```

[contracts_WEAK_TRANS_tau]
\vdash}\forallE E'
E contracts E C \Longrightarrow
\forallE1. E =\tau=> E1 \Longrightarrow\existsE E2. EPS E E E E ^ E contracts E E

```
```

[contracts_WEAK_TRANS_tau']
f \forallE E'.
E contracts E' \Longrightarrow
\foralll E2. E' =\tau=> E2 \Longrightarrow\existsE1. EPS E E1 ^ WEAK_EQUIV E1 E E
[expands_IMP_contracts]
\vdashPQ.P expands Q\LongrightarrowP contracts Q
[EXPANSION_IMP_CONTRACTION]
\vdash \forall C o n . ~ E X P A N S I O N ~ C o n ~ \Longrightarrow ~ C O N T R A C T I O N ~ C o n
[IDENTITY_CONTRACTION]
\&CONTRACTION (=)
[OBS_contracts_AND_TRACE_label]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\foralls l E . .
TRACE E xs E E ^ UNIQUE_LABEL (label l) xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{}\mathrm{ .
TRACE E E xs' E2
LENGTH xs' }\leq\mathrm{ LENGTH xs ^ UNIQUE_LABEL (label l) xs'
[OBS_contracts_AND_TRACE_tau]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
*s l E . .
TRACE E xs E E ^ NO_LABEL xs \Longrightarrow
\existsx\mp@subsup{s}{}{\prime}}\mp@subsup{E}{2}{\prime}
TRACE E E xs' E E \ ^ E contracts E E2 ^
LENGTH }x\mp@subsup{s}{}{\prime}\leq\mathrm{ LENGTH xs ^ NO_LABEL }x\mp@subsup{s}{}{\prime
[OBS_contracts_BY_CONTRACTION]
\vdash Con.
CONTRACTION Con \Longrightarrow
| E'.
(\forallu.
(\forall\mp@subsup{E}{1}{}.E-u->\mp@subsup{E}{1}{}\Longrightarrow\exists\mp@subsup{E}{2}{}.\mp@subsup{E}{}{\prime}-u->\mp@subsup{E}{2}{}\wedgeCon E E E E ) ^
\forall2. . E' -u-> E2 \Longrightarrow\existsE . E =u=> E1 ^ Con E1 E E ) \Longrightarrow
OBS_contracts E E'
[OBS_contracts_EPS']
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forallE2. EPS E' E E2 \Longrightarrow\exists\mp@subsup{E}{1}{}. EPS E E E ^ WEAK_EQUIV E E E E

```
```

[OBS_contracts_IMP_C_contracts]
\vdash \forall p q . ~ O B S \_ c o n t r a c t s ~ p ~ q \Longrightarrow ~ C \_ c o n t r a c t s ~ p ~ q ~
[OBS_contracts_IMP_contracts]
\vdash}\forallE E'. OBS_contracts E E E \LongrightarrowE contracts E'
[OBS_contracts_IMP_OBS_CONGR]
\vdash \mp@code { \vdash E ~ E ' . ~ O B S _ c o n t r a c t s ~ E ~ E ' ~ \Longrightarrow ~ O B S _ C O N G R ~ E ~ E ' }
[OBS_contracts_IMP_SUM_contracts]
\vdash \forall p q . ~ O B S \_ c o n t r a c t s ~ p ~ q \Longrightarrow ~ S U M \_ c o n t r a c t s ~ p ~ q ~
[OBS_contracts_IMP_WEAK_EQUIV]
\vdash}\forallE E'. OBS_contracts E E E WEAK_EQUIV E E'
[OBS_contracts_IMP_WEAK_EQUIV']
\vdash}\forallE E'. OBS_contracts E E' \Longrightarrow WEAK_EQUIV E E'
[OBS_contracts_precongruence]
precongruence OBS_contracts
[OBS_contracts_PreOrder]
FPreOrder OBS_contracts
[OBS_contracts_PRESD_BY_PAR]
\vdash\forall\mp@subsup{E}{1}{}}\mp@subsup{E}{1}{\prime}\mp@subsup{E}{2}{2}\mp@subsup{E}{2}{\prime}
OBS_contracts E E E E1}^^\mathrm{ OBS_contracts E2 E E C
OBS_contracts ( }\mp@subsup{E}{1}{}|\mp@subsup{E}{2}{\prime})(\mp@subsup{E}{1}{\prime}|\mp@subsup{E}{2}{\prime}
[OBS_contracts_PRESD_BY_SUM]
\vdash}\forall\mp@subsup{E}{1}{}\mp@subsup{E}{1}{\prime}\mp@subsup{E}{2}{2}\mp@subsup{E}{2}{\prime}
OBS_contracts E E E El
OBS_contracts ( }\mp@subsup{E}{1}{}+\mp@subsup{E}{2}{})(\mp@subsup{E}{1}{\prime}+\mp@subsup{E}{2}{\prime}
[OBS_contracts_REFL]
\vdash}\forallE\mathrm{ . OBS_contracts E E
[OBS_contracts_SUBST_CONTEXT]
\vdash}\forallPQ
OBS_contracts P Q \Longrightarrow
\forall . CONTEXT E O OBS_contracts ( }EP\mathrm{ ) ( }E\mathrm{ Q )

```
```

[OBS_contracts_SUBST_PAR_L]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forall\mp@subsup{E}{}{\prime\prime}. OBS_contracts ( }\mp@subsup{E}{}{\prime\prime}|E)(\mp@subsup{E}{}{\prime\prime}|\mp@subsup{E}{}{\prime}
[OBS_contracts_SUBST_PAR_R]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forallE'|. OBS_contracts (E| | E') ( }\mp@subsup{E}{}{\prime}||\mp@subsup{E}{}{\prime\prime}
[OBS_contracts_SUBST_PREFIX]
\vdash \forall E ~ E ' . ~ O B S \_ c o n t r a c t s ~ E ~ E ~ \ ~ \Longrightarrow ~ \forall u . ~ O B S \_ c o n t r a c t s ~ ( u . . E ) ~ ( u . . E ' )
[OBS_contracts_SUBST_RELAB]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forallrf. OBS_contracts (relab E rf) (relab E' rf)
[OBS_contracts_SUBST_RESTR]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow \forallL. OBS_contracts (\nu L E) (\nu L E')
[OBS_contracts_SUBST_SUM_L]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forall\mp@subsup{E}{}{\prime\prime}. OBS_contracts ( }\mp@subsup{E}{}{\prime\prime}+E)(\mp@subsup{E}{}{\prime\prime}+\mp@subsup{E}{}{\prime}
[OBS_contracts_SUBST_SUM_R]
\vdash}\forallE E'
OBS_contracts E E C
\forall'\prime}\mathrm{ . OBS_contracts (E + E') (E E + E')
[OBS_contracts_TRANS]
\vdash}\forallE E' E'|
OBS_contracts E E E ^ OBS_contracts E E E'|}
OBS_contracts E E'
[OBS_contracts_TRANS_LEFT]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forall E E . E -u-> E1 \Longrightarrow\existsE2. E'
[OBS_contracts_TRANS_RIGHT]
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forallu E2. E' -u-> E2\Longrightarrow\exists\mp@subsup{E}{1}{}.E=u=> E1 ^ WEAK_EQUIV E E E E

```
```

[OBS_contracts_WEAK_TRANS']
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\forallu E 2. E' =u=> E2 \Longrightarrow\existsE . E =u=> E1 ^ WEAK_EQUIV E1 E E
[OBS_contracts_WEAK_TRANS_label']
\vdash}\forallE E'
OBS_contracts E E' \Longrightarrow
\foralll E2.

```

```

[SUM_contracts_IMP_OBS_contracts]
\vdash \forallp q.
free_action p ^ free_action q\Longrightarrow
SUM_contracts p q\Longrightarrow
OBS_contracts p q

```

\subsection*{9.14 UniqueSolutions Theory}

Built: 08 Dicembre 2017
Parent Theories: Contraction, BisimulationUpto

\subsection*{9.14.1 Theorems}
```

[GSEQ_EPS_lemma]
\vdash \forallE PQR H.
SG E ^ GSEQ E ^ WEAK_EQUIV P (E P) ^ WEAK_EQUIV Q (E Q) ^

```

```

    (}\forall\mp@subsup{P}{}{\prime}\mathrm{ .
        EPS (H P) P' }
        \exists}\mp@subsup{Q}{}{\prime}
                EPS (H Q) Q ' ^(WEAK_EQUIV O R O WEAK_EQUIV) P' Q () ^
    \forall}\mp@subsup{Q}{}{\prime}\mathrm{ .
        EPS (H Q) Q C
        \exists P' EPS (H P) P'^(WEAK_EQUIV O R O WEAK_EQUIV) P' Q'
    [OBS_unfolding_lemma1]
\vdash}\forallE C P.
CONTEXT E ^ CONTEXT C ^ OBS_contracts P (E P) \Longrightarrow
\foralln. OBS_contracts (C P) (( }C\circ\mathrm{ FUNPOW E n) P)
[OBS_unfolding_lemma2]
\vdash}\forallE\mathrm{ .
WG E\Longrightarrow
\forall u P'.
E P -u-> P' \Longrightarrow
\exists\mp@subsup{C}{}{\prime}. CONTEXT C'^(P}\mp@subsup{C}{}{\prime}=\mp@subsup{C}{}{\prime}P)\wedge\forallQ.E Q -u->\mp@subsup{C}{}{\prime}

```
```

[OBS_unfolding_lemma3]
$\vdash \forall C E$.
CONTEXT $C \wedge$ WG $E \Longrightarrow$
$\forall P x P^{\prime}$.
$C$ ( $E P$ ) $-x \rightarrow P^{\prime} \Longrightarrow$
$\exists C^{\prime}$. CONTEXT $C^{\prime} \wedge\left(P^{\prime}=C^{\prime} P\right) \wedge \forall Q . C(E \quad Q)-x \rightarrow C^{\prime} Q$
[OBS_unfolding_lemma4]
$\vdash \forall C E n x s P^{\prime} P$.
CONTEXT $C \wedge$ WG $E \wedge$ TRACE ( $(C \circ$ FUNPOW $E n) P$ ) xs $P^{\prime} \wedge$
LENGTH $x s \leq n \Longrightarrow$
$\exists C^{\prime}$.
CONTEXT $C^{\prime} \wedge\left(P^{\prime}=C^{\prime} P\right) \wedge$
$\forall Q$. TRACE ( $(C \circ$ FUnPow $E n) Q$ ) $x s\left(C^{\prime} Q\right)$
[OBS_UNIQUE_SOLUTIONS]
$\vdash \forall E$.
SG $E \wedge$ SEQ $E \Longrightarrow$
$\forall P Q$. OBS_CONGR $P(E P) \wedge$ OBS_CONGR $Q(E Q) \Longrightarrow$ OBS_CONGR $P Q$
[OBS_UNIQUE_SOLUTIONS_LEMMA]
$\vdash \forall G$.
SG $G \wedge \operatorname{SEQ} G \Longrightarrow$
$\forall P a P^{\prime}$.
$G P-a \rightarrow P^{\prime} \Longrightarrow$
$\exists H$.
$\operatorname{SEQ} H \wedge((a=\tau) \Longrightarrow \operatorname{SG} H) \wedge\left(P^{\prime}=H P\right) \wedge \forall Q . G Q-a \rightarrow H Q$
[OBS_UNIQUE_SOLUTIONS_LEMMA_EPS]
$\vdash \forall G$.
SG $G \wedge \operatorname{SEQ} G \Longrightarrow$
$\forall P P^{\prime}$.
EPS ( $G P$ ) $P^{\prime} \Longrightarrow$
$\exists H . \operatorname{SG} H \wedge \operatorname{SEQ} H \wedge\left(P^{\prime}=H P\right) \wedge \forall Q$. EPS $\left(\begin{array}{ll}G & Q\end{array}\right)\left(\begin{array}{ll}H & Q\end{array}\right.$
[STRONG_UNIQUE_SOLUTIONS]
$\vdash \forall E$.
WG $E \Longrightarrow$
$\forall P Q$.
STRONG_EQUIV $P(E P) \wedge$ STRONG_EQUIV $Q(E \quad Q) \Longrightarrow$
STRONG_EQUIV $P$ Q
[STRONG_UNIQUE_SOLUTIONS_LEMMA]
$\vdash \forall E$.
WG $E \Longrightarrow$
$\forall P$ a $P^{\prime}$.
$E P-a \rightarrow P^{\prime} \Longrightarrow$
$\exists E^{\prime}$. CONTEXT $E^{\prime} \wedge\left(P^{\prime}=E^{\prime} P\right) \wedge \forall Q . E Q-a \rightarrow E^{\prime} Q$

```
```

[unfolding_lemma1]
\vdash}\forallECP
GCONTEXT E ^ GCONTEXT C ^ P contracts E P\Longrightarrow
\foralln.C P contracts ( }C\circ\mathrm{ FUNPOW E n) P
[unfolding_lemma1']
\vdash \E C P.
GCONTEXT E ^ GCONTEXT C ^ P expands E P\Longrightarrow
\foralln.C P expands ( }C\circ\mathrm{ FUNPOW E n) P
[unfolding_lemma2]
\vdash}\forallE\mathrm{ .
WGS E\Longrightarrow
\forall u P'.
E P-u-> P' \Longrightarrow
\existsC'. GCONTEXT C'^((P)}=\mp@subsup{C}{}{\prime}P)\wedge\forallQ.E Q -u->C C'
[unfolding_lemma3]
\vdash}\forallCE
GCONTEXT C ^ WGS E \Longrightarrow
\forallP x P'.
C (E P) -x-> P' \Longrightarrow
\existsC'.GCONTEXT C'^((P)}=\mp@subsup{C}{}{\prime}P)\wedge\forallQ.C(EQ)-x->\mp@subsup{C}{}{\prime}
[unfolding_lemma4]
\vdash}\forallCEn xs P'P
GCONTEXT C ^ WGS E ^ TRACE ((C \circ FUNPOW E n) P) xs P'^
LENGTH xs \leq n \Longrightarrow
\exists}\mp@subsup{C}{}{\prime}\mathrm{ .
GCONTEXT C' ^ ( (P' = C' P) ^
\forallQ. TRACE ((C ० FUNPOW E n) Q) xs ( }\mp@subsup{C}{}{\prime}Q
[UNIQUE_SOLUTIONS_OF_CONTRACTIONS]
\vdash}\forallE\mathrm{ .
WGS E\Longrightarrow
\forallPQ. P contracts E P ^ Q contracts E Q WEAK_EQUIV P Q
[UNIQUE_SOLUTIONS_OF_CONTRACTIONS_LEMMA]
\vdash}\forallPQ
(\existsE.WGS E ^ P contracts E P ^ Q contracts E Q) \Longrightarrow
\forall}\mathrm{ .
GCONTEXT C \Longrightarrow
(}\foralllR\mathrm{ .
C P =label l=>R\Longrightarrow
\exists}\mp@subsup{C}{}{\prime}\mathrm{ .
GCONTEXT C'^R contracts }\mp@subsup{C}{}{\prime}P

```
```

                (WEAK_EQUIV O ( }\lambdaxy.x=label l=>y))(\begin{array}{ll}{C}&{Q}\end{array})(\begin{array}{l}{\mp@subsup{C}{}{\prime}}\end{array}|))
    \forallR.
C P=\tau=> R\Longrightarrow
\exists}\mp@subsup{C}{}{\prime}
GCONTEXT }\mp@subsup{C}{}{\prime}\wedgeR\mathrm{ contracts }\mp@subsup{C}{}{\prime}P
(WEAK_EQUIV O EPS) ( }C\quadQ\mathrm{ ) ( }\mp@subsup{C}{}{\prime}Q
[UNIQUE_SOLUTIONS_OF_EXPANSIONS]
\vdash \forall \mp@code { F }
WGS E \Longrightarrow
\forallP Q. P expands E P\wedgeQ expands E Q \# WEAK_EQUIV P Q
[UNIQUE_SOLUTIONS_OF_EXPANSIONS']
\vdash \forall E .
WGS E \Longrightarrow
\forallPQ. P expands E P\wedgeQ expands E Q WEAK_EQUIV P Q
[UNIQUE_SOLUTIONS_OF_EXPANSIONS_LEMMA]
\vdash}\forallPQ
( }\existsE.\mathrm{ WGS }E\wedgeP\mathrm{ expands }EP\wedgeQ expands E Q)
\forall}\mathrm{ .
GCONTEXT C\Longrightarrow
(}\foralllR
C P =label l}=>R
\exists}\mp@subsup{C}{}{\prime}\mathrm{ .
GCONTEXT C C ^ R expands C}\mp@subsup{C}{}{\prime}P
(WEAK_EQUIV O ( }\lambdax\quady.x=label l=>y)) (l C Q ) ( C' Q ) ) ^
\forallR.
C P=\tau=> R\Longrightarrow
\exists}\mp@subsup{C}{}{\prime}
GCONTEXT }\mp@subsup{C}{}{\prime}\wedgeR\mathrm{ expands }\mp@subsup{C}{}{\prime}P
(WEAK_EQUIV O EPS) ( }C\quadQ)(\mp@subsup{C}{}{\prime}Q
[UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS]
\vdash \forall \mp@code { F }
WG E\Longrightarrow
\forallP Q.
OBS_contracts P (E P) ^ OBS_contracts Q (E Q ) \Longrightarrow
WEAK_EQUIV P Q
[UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS']
\vdash}\forallE\mathrm{ .
WGS E \Longrightarrow
\forallPQ.
OBS_contracts P(E P) ^ OBS_contracts Q (E Q ) \Longrightarrow
WEAK_EQUIV P Q

```

\section*{[UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS_LEMMA]}
\(\vdash \forall P Q\).
\(\quad(\exists E\). WG \(E \wedge\) OBS_contracts \(P(E P) \wedge\) OBS_contracts \(Q(E Q)) \Longrightarrow\) \(\forall C\).

CONTEXT \(C \Longrightarrow\)
(\(\forall l\) R.
\(C P=\) label \(l \Rightarrow R \Longrightarrow\)
\(\exists C^{\prime}\).
CONTEXT \(C^{\prime} \wedge R\) contracts \(C^{\prime} P \wedge\)
(WEAK_EQUIV \(0(\lambda x y . x=\) label \(l \Rightarrow y))\left(\begin{array}{ll}C & \left.\left.()^{\prime} Q\right)\right) \wedge\end{array} C^{\prime} Q\right.\)
\(\forall R\).
\(C P=\tau \Rightarrow R \Longrightarrow\) \(\exists C^{\prime}\).
CONTEXT \(C^{\prime} \wedge R\) contracts \(C^{\prime} P \wedge\) (WEAK_EQUIV 0 EPS) \(\left(\begin{array}{ll}C & Q\end{array}\right)\left(C^{\prime} Q\right)\)
[WEAK_UNIQUE_SOLUTIONS]
\(\vdash \forall E\).
\(\operatorname{SG} E \wedge \operatorname{GSEQ} E \Longrightarrow\)
\(\forall P Q\).
WEAK_EQUIV \(P(E P) \wedge\) WEAK_EQUIV \(Q(E \quad Q) \Longrightarrow\) WEAK_EQUIV \(P Q\)
[WEAK_UNIQUE_SOLUTIONS_LEMMA]
\(\vdash \forall G\).
SG \(G \wedge\) GSEQ \(G \Longrightarrow\)
\(\forall P a P^{\prime}\).
\(G P-a \rightarrow P^{\prime} \Longrightarrow\)
\(\exists H\).
GSEQ \(H \wedge((a=\tau) \Longrightarrow \operatorname{SG} H) \wedge\left(P^{\prime}=H P\right) \wedge\) \(\forall Q . G \quad Q-a \rightarrow H \quad Q\)
[WEAK_UNIQUE_SOLUTIONS_LEMMA_EPS]
\(\vdash \forall G\).
SG \(G \wedge\) GSEQ \(G \Longrightarrow\) \(\forall P P^{\prime}\).

EPS (\(G P\)) \(P^{\prime} \Longrightarrow\)
\(\exists H . \operatorname{SG} H \wedge\) GSEQ \(H \wedge\left(P^{\prime}=H P\right) \wedge \forall Q\). EPS \(\left(\begin{array}{ll}G & Q\end{array}\right)\left(\begin{array}{ll}H & Q\end{array}\right)\)

\section*{Bibliography}
[1] Gordon, M.: From LCF to HOL: a short history. Proof, language, and interaction (July 2000)
[2] Milner, R.: Communication and concurrency. (1989)
[3] Sangiorgi, D.: Equations, contractions, and unique solutions. In: ACM SIGPLAN Notices. Volume 50., ACM (2015) 421-432
[4] Gorrieri, R., Versari, C.: Introduction to Concurrency Theory. Transition Systems and CCS. Springer, Cham (September 2015)
[5] Keller, R.M.: Formal verification of parallel programs. Communications of the Association for Computing Machinery 19(7) (1976) 371-384
[6] Gorrieri, R.: Process Algebras for Petri Nets. Springer (2017)
[7] Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes. Cambridge university press (2003)
[8] Bengtson, J.: Formalising process calculi. PhD thesis, Acta Universitatis Upsaliensis (2010)
[9] Nesi, M.: A formalization of the process algebra CCS in high order logic. Technical report, University of Cambridge, Computer Laboratory (1992)
[10] Milner, R.: Operational and algebraic semantics of concurrent processes. Handbook of Theoretical Comput. Sci. (1990)
[11] Nesi, M.: Formalising a Value-Passing Calculus in HOL. Formal Aspects of Computing 11(2) (1999) 160-199
[12] Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co) datatypes for higher-order logic: Category theory applied to theorem proving. In: Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium on, IEEE (2012) 596-605
[13] Gordon, M.J.: Edinburgh LCF: a mechanised logic of computation. (1979)
[14] : The HOL System LOGIC. http://sourceforge.net/projects/hol/files/ hol/kananaskis-11/kananaskis-11-logic.pdf/download (November 2016) 1-45
[15] Melham, T.F.: Automating Recursive Type Definitions in Higher Order Logic. In: Current Trends in Hardware Verification and Automated Theorem Proving. Springer New York, New York, NY (1989) 341-386
[16] Melham, T.F.: The HOL pred_sets Library. (February 1992) 1-29
[17] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press (April 2002)
[18] Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press (October 2011)
[19] Melham, T.F.: A Package For Inductive Relation Definitions In HOL. In: 1991., International Workshop on the HOL Theorem Proving System and Its Applications, IEEE (1991) 350-357
[20]: The HOL System DESCRIPTION. (March 2017) 1-349
[21] van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. Lecture notes in computer science \(\mathbf{3 8 3 8}\) (2005) 26-39
[22] Tian, C.: Further Formalization of the Process Algebra CCS in HOL4. arXiv.org, https://arxiv.org/abs/1707. 04894 (July 2017)
[23] Sangiorgi, D., Milner, R.: The problem of "Weak Bisimulation up to". CONCUR'92 (1992)
[24] Sangiorgi, D., Milner, R.: The problem of âĂIJweak bisimulation up toâĂ̇̇. In: CONCUR'92, Springer (1992) 32-46
[25] Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29(8) (1992) 737-760

\section*{Index}

BisimulationUpto Theory, 201
Definitions, 202
OBS_BISIM_UPTO,202
STRONG_BISIM_UPTO, 202
WEAK_BISIM_UPTO, 202
WEAK_BISIM_UPTO_ALT,203
Theorems, 203
CONVERSE_OBS_BISIM_UPTO, 203
CONVERSE_STRONG_BISIM_UPTO, 203
CONVERSE_WEAK_BISIM_UPTO, 204 CONVERSE_WEAK_BISIM_UPTO_lemma, 204
CONVERSE_WEAK_BISIM_UPTO_lemma', 204
IDENTITY_OBS_BISIM_UPTO, 204
IDENTITY_STRONG_BISIM_UPTO, 204
IDENTITY_STRONG_BISIM_UPTO lemma, 204
IDENTITY_WEAK_BISIM_UPTO, 204
IDENTITY_WEAK_BISIM_UPTO_lemma, 204
IDENTITY_WEAK_BISIM_UPTO_lemma', 204
OBS_BISIM_UPTO_EPS, 204
OBS_BISIM_UPTO_EPS', 205
OBS_BISIM_UPTO_THM, 205
OBS_BISIM_UPTO_TRANS, 205
OBS_BISIM_UPTO_TRANS',205
OBS_BISIM_UPTO_WEAK_TRANS label, 205
OBS_BISIM_UPTO_WEAK_TRANS_- TRANS_label', 209

CCS Theory, 137
Datatypes, 137
Definitions, 137
ALL_IDENTICAL_def, 137
ALL_PROC_def, 137
Apply_Relab_def, 137
BN_def, 137
bound_names_def, 138
BV_def, 138
CCS_Subst1_def, 138
CCS_Subst2_def, 138
CCS_Subst_def, 138
COMPL_ACT_def, 139
COMPL_LAB_def, 139
DELETE_ELEMENT_def, 139
free_names_def, 139
FV_def, 139
IS_PROC_def, 139
Is_Relabeling_def, 139
RELAB_def, 139
relabel_def, 139
Relabeling_ISO_DEF, 139
Relabeling_TY_DEF, 140
size_def, 140
TRANS_def, 140
Theorems, 140
Action_11, 140
Action_distinct, 140
Action_distinct_label, 140
Action_induction, 141
Action_nchotomy, 141
Action_no_tau_is_Label, 141
Apply_Relab_COMPL_THM, 141
APPLY_RELAB_THM, 141
CCS_caseeq, 141
CCS_COND_CLAUSES, 141
CCS_distinct', 141
CCS_Subst_rec, 142
CCS_Subst_var, 142
COMPL_COMPL_ACT, 142
COMPL_COMPL_LAB, 142
COMPL_THM, 143
coname_COMPL, 143
DELETE_ELEMENT_APPEND,

143
DELETE_ELEMENT_FILTER, 143
EVERY_DELETE_ELEMENT,143
EXISTS_Relabeling, 143
FN_def, 143
FN_ind, 143
FN_UNIV1, 144
FN_UNIV2, 144
IS_LABEL_def, 144
IS_-RELABĒLING, 144
Label_caseeq, 144
LABEL_def, 144
Label_distinct', 144
Label_not_eq, 144
Label_not_eq', 144
LENGTH_DELETE_ELEMENT_LE, 144
LENGTH_DELETE_ELEMENT_LEQ, 144
NIL_NO_TRANS, 144
NIL_NO_TRANS_EQF, 144
NOT_IN_DELETE_ELEMENT, 145
PAR1, 145
PAR2, 145
PAR3, 145
PAR_cases, 145
PAR_cases_EQ, 145
PREFIX, 145
REC, 145
REC_cases, 145
REC_cases_EQ, 146
RELAB_cases, 146
RELAB_cases_EQ, 146
Relab_label, 146
RELAB_NIL_NO_TRANS, 146
Relab_tau, 146
RELABELING, 146
REP_Relabeling_THM, 146
RESTR, 146
RESTR_cases, 147
RESTR_cases_EQ, 147
RESTR_LABEL_NO_TRANS, 147
RESTR_NIL_NO_TRANS, 147
SUM1, 147

SUM2, 147
SUM_cases, 147
SUM_cases_EQ, 147
TRANS_ASSOC_EQ, 147
TRANS_ASSOC_RL, 147
TRANS_cases, 148
TRANS_COMM_EQ, 148
TRANS_IMP_NO_NIL, 148
TRANS_IMP_NO_NIL', 148
TRANS_IMP_NO_RESTR_NIL, 148
TRANS_ind, 148
TRANS_P_RESTR, 149
TRANS_P_SUM_P, 149
TRANS_P_SUM_P_EQ, 149
TRANS_PAR, 149
TRANS_PAR_EQ, 149
TRANS_PAR_NO_SYNCR, 149
TRANS_PAR_P_NIL, 149
TRANS_PREFIX, 149
TRANS_PREFIX_EQ, 149
TRANS_REC, 150
TRANS_REC_EQ, 150
TRANS_RELAB, 150
TRANS_RELAB_EQ, 150
TRANS_RELAB labl, 150
TRANS_RESTR, 150
TRANS_RESTR_EQ, 150
TRANS_RESTR_NO_NIL, 150
TRANS_rules, 151
TRANS_strongind, 151
TRANS_SUM, 152
TRANS_SUM_EQ, 152
TRANS_SUM_EQ', 152
TRANS_SUM_NIL, 152
TRANS_SUM_NIL_EQ, 152
VAR_NO_TRANS, 152
CoarsestCongr Theory, 198
Definitions, 199
free_action_def, 199
KLOP _def, 199
SUM_EQUIV, 199
WEAK_CONGR, 199
Theorems, 199

COARSEST_CONGR_FINITE, 199
COARSEST_CONGR_LR, 199
COARSEST_CONGR_RL, 199
COARSEST_CONGR_THM,199
DENG_LEMMA, 199
HENNESSY_LEMMA, 199
HENNESSY_LEMMA_LR, 200
HENNESSY_LEMMA_RL, 200
INFINITE_EXISTS_LEMMA, 200
K0_NO_TRANS, 200
KLOP_def_compute, 200
KLOP_LEMMA_FINITE, 200
KLOP_ONE_ONE, 200
KLOP_PROP0, 200
KLOP_PROP1, 200
KLOP_PROP1', 201
KLOP_PROP1_LR, 201
KLOP_PROP1_RL, 201
KLOP_PROP2, 201
KLOP_PROP2', 201
OBS_CONGR_IMP_WEAK_CONGR, 201
PROP3_COMMON, 201
TAU_STRAT, 201
WEAK_CONGR_congruence, 201
WEAK_CONGR_IMP_SUM_EQUIV, 201
WEAK_CONGR_THM, 201
Congruence Theory, 180
Definitions, 181
CC_def, 181
congruence1_def, 181
congruence_def, 181
CONTEXT_def, 181
GCC_def, 181
GCONTEXT_def, 181
GSEQ_def, 182
OH_CONTEXT_def, 182
precongruence1_def, 182
precongruence_def, 182
SEQ_def, 182
SG_def, 183
weakly_guarded1_def, 183
weakly_guarded_def, 183

WG_def, 183
WGS_def, 184
Theorems, 184
CC_congruence, 184
CC_is_coarsest, 184
CC_is_coarsest', 184
CC_is_finer, 184
CC_precongruence, 184
CONTEXT1, 184
CONTEXT2, 184
CONTEXT3, 184
CONTEXT3a, 184
CONTEXT4, 185
CONTEXT5, 185
CONTEXT6, 185
CONTEXT7, 185
CONTEXT_cases, 185
CONTEXT_combin, 185
CONTEXT_ind, 185
CONTEXT_rules, 185
CONTEXT _strongind, 186
CONTEXT_WG_combin, 186
GCONTEXT1, 186
GCONTEXT2, 186
GCONTEXT3, 186
GCONTEXT3a, 186
GCONTEXT4, 186
GCONTEXT5, 186
GCONTEXT6, 186
GCONTEXT7, 186
GCONTEXT_cases, 187
GCONTEXT_combin, 187
GCONTEXT_ind, 187
GCONTEXT_IS_CONTEXT,187
GCONTEXT_rules, 187
GCONTEXT_strongind, 188
GCONTEXT_WGS_combin, 188
GSEQ1, 188
GSEQ2, 188
GSEQ3, 188
GSEQ3a, 188
GSEQ4, 188
GSEQ_cases, 188
GSEQ_combin, 189

GSEQ_ind, 189
GSEQ_IS_CONTEXT, 189
GSEQ_rules, 189
GSEQ_strongind, 189
OBS_CONGR_congruence, 189
OBS_CONGR_SUBST_CONTEXT, 189
OBS_CONGR_SUBST_SEQ,189
OH_CONTEXT1,189
OH_CONTEXT2, 189
OH_CONTEXT3, 190
OH_CONTEXT4, 190
OH_CONTEXT5, 190
OH_CONTEXT6, 190
OH_CONTEXT7, 190
OH_CONTEXT8, 190
OH_CONTEXT_cases, 190
OH_CONTEXT_combin, 190
OH_CONTEXT_ind, 190
OH_CONTEXT_IS_CONTEXT, 191
OH_CONTEXT_rules, 191
OH_CONTEXT _strongind, 191
SEQ1, 191
SEQ2, 191
SEQ3, 192
SEQ3a, 192
SEQ4, 192
SEQ_cases, 192
SEQ_combin, 192
SEQ_ind, 192
SEQ_IS_CONTEXT, 192
SEQ_rules, 192
SEQ_strongind, 192
SG1, 192
SG10, 193
SG11, 193
SG11', 193
SG2, 193
SG3, 193
SG4, 193
SG5, 193
SG6, 193
SG7, 193

SG8, 193
WGS_strongind, 198
SG9, 193
SG_cases, 193
SG_GSEQ_combin, 194
SG_GSEQ_strong_induction, 194
SG_IMP_WG, 194
SG_ind, 194
SG_IS_CONTEXT, 194
SG_rules, 194
SG_SEQ_combin, 195
SG_SEQ_strong_induction, 195
SG_strongind, 195
STRONG_EQUIV _congruence, 195
STRONG_EQUIV_SUBST_CON-
TEXT, 195
WEAK_EQUIV_congruence, 195
WEAK_EQUIV_SUBST_GCON-
TEXT, 195
WEAK_EQUIV_SUBST_GSEQ, 195
WG1, 195
WG2, 196
WG3, 196
WG4, 196
WG5, 196
WG6, 196
WG7, 196
WG_cases, 196
WG_ind, 196
WG_IS_CONTEXT, 196
WG_rules, 196
WG_strongind, 197
WGS1, 197
WGS2, 197
WGS3, 197
WGS4, 197
WGS5, 197
WGS6, 197
WGS7, 197
WGS_cases, 197
WGS_ind, 198
WGS_IS_CONTEXT, 198
WGS_IS_GCONTEXT, 198
WGS_rules, 198
Contraction Theory, 222
Definitions, 222
C_contracts, 222
CONTRACTION, 222
contracts_def, 223
OBS_contracts, 223
SUM_contracts, 223
Theorems, 223
C_contracts_IMP _SUM_contracts, 223
C_contracts_precongruence, 223
C_contracts_thm, 223
COARSEST_PRECONGR_THM, 223
COARSEST_PRECONGR_THM', 224
COMP_CONTRACTION, 224
CONTRACTION_EPS, 224
CONTRACTION_EPS', 224
CONTRACTION_SUBSET_contracts, 224
CONTRACTION_WEAK_TRANS_label', 224
contracts_AND_TRACE1,224
contracts_AND_TRACE2, 225
contracts_AND_TRACE_label, 225
contracts_AND_TRACE_tau, 225
contracts_cases, 225
contracts_coind, 225
contracts_EPS, 226
contracts_EPS', 226
contracts_IMP_WEAK_EQUIV,226
contracts_is_CONTRACTION, 226
contracts_precongruence, 226
contracts_PreOrder, 226
contracts_PRESD_BY_GUARDED_SUM, 226
contracts_PRESD_BY_PAR, 226
contracts_PROP6, 227
contracts_REFL, 227
contracts_reflexive, 227
contracts_rules, 227
contracts_SUBST_GCONTEXT,227
contracts_SUBST_PAR_L, 227
contracts_SUBST_PAR_R, 227
contracts_SUBST_PREFIX, 227
contracts_SUBST_RELAB, 227
contracts_SUBST_RESTR, 227
contracts_thm, 227
contracts_TRANS, 228
contracts_TRANS_label, 228
contracts_TRANS_label', 228
contracts_TRANS_tau, 228
contracts_TRANS_tau', 228
contracts_transitive, 228
contracts_WEAK_TRANS_label, 228
contracts_WEAK_TRANS_label', 228
contracts_WEAK_TRANS_tau, 228
contracts_WEAK_TRANS_tau',229
expands_IMP _contracts, 229
EXPANSION_IMP _CONTRACTION, 229
IDENTITY_CONTRACTION, 229
OBS_contracts_AND_TRACE_label, 229
OBS_contracts_AND_TRACE_tau, 229
OBS_contracts_BY_CONTRACTION, 229
OBS_contracts_EPS', 229
OBS_contracts_IMP _C_contracts,Expansion Theory, 216 230
OBS_contracts_IMP _contracts, 230
OBS_contracts_IMP_OBS_CONGR, 230
OBS_contracts_IMP _SUM_contracts,

OBS_contracts_IMP_WEAK_EQUIV, 230
OBS contracts IMP WEAK EQUIV', 230
OBS_contracts_precongruence, 230
OBS_contracts_PreOrder, 230
OBS_contracts_PRESD_BY_PAR, 230

OBS_contracts_PRESD_BY_SUM, 230
OBS_contracts_REFL, 230
OBS_contracts_SUBST_CONTEXT, 230
OBS_contracts_SUBST_PAR_L, 231
OBS_contracts_SUBST_PAR_R, 231
OBS_contracts_SUBST_PREFIX, 231
OBS_contracts_SUBST_RELAB, 231
OBS_contracts_SUBST_RESTR, 231
OBS_contracts_SUBST_SUM_L, 231
OBS_contracts_SUBST_SUM_R, 231
OBS contracts TRANS, 231
OBS_contracts_TRANS_LEFT, 231
OBS_contracts_TRANS_RIGHT, 231
OBS_contracts_WEAK_TRANS', 232
OBS_contracts_WEAK_TRANS_label', 232
SUM_contracts_IMP _OBS_contracts, 232

Definitions, 216
expands_def, 216
EXPANSION, 217
Theorems, 217
COMP_EXPANSION, 217
EQ_IMP_expands, 217
expands_AND_TRACE_label, 217
expands_AND_TRACE_tau, 217
expands_cases, 218
expands_cases', 218
expands_coind, 218
expands_EPS, 218
expands_EPS', 219
expands_IMP_WEAK_EQUIV,219
expands is EXPANSION, 219
expands_precongruence, 219
expands_PreOrder, 219
expands_PRESD_BY_GUARDED _SUM, 219
expands_PRESD_BY_PAR, 219
expands_REFL, 219
expands_reflexive, 219
expands_rules, 219
expands_SUBST_GCONTEXT, 220
expands_SUBST_PREFIX, 220
expands_SUBST_RELAB, 220
expands_SUBST_RESTR, 220
expands_thm, 220
expands_TRANS, 220
expands_TRANS_action', 220
expands_TRANS_label, 220
expands_TRANS_label', 220
expands_TRANS_tau, 220
expands_TRANS_tau', 220
expands_transitive, 221
expands_WEAK_TRANS', 221
expands_WEAK_TRANS_label, 221
expands_WEAK_TRANS_tau, 221
EXPANSION_ALT, 221
EXPANSION EPS, 221
EXPANSION_EPS', 221
EXPANSION_IMP_WEAK_BISIM, 221
EXPANSION_SUBSET_expands, 221
EXPANSION_WEAK_TRANS', 222
IDENTITY_EXPANSION, 222
STRONG_BISIM_IMP_EXPANSION, 222
STRONG_EQUIV_IMP _expands, 222

ObsCongr Theory, 175
Definitions, 175
OBS_CONGR, 175
Theorems, 176
EQUAL_IMP_OBS_CONGR, 176 OBS_CONGR_BY_WEAK_BISIM, 176

OBS_CONGR_EPS, 176
OBS_CONGR_EPS', 176
OBS_CONGR_equivalence, 176
OBS CONGR IMP WEAK EQUIV, 176
OBS_CONGR_PRESD_BY_PAR, 176
OBS_CONGR_PRESD_BY_SUM, 176
OBS_CONGR_REFL, 176
OBS_CONGR_SUBST_PAR_L, 176
OBS_CONGR_SUBST_PAR_R, 177
OBS_CONGR_SUBST_PREFIX, 177
OBS_CONGR_SUBST_RELAB, 177
OBS_CONGR_SUBST_RESTR, 177
OBS_CONGR_SUBST_SUM_L, 177
OBS_CONGR_SUBST_SUM_R, 177
OBS_CONGR_SYM, 177
OBS_CONGR_TRANS, 177
OBS_CONGR_TRANS_LEFT,177
OBS_CONGR_TRANS_RIGHT, 177
OBS_CONGR_WEAK_TRANS, 177
OBS_CONGR_WEAK_TRANS', 177
PROP6, 177
STRONG_IMP_OBS_CONGR, 177
WEAK_EQUIV_STABLE_IMP _CONGR, 177
ObsCongrLaws Theory, 178
Theorems, 178
OBS_EXPANSION_LAW, 178
OBS_PAR_ASSOC, 178
OBS_PAR_COMM, 178
OBS_PAR_IDENT_L, 178
OBS_PAR_IDENT_R, 178
OBS_PAR_PREF_NO_SYNCR, 178

OBS_PAR_PREF_SYNCR, 178
OBS_PAR_PREF_TAU, 179
OBS_PAR_TAU_PREF, 179
OBS_PAR_TAU_TAU, 179
OBS_PREF_REC_EQUIV, 179
OBS_RELAB_NIL, 179
OBS_RELAB_PREFIX, 179
OBS_RELAB_SUM, 179
OBS_RESTR_NIL, 179
OBS_RESTR_PR_LAB_NIL, 179
OBS_RESTR_PREFIX_LABEL, 179
OBS_RESTR_PREFIX_TAU,179
OBS_RESTR_SUM, 179
OBS_SUM_ASSOC_L, 180
OBS_SUM_ASSOC_R, 180
OBS_SUM_COMM, 180
OBS_SUM_IDEMP, 180
OBS_SUM_IDENT_L, 180
OBS_SUM_IDENT_R, 180
OBS_UNFOLDING, 180
TAU1, 180
TAU2, 180
TAU3, 180
WEAK_TAU1, 180
WEAK_TAU2, 180
WEAK_TAU3, 180
StrongEQ Theory, 152
Definitions, 152
STRONG_BISIM_def, 152
STRONG_EQUIV_def, 152
STRONG_SIM_def, 152
Theorems, 153
COMP_STRONG_BISIM, 153
CONVERSE_STRONG_BISIM, 153
EQUAL_IMP_STRONG_EQUIV, 153
IDENTITY_STRONG_BISIM, 153
PROPERTY_STAR, 153
PROPERTY_STAR_LEFT, 153
PROPERTY_STAR_RIGHT,153
STRONG_BISIM, 153
STRONG_BISIM_SUBSET_STRONG EQUIV, 153

STRONG_EQUIV, 153
STRONG_EQUIV_cases, 154
STRONG_EQUIV_coind, 154
STRONG_EQUIV_equivalence, 154
STRONG_EQUIV_IS_STRONG_BISIM, 154
STRONG_EQUIV_PRESD_BY_PAR, 154
STRONG_EQUIV_PRESD_BY_SUM, 154
STRONG_EQUIV_REFL, 154
STRONG_EQUIV_rules, 154
STRONG_EQUIV_SUBST_PAR_L, 155
STRONG_EQUIV_SUBST_PAR_R, 155
STRONG_EQUIV_SUBST_PREFIX, 155
STRONG_EQUIV_SUBST_RELAB, 155
STRONG_EQUIV_SUBST_RESTR, 155
STRONG_EQUIV_SUBST_SUM_L, 155
STRONG_EQUIV_SUBST_SUM_R, 155
STRONG_EQUIV_SYM, 155
STRONG_EQUIV_TRANS, 155
UNION_STRONG_BISIM, 155
StrongLaws Theory, 155
Definitions, 156
ALL_SYNC_def, 156
CCS_COMP_def, 156
CCS_SIGMA_def, 156
Is_Prefix_def, 156
PREF_ACT_def, 156
PREF_PROC_def, 156
SYNC_def, 156
Theorems, 156
ALL_SYNC_BASE, 156
ALL_SYNC_def_compute, 157
ALL_SYNC_INDUCT, 157
ALL_SYNC_TRANS_THM, 157
ALL_SYNC_TRANS_THM_EQ,

157
CCS_COMP_def_compute, 157
CCS_SIGMA_def_compute, 158
COMP_BASE, 158
COMP_INDUCT, 158
PREF_IS_PREFIX, 158
SIGMA_BASE, 158
SIGMA_INDUCT, 158
SIGMA_TRANS_THM, 158
SIGMA_TRANS_THM_EQ, 158
STRONG_EXPANSION_LAW,158
STRONG_LEFT_SUM_MID_IDEMP, 158
STRONG_PAR_ASSOC, 159
STRONG_PAR_COMM, 159
STRONG_PAR_IDENT_L, 159
STRONG_PAR_IDENT_R, 159
STRONG_PAR_PREF_- NO_SYNCR, 159
STRONG_PAR_PREF_SYNCR, 159
STRONG_PAR_PREF_TAU, 159
STRONG_PAR_TAU_PREF, 159
STRONG_PAR_TAU_TAU, 159
STRONG_PREF_REC_EQUIV, 159
STRONG_REC_ACT2, 160
STRONG_RELAB_NIL, 160
STRONG_RELAB_PREFIX, 160
STRONG_RELAB_SUM, 160
STRONG_RESTR_NIL, 160
STRONG_RESTR_PR_LAB_NIL, 160
STRONG_RESTR_PREFIX_LABEL, 160
STRONG_RESTR_PREFIX_TAU, 160
STRONG_RESTR_SUM, 160
STRONG_SUM_ASSOC_L, 160
STRONG_SUM_ASSOC_R, 160
STRONG_SUM_COMM, 160
STRONG_SUM_IDEMP, 161
STRONG_SUM_IDENT_L, 161
STRONG_SUM_IDENT_R, 161
STRONG_SUM_MID_IDEMP,161

STRONG_UNFOLDING, 161
SYNC_BASE, 161
SYNC_def_compute, 161
SYNC_INDUCT, 162
SYNC_TRANS_THM, 162
SYNC_TRANS_THM_EQ, 162
Trace Theory, 209
Definitions, 209
finite_state_def, 209
LRTC_DEF, 210
NO_LABEL_def, 210
NODES_def, 210
Reach_def, 210
STEP_def, 210
TRACE_def, 210
UNIQUE_LABEL_def, 210
Theorems, 210
EPS_AND_STEP, 210
EPS_AND_TRACE, 210
EPS_IN_NODES, 210
EPS_Reach, 210
EPS_TRACE, 211
LRTC_APPEND_CASES, 211
LRTC_CASES1, 211
LRTC_CASES2, 211
LRTC_CASES_LRTC_TWICE,211
LRTC_INDUCT, 211
LRTC_LRTC, 211
LRTC_NIL, 211
LRTC_ONE, 211
LRTC_REFL, 211
LRTC_RULES, 212
LRTC_SINGLE, 212
LRTC_STRONG_INDUCT, 212
LRTC_TRANS, 212
MORE_NODES, 212
NO_LABEL_cases, 212
Reach_cases1, 212
Reach_cases2, 212
Reach_ind, 212
Reach_ind_right, 212
Reach_NODES, 212
Reach_one, 213
Reach_self, 213

Reach_strongind, 213
Reach_strongind_right, 213
Reach_trans, 213
SELF_NODES, 213
STEP0, 213
STEP1, 213
STEP_ADD_E, 213
STEP_ADD_EQN, 213
STEP_ADD_I, 213
STEP_SUC, 213
STEP_SUC_LEFT, 213
TRACE1, 214
TRACE2, 214
TRACE_APPEND_cases, 214
TRACE_cases1,214
TRACE_cases2, 214
TRACE_cases_twice, 214
TRACE_ind, 214
TRACE_NIL, 214
TRACE_ONE, 214
TRACE_REFL, 214
TRACE_rule0, 214
TRACE_rule1, 215
TRACE_rules, 215
TRACE _strongind, 215
TRACE_trans, 215
TRACE_trans_applied, 215
TRANS_IN_NODES, 215
UNIQUE_LABEL_cases1, 215
UNIQUE_LABEL_cases2, 215
UNIQUE_LABEL_IMP_MEM,215
UNIQUE_LABEL_NOT_NULL, 215
WEAK_TRANS_AND_STEP,215
WEAK_TRANS_AND_TRACE, 216
WEAK_TRANS_IN_NODES,216
WEAK_TRANS_Reach, 216
WEAK_TRANS_TRACE, 216
UniqueSolutions Theory, 232
Theorems, 232
GSEQ_EPS_lemma, 232
OBS_unfolding_lemma1, 232
OBS_unfolding_lemma2, 232
OBS_unfolding_lemma3, 233

OBS_unfolding_lemma4, 233
OBS_UNIQUE_SOLUTIONS, 233
OBS_UNIQUE_SOLUTIONS_LEMMA, 233
OBS_UNIQUE_SOLUTIONS_LEMMA_EPS, 233
STRONG_UNIQUE_SOLUTIONS, 233
STRONG_UNIQUE_SOLUTIONS_LEMMA, 233
unfolding_lemma1, 234
unfolding_lemma1', 234
unfolding_lemma2, 234
unfolding_lemma3, 234
unfolding_lemma4, 234
UNIQUE_SOLUTIONS_OF_CONTRACTIONS, 234
UNIQUE_SOLUTIONS_OF_CONTRACTIONS_LEMMA, 234
UNIQUE_SOLUTIONS_OF_EXPANSIONS, 235
UNIQUE_SOLUTIONS_OF_EXPANSIONS', 235
UNIQUE_SOLUTIONS_OF_EXPANSIONS_LEMMA, 235
UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS, 235
UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS', 235
UNIQUE_SOLUTIONS_OF_OBS_CONTRACTIONS_LEMMA, 236
WEAK_UNIQUE_SOLUTIONS, 236
WEAK_UNIQUE_SOLUTIONS_LEMMA, 236
WEAK_UNIQUE_SOLUTIONS_LEMMA_EPS, 236

WeakEQ Theory, 162
Definitions, 162
EPS_def, 162
STABLE, 162
WEAK_BISIM_def, 162
WEAK_EQUIV_def, 163
WEAK_SIM_def, 163
WEAK_TRANS, 163
\begin{tabular}{|c|c|}
\hline Theorems, 163 & 167 \\
\hline COMP _WEAK_BISIM, 163 & TRANS_AND_EPS, 167 \\
\hline CONVERSE_WEAK_BISIM, 163 & TRANS_IMP_WEAK_TRANS, 167 \\
\hline EPS_AND_WEAK_TRANS, 163 & TRANS_TAU_AND_WEAK,167 \\
\hline EPS_cases, 163 & TRANS_TAU_IMP_EPS, 167 \\
\hline EPS_cases1, 164 & UNION_WEAK_BISIM, 167 \\
\hline EPS_cases2, 164 & WEAK_BISIM, 167 \\
\hline EPS_IMP_WEAK_TRANS, 164 & WEAK_BISIM_SUBSET_WEAK_- \\
\hline EPS_ind, 164 & EQUIV, 167 \\
\hline EPS_ind_right, 164 & WEAK_EQUIV, 167 \\
\hline EPS_INDUCT, 164 & WEAK_EQUIV_cases, 167 \\
\hline EPS_PAR, 164 & WEAK_EQUIV _coind, 168 \\
\hline EPS_PAR_PAR, 164 & WEAK_EQUIV_EPS, 168 \\
\hline EPS_REFL, 164 & WEAK_EQUIV_EPS', 168 \\
\hline EPS_RELAB, 164 & WEAK_EQUIV_equivalence, 168 \\
\hline EPS_RELAB_rf,164 & WEAK_EQUIV_IS_WEAK_BISIM, \\
\hline EPS_RESTR, 165 & 168 \\
\hline EPS_STABLE, 165 & WEAK_EQUIV_PRESD_BY_GUARDED_ \\
\hline EPS_STABLE', 165 & SUM, 168 \\
\hline EPS_strongind, 165 & WEAK_EQUIV_PRESD_BY_PAR, \\
\hline EPS_strongind_right, 165 & 168 \\
\hline EPS_TRANS, 165 & WEAK_EQUIV_PRESD_BY_SUM, \\
\hline EPS_TRANS_AUX, 165 & 168 \\
\hline EPS_TRANS_AUX_SYM, 165 & WEAK_EQUIV_REFL, 169 \\
\hline EPS_WEAK_EPS, 165 & WEAK_EQUIV_rules, 169 \\
\hline EQUAL_IMP_WEAK_EQUIV,165 & WEAK_EQUIV_SUBST_PAR_- \\
\hline IDENTITY_WEAK_BISIM, 165 & L, 169 \\
\hline INVERSE_REL, 166 & WEAK_EQUIV_SUBST_PAR_- \\
\hline ONE_TAU, 166 & R, 169 \\
\hline STABLE_cases, 166 & WEAK_EQUIV_SUBST_PREFIX, \\
\hline STABLE_NO_TRANS_TAU, 166 & 169 \\
\hline STABLE_NO_WEAK_TRANS_-
TAU, 166 & WEAK_EQUIV_SUBST_RELAB, 169 \\
\hline STRONG_EQUIV_EPS, 166 & WEAK_EQUIV_SUBST_RESTR, \\
\hline STRONG_EQUIV_EPS', 166 & 169 \\
\hline STRONG_EQUIV_WEAK_TRANS, 166 & \\
\hline STRONG_EQUIV_WEAK_TRANS', & WEAK_EQUIV_SYM, 169 \\
\hline 166 & WEAK_EQUIV_SYM', 169 \\
\hline STRONG_IMP_WEAK_BISIM, 166 & WEAK_EQUIV_TRANS, 170 \\
\hline STRONG_IMP_WEAK_EQUIV, & WEAK_EQUIV_TRANS_label, 170 \\
\hline 166 & WEAK_EQUIV_TRANS_label', 170 \\
\hline TAU_PREFIX_EPS, 166 & WEAK_EQUIV_TRANS_tau, 170 \\
\hline TAU_PREFIX_WEAK_TRANS, & WEAK_EQUIV_TRANS_tau', 170 \\
\hline
\end{tabular}

WEAK_EQUIV_WEAK_TRANS_label, 170
WEAK_EQUIV_WEAK_TRANS_label', 170
WEAK_EQUIV_WEAK_TRANS_tau, 170
WEAK_EQUIV_WEAK_TRANS_tau', 170
WEAK_PAR, 171
WEAK_PREFIX, 171
WEAK_PROPERTY_STAR, 171
WEAK_RELAB, 171
WEAK_RELAB_rf, 171
WEAK_RESTR_label, 171
WEAK_RESTR_tau, 171
WEAK_SUM1, 171
WEAK_SUM2, 172
WEAK_TRANS_AND_EPS,172
WEAK_TRANS_AUX, 172
WEAK_TRANS_AUX_SYM, 172
WEAK_TRANS_cases1, 172
WEAK_TRANS_cases2, 172
WEAK_TRANS_IMP_EPS, 172
WEAK_TRANS_STABLE, 172
WEAK_TRANS_TAU, 172
WEAK_TRANS_TAU_IMP_TRANS_TAU, 172
WeakLaws Theory, 173
Theorems, 173
TAU_WEAK, 173
WEAK_EQUIV_SUBST_SUM_-
\[
\mathrm{L}, 173
\]

WEAK_EXPANSION_LAW, 173
WEAK_PAR_ASSOC, 173
WEAK_PAR_COMM, 173
WEAK_PAR_IDENT_L, 173
WEAK_PAR_IDENT_R, 173
WEAK_PAR_PREF_NO_SYNCR, 173
WEAK_PAR_PREF_SYNCR, 174
WEAK_PAR_PREF_TAU, 174
WEAK_PAR_TAU_PREF, 174
WEAK_PAR_TAU_TAU, 174
WEAK_PREF_REC_EQUIV, 174```

[^0]: ${ }^{1}$ The author has also submited many bug reports and small Pull Requests to help improving HOL on this part. But still there're known issues which are not reported yet.

[^1]: ${ }^{1}$ According to Gorrieri's book [6, each process algebra has at least three different semantics: sequential semantic (LTS), parallel semantics (Step Transition System, STS) and distributed semantics (Petri nets).
 ${ }^{2}$ The author has recently found that, it's actually possible and meaningful to embed LTS into CCS as a special constructor, without hurting almost all existing theorems. However he has finaly

[^2]: decided to not include this work into the thesis, because such additions may decrease the purity of CCS formalization, making people think that certain theorems may not be provable without having LTS ranged over process variables.

[^3]: ${ }^{3}$ In the work of Monica Nesi on formalizing Value-Passing CCS [11], there're supports of infinite sums in the CCS datatype, however currently we don't know how it's actually implemented, as the related proof scripts are not available.

[^4]: ${ }^{4}$ https://github.com/HOL-Theorem-Prover/HOL
 5 https://www.isa-afp.org

[^5]: ${ }^{6}$ https://github.com/coq-contribs/ccs
 7 https://github.com/HOL-Theorem-Prover/HOL
 ${ }^{8}$ https://github.com/binghe/informatica-public/tree/master/thesis

[^6]: ${ }^{1}$ https://coq.inria.fr

[^7]: ${ }^{2}$ For example, one could take \mathcal{U} to consist of all non-empty sets in the von Neumann cumulative hierarchy formed before stage $\omega+\omega$.

[^8]: ${ }^{3}$ Thus it's possible the process diverges and goes into infinite loops. In HOL4, there're many other rewriting tacticals with slightly different features.

[^9]: ${ }^{4}$ the 3rd empty list indicates no other extra special rewriting theorems.

[^10]: ${ }^{1}$ In her later developments for Value-Passing CCS ([11]) such a limitation was removed, and one more type variable γ was introduced for the type of indexing set.

[^11]: ${ }^{2}$ However, syntactic relabeling is still considered as an "economic" way of doing relabeling, because having one native CCS operator will also introduce the corresponding SOS inference rules and equivalence laws.

[^12]: ${ }^{3}$ They're considered as the axioms in our logic system, however they're not defined directly as axioms. HOL makes sure in such cases the logic system is still consistent.

[^13]: ${ }^{4}$ If the internal proof constructed in the function is wrong, then the function won't return a theorem. But if the function successfully returns a theorem, the proof for this theorem must be correct, because there's no other way to return a theorem except for correctly proving it in HOL theorem prover.

[^14]: ${ }^{5}$ Well, HOL theorem prover itself, like any other software, contains bugs for sure, but the chances for HOL to produce fake theorems are very very low, although such a chance is not zero in theory. If we went further in this direction, PolyML (which compiles HOL's ML code into binary executions) may also contain bugs, so even HOL's code is correct it could still produce fake theorems. The final solution should be using formally verified ML implementations like CakeML to build HOL and other ML-based theorem provers to completely eliminate such concerns, but so far it has't reached such a perfect level. Another way to convince the audience is that, HOL can also output the primitive reasoning steps (using those eight primitive rules) behind each theorem, through its logging kernel (and OpenTheory formats), in theory these steps can be verify by other HOL-family theorem provers or just by hands. My professor (Roberto Gorrieri) ever commented that I trusted HOL just like how he trusted Concurrency Workbench (CWB), I think this is not fair!

[^15]: ${ }^{6}$ Whenever ASCII-based HOL proof scripts were directly pasted, please understand the letter "!" as \forall, and "?" as \exists. They're part of HOL's term syntax. [20]

[^16]: ${ }^{7}$ In HOL4's relationTheory, the relation types is curried: instead of having the same type " α reln" as the math definition, it has the type " $\alpha \rightarrow \alpha \rightarrow$ bool". And the star(*) notation is for defining RTCs.

[^17]: ${ }^{8}$ Actually it's not proven in the old work, the formal proofs that we did in this project is completely new.

[^18]: ${ }^{9}$ The induction theorem used here is EPS_ind_right.

[^19]: ${ }^{10}$ The original Deng lemma is for another kind of equivalence relation called rooted branching bisimularity, which is not touched in this project.

[^20]: ${ }^{13}$ The Symbol \sim here shouldn't be understood as strong equivalence.

[^21]: ${ }^{14}$ Even the CCS is finite branching, that's because after a weak transition, the end process may have an infinite τ-chain, and with each τ-transition added into the weak transition, the new end process is still a valid weak transition, thus lead to infinite number of weak transitions.
 ${ }^{15}$ And such infinite sums seems to go beyond the ability of the HOL's Datatype package

[^22]: ${ }^{16}$ There're multiple ways to prove this lemma, a simpler proof is to make a reverse mapping from B to the power set of A (or further use the Axiom of Choice (AC) to make a mapping from B to A), then the non-injectivity of this mapping will contradict the fact that all elements in the infinite set are distinct. Our proof doesn't need AC, and it relies on very simple truths about sets.

[^23]: ${ }^{17}$ https://github.com/binghe/informatica-public/tree/master/CCS2

[^24]: ${ }^{1}$ Such induction theorems are part of HOL's theorem relationTheory for RTCs (reflexive transitive closure). The proof of transitivity of observation congruence also heavily depends on this induction theorem, but in the work of Monica Nesi where the EPS relation is manually defined inductively, such an induction theorem is not available (and it's not easy to prove it), as a result Monica Nesi couldn't finish the proof for transitivity of observation congruence, which is incredible hard to prove without proving lemmas like WEAK_EQUIV_EPS first.

[^25]: ${ }^{1}$ Actually, even a trace may not be unique if we consider the possibility that, there're two different paths in the labeled transition system sharing the same initial and terminal nodes, also with the same intermediate action list. But to finish the proof we don't need to know the uniqueness at all.
 ${ }^{2}$ It's actually learnt from Robert Beers, an experienced HOL user. Now this definition has been added into HOL's listTheory with three common-used alternative definitions proved as equivalence theorems. This work was supported by Ramana Kumar, one of HOL maintainers.

[^26]: ${ }^{3}$ However, Prof. Sangiorgi also said (on Oct 10, 2017) in a private mail that, "Is the difference

