
Alma Mater Studiorum · University of Bologna

SCHOOL OF SCIENCE

Master Degree in Computer Science

RGB-D Object Recognition for

Deep Robotic Learning

Supervisor:

Prof. Davide Maltoni

Co-supervisor:

dott. Vincenzo Lomonaco

Candidate:

Martin Cimmino

Session II

Academic Year 2016/2017

To my dearest grandfathers Michele and Benito,

for always remembering me, through the story of their lives,

the value of ambition and humbleness.

Alma Mater Studiorum

Universitá di Bologna

Sommario

Scuola di Scienze

Laurea Magistrale in Informatica

titolo della

tesi dott. Martin Cimmino

Negli ultimi anni, il successo delle tecniche di Deep Learning in una grande varietà di

problemi sia nel contesto della visione artificiale che in quello dell’elaborazione del lin-

guaggio naturale [1] [2] ha contribuito all’applicazione di reti neurali artificiali profonde

a sistemi robotici. Al giorno d’oggi, nel campo della robotica, la ricerca sta applicando

tecniche di deep learning su sistemi robotici al fine di conseguire un apprendimento real-

time per tentativi.

Grazie all’utilizzo di sensori RGB-D per l’acquisizione dell’informazione di profondità

di una scena del mondo reale, i sistemi robotizzati stanno sempre più semplificando alcu-

ne delle sfide comuni nel campo della visione robotica e portando innovazione in diverse

applicazioni della robotica, ad esempio grasping.

Tuttavia, esistono molte strategie per trasformare l’informazione di profondità in

una rappresentazione facilmente usabile da una rete neurale artificiale profonda come la

Convolutional Neural Network (CNN). Nel contesto del riconoscimento oggetti RGB-D,

un’attività fondamentale per diverse applicazioni robotiche, data una CNN come modello

di apprendimento ed un dataset RGB-D, ci si chiede spesso quale sia la migliore strate-

gia di preprocessamento della profondità al fine di ottenere una migliore accuratezza di

classificazione. Un’altra domanda cruciale è se l’informazione di profondità incrementerà

ii

iii

in maniera notevole o meno l’accuratezza del classificatore.

Questa tesi è interessata a cercare di rispondere a queste domande chiave. In par-

ticolare, discutiamo e confrontiamo i risultati ottenuti dall’impiego di tre strategie di

preprocessamento dell’informazione di profondità, dove ognuna di queste strategie con-

duce ad uno specifico scenario di training. Questi scenari vengono valutati per mezzo

del dataset CORe50 RGB-D [3].

Infine, questa tesi prova che, nel contesto del riconoscimento oggetti, l’utilizzo dell’in-

formazione di profondità migliora significativamente l’accuratezza di classificazione. A

tal fine, dalla nostra analisi si evince che la precisione e completezza dell’informazione di

profondità ed eventualmente la sua strategia di segmentazione svolgono un ruolo fonda-

mentale. Inoltre, mostriamo che effettuare un training from scratch di una CNN (rispetto

ad un fine-tuning) può permettere di apprezzare miglioramenti notevoli dell’accuratezza.

Alma Mater Studiorum

University of Bologna

Abstract

School Of Science

Master Degree in Computer Science

titolo della

tesi dott. Martin Cimmino

In recent years, the success of Deep Learning techniques in a wide variety of problems

both in Computer Vision and Natural Language Processing [1] [2] has led to the ap-

plication of deep artificial neural networks to robotic systems. Nowadays, the robotics

research is applying deep learning techniques, by deploying them on a robot in order to

allow it to learn directly from trial-and-error.

By using RGB-D sensors to acquire also the depth information of a real-world scene,

robotic systems are greatly simplifying some common challenges in Robotic Vision and

enabling breakthroughs for several robotic applications, for instance grasping.

However, there are many strategies to transform the depth information into a repre-

sentation which can be easily used by a deep Convolutional Neural Network (CNN). In

the context of RGB-D Object Recognition which is a fundamental task for several robotic

applications,relatively little research has been done on training CNNs on RGB-D images

with the aim of detailed scene understanding. Indeed, it is often questioned which is the

best depth preprocessing strategy in order to achieve accuracy improvements. Another

important question is if the additional depth information will significantly increase clas-

sification accuracy or not.

iv

v

This dissertation is concerned about trying to answer these key questions. In partic-

ular, we discuss and compare results from three depth preprocessing strategies, where

each of them leads to a specific training scenario. These scenarios are evaluated on the

CORe50 RGB-D dataset [3].

In the end, this thesis proves that by exploiting depth information in object recogni-

tion, it is possible to improve significantly the classification accuracy. With this purpose

in mind, our analysis emphasizes the fact that precision and completeness of the depth

information and eventually, its segmentation strategy, play a central role. Furthermore,

we show that, training from scratch a CNN (respect fine-tuning) may lead to appreciate

greater accuracy improvements.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, professor Davide

Maltoni for accepting me as candidate, despite the fact that I was coming from a dif-

ferent degree course, and for helping me through the whole process of this dissertation

development: starting from providing me important hints on Computer Vision and Deep

Learning techniques, until the final review of this work.

I would like to thank my co-supervisor, PhD student Vincenzo Lomonaco, for giving

me useful insights during the experimental phase analysis and for bearing my several

questions, also during summer holidays. I have really appreciated his technical support

and enthusiasm for this research field.

My sincere thanks also goes to my family, who has always let me feel their support

and love. I am forever indebted to my parents for giving me the opportunities and ex-

periences that have made me who I am.

It is a pleasure to thank my friends for giving me the necessary distractions from my

studies, especially Matteo, Luca, Stefano and Monica. In particular, I am grateful to

Simone for conveying me the passion for Artificial Intelligence and Machine Learning.

I am also grateful to my friends and flatmates Matteo and Simone for having lived as a

family in these two years.

Last but not the least, I would like to thank my fellow students and labmates for the

stimulating discussions and entertaining me during all the academic years.

vi

Contents

Sommario ii

Abstract iv

Acknowledgements vi

Contents vii

List of Figures ix

List of Tables xi

Abbrevations xiii

Introduction 1

1 Background 3

1.1 Machine Learning . 3

1.1.1 Categories and tasks . 4

1.1.2 The importance of generalization 6

1.2 Computer Vision . 7

1.2.1 Image Processing . 9

1.2.2 Object Recognition . 11

1.2.3 Robotic Applications . 12

1.3 Artificial Neural Networks . 13

1.3.1 Feedforward Neural Network architecture 14

vii

CONTENTS viii

1.3.2 Backpropagation algorithm . 15

1.4 Deep Learning . 16

2 CNN for Object Recogntion 18

2.1 Digital images and convolution operations 18

2.2 Convolutional Neural Network: an overview 21

2.3 Layers used to build CNN . 22

2.3.1 Convolutional layer . 22

2.3.2 ReLU Layer . 24

2.3.3 Pooling layer . 24

2.3.4 Fully connected layer . 25

2.4 CNN architecture . 26

2.5 CNN training . 27

2.5.1 Gradient descent . 28

2.5.2 Training strategies . 29

2.6 Visualizing and understanding deep CNN 30

2.6.1 Dataset-centric approach . 30

2.6.2 Network-centric approach . 31

3 CORe50 33

3.1 Existing datasets and their limitations 33

3.1.1 iCubWorld28 . 34

3.1.2 Big Brother . 34

3.1.3 NORB dataset . 34

3.2 CORe50: an overview . 35

3.2.1 RGB-D dataset . 36

3.3 Integration of the depth information . 39

3.3.1 Script details . 39

4 Strategies for preprocessing depth in CORe50 44

4.1 Background removal . 45

4.1.1 Segmentation . 45

Contents ix

4.1.2 Background fading . 50

4.2 RGB-D as RGBA . 53

4.3 Feature extraction . 56

5 Experiments and Results 57

5.1 Caffe . 57

5.1.1 Anatomy of the Caffe computational model 58

5.1.2 Command line and Python interfaces 60

5.1.3 Network architecture . 61

5.2 Experimental Setup . 65

5.2.1 Experiment introduction and scenarios 66

5.2.2 BR scenario implementation . 67

5.2.3 RGBA scenario implementation 68

5.2.4 FE scenario implementation . 71

5.3 Experimental Phase . 76

5.3.1 BR scenario . 76

5.3.2 RGBA scenario . 83

5.3.3 FE scenario . 86

6 Conclusions and Future Works 89

6.1 Conclusions . 89

6.2 Future work . 91

List of Figures

1.1 Example of overfitting [4]. 7

1.2 Object recognition as labeling problem [5]. 11

1.3 A biological neuron and the relative inspired mathematical model[6]. . . 13

1.4 A 3-layer Feedforward Neural Network architecture [6]. 14

2.1 A coloured bitmap mapped as three-dimensional data structure 19

2.2 A single step of convolution performed on 9× 9 image and a 3× 3 kernel. 20

2.3 A 5 × 5 filter convolving an input volume and producing an activation

map [7]. 22

2.4 Example filters learned by Krizhevsky [2]. 23

2.5 Example of maxpooling with a 2× 2 filter and stride 2 [6]. 25

2.6 General CNN architecture divided in its fundamental parts 26

2.7 A simple CNN architecture [8] . 27

2.8 Visualization of features in a fully trained model [9] 31

2.9 Pictures produced by maximization of three different class scores [10] . . 32

3.1 The 50 different objects of CORe50. Each column denotes one of the 10

categories [3]. 35

3.2 One frame of the same object throughout the 11 acquisition sessions [3]. . 36

3.3 The Acquisition interface [3]. 37

3.4 Color frame and corresponding depth frame. 38

3.5 Evaluation of the correct mapping . 43

4.1 A 128× 128 mapping frame and its histogram 46

x

Contents xi

4.2 Typical histogram of objects recorded in outdoor sessions 48

4.3 Static thresholding (center) and relative dilation operation (right). 49

4.4 Hybrid (left) thresholding outperform static (right) thresholding. 49

4.5 Static (right) thresholding outperform hybrid (left) thresholding. 50

4.6 Background removal output (right) for an RGB image (left) and its seg-

mentation map (center) . 53

4.7 An RGB color image (left), its depth grayscale representation (center) and

its depth color heat map representation (right). 56

5.1 A Caffe layer [11] . 59

5.2 Training loss (blue) and test accuracy reached by the original approach. . 77

5.3 Confusion matrices obtained by the static (left) and original (right) approach 77

5.4 BR scenario histogram of the confusion matrix diagonal scores grouped

by class. 78

5.5 Examples of foreground occlusions in the glasses object class (static ap-

proach) . 79

5.6 Images classified correctly by the original approach and not by the static

approach (top, black margin) and vice versa (bottom, red margin). 80

5.7 Static model feature maps visualization using the Deep Visualization Tool-

box . 81

5.8 RGBA scenario original approach training loss (blue) and test accuracy

(red). 84

5.9 RGBA scenario confusion matrices obtained by the static (left) and orig-

inal (right) approach . 84

5.10 RGBA scenario histogram of the confusion matrices diagonals scores grouped

by class . 85

5.11 FE scenario confusion matrices obtained by the original+heatmap (left)

and original (right) approach . 87

5.12 RGBA scenario histogram of the confusion matrices diagonals scores grouped

by class . 88

List of Tables

4.1 Success rate in finding two peaks and percentage of the black portion . . . 47

5.1 Overall accuracy after 50.000 iterations for the BR scenario 76

5.2 Average gaps for both the static and original approach 82

5.3 Overall accuracy after 50.000 iterations for the RGBA scenario 83

5.4 Overall accuracy achieved after training a SVM model with C=1 86

5.5 Overall accuracy achieved after training a SVM model with C=1e-10 . . . 87

xii

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BP BackPropagation

BGD Batch Gradient Descent

CNN Convolutional Neural Network

CPU Central Processor Unit

CV Computer Vision

CUDA Compute Unified Device Architecture

DL Deep Learing

DNN Deep Neural Network

GPU Graphical Processor Unit

LMDB Lightning Memory-Mapped DataBase

MGD Mini-batch Gradient Descent

ML Machine Learning

MLP Multy Layer Perceptron

NLP Natural Language Processing

PNG Portable Network Graphics

RGB Red Green Blue

RGBA Red Green Blue Alpha

RGB-D Red Green Blue - Depth

RL Reinforcement Learning

SGD Stochastic Gradient Descent

SVM Support Vector Machine

xiii

Introduction

In the last decade, the presence of massive amounts of data and the development of

new fast GPU implementations have contributed to the success of deep Convolutional

Neural Networks (CNNs) in Computer Vision. Nonetheless, the amount of available data

differs greatly depending on the task. Generally, robotics applications rely on very little

labeled data, since generating and annotating data is highly specific to the robot and

the task (e.g. grasping).

Nowadays, many robotic systems employ RGB-D sensors which are inexpensive, widely

supported by open source software, do not require sophisticated hardware and provide

unique sensing capabilities.

In particular the depth data contains additional information about object shape and it is

invariant to lighting or color variations. Therefore, it can contributes to improve results

in the challenging task of object recognition which is the core of many applications in

robotics.

Indeed, the scientific community is moving in this direction, exploiting depth data in a

number of computer vision related tasks: Object Detection [12], Object Tracking [13],

Object recognition [14]. Deep Convolutional Neural Networks have recently shown to

be remarkably successful for recognition on RGB images [2], in this thesis, we evaluate

their accuracy performance in the domain of RGB-D data. Specifically, we propose and

compare three depth preprocessing strategies, where each one of them leads to a different

training scenario and outcome.

This work has been carried out on CORe50, a new RGB-D dataset and benchmark pre-

cisely designed for Continuous Object Recognition, in the context of real-world robotic

vision applications [3].

1

INTRODUCTION 2

The main objective of this dissertation is to investigate which are the best depth pre-

processing strategies that lead to increase the accuracy performances on CORe50.

In chapter 1, a brief background about machine learning, computer vision and ar-

tificial neural networks is covered. In chapter 2, we describe the convolutional neural

network as a learning model. In chapter 3, we introduce CORe50 and its depth integra-

tion process. In chapter 4 and 5, the strategies for preprocessing depth in CORe50 and

their correlated experimental results are outlined and reported respectively. Finally, in

chapter 6 conclusions are drawn and future work directions proposed.

Chapter 1

Background

“The main lesson of thirty-five years of AI research is that the hard problems

are easy and the easy problems are hard. The mental abilities of a four-year-

old that we take for granted – recognizing a face, lifting a pencil, walking

across a room, answering a question – in fact solve some of the hardest en-

gineering problems ever conceived.”

- professor Steven Pinker, The Language Instinct (1994)

In this chapter, we introduce the key concepts that stand behind the work presented

in this dissertation. We begin by describing the theory of Machine Learning and its

contribute to the field of Computer Vision. In section 1.3, a brief background of Artificial

Neural Networks, as a learning model, is provided. In the last sections the basic ideas of

Deep Learning are discussed.

1.1 Machine Learning

Machine Learning rises as a subfield of Artificial Intelligence. The several tasks and

challenges of AI have always been approached in many ways. For example, one way could

be handcoding a software program with a specific set of instructions. On the other hand,

Machine Learning is concerned with the development of algorithms so that machines can

automatically learn from data and solve problems.

3

1. Background 4

In 1959, Arthur Samuel simply defined Machine Learning as a “Field of study that gives

computers the ability to learn without being explicitly programmed” [15].

Since his birth, Machine Learning has shown to be the best approach, in terms of per-

formance, for several AI’s tasks such as recognition and prediction. Furthermore, using

Machine Learning’s algorithms, it’s possible to avoid writing complex hand-crafted rules.

These are just some of the reasons for explaining why over the past two decades ML has

become one of the backbone of information technology.

At this point, one might ask “How can machines learn? How can we implant the process

of learning, characteristic of human beings and animals, in machines?”

To answer these questions, we first need to formally define Machine Learning in its op-

erational terms. According to Tom M. Mitchell: “A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P if

its performance at tasks in T, as measured by P, improves with experience E ” [16].

In the field of Machine Learning, several separated disciplines, for instance Statistics,

have contributed to the development of a computational model able to learn, according

to the above definition.

Cognitive psychology has shown how human learning is a very articulated and complex

phenomenon to understand. Therefore, understanding human learning well enough to

reproduce forms of that learning behavior in a computer system is, in itself, a worthy

scientific goal. This explains the mutual influence between two separated fields like

Cognitive Neuroscience and Machine Learning.

1.1.1 Categories and tasks

Typically, Machine Learning tasks are organized into three broad categories. These

depend on the nature of the learning “signal ”or “feedback ”available to a learning system

[17]:

• Supervised Learning: Is the machine learning approach that uses a known

dataset (called supervised training dataset) in order to infer a function. The train-

ing dataset consists of labeled data, that means for each input data a corresponding

1. Background 5

response value (also called supervisory signal) is included. A supervised learning

algorithm “learns ”from the observations of the training data and produces an

inferred function, which maps input to output. The goal is to approximate the

mapping function so well that can determines the correct output for unseen input

data.

• Unsupervised Learning: On the contrary, in unsupervised learning your training

dataset consists only of input data and no corresponding output value (unlabeled

data). Due to the absence of supervisory signal, there is no error or reward signal

to help finding a potential solution. Therefore algorithms directly analyze data and

look for patterns. This makes unsupervised learning a powerful tool for identifying

hidden structure in data.

• Reinforcement Learning: Is a type of ML which relies on interaction with

environment. An RL agent automatically determines the ideal behavior within a

specific context, to maximize its performance. A numerical reward expresses the

success of an action’s outcome. RL agents are not explicitly taught, instead they

are forced to learn these optimal goals by trial and error. On the basis of past

experiences and also by new choices, the agent seeks to learn to select actions that

maximize the accumulated reward over time.

Semi-supervised learning is another category of learning methods that sits in between

supervised and unsupervised learning. In addition to unlabeled data, the algorithm is

provided with some super-vision information, but not necessarily for all examples. Trans-

duction is a particular case of this principle where the whole set of training instances is

known at learning time, except that part of the targets are missing.

Moreover, is worth mention, as other categories of ML problems, Meta learning and

Development learning.

Meta Learning is the process of learning to learn. Informally speaking, the algorithm

uses experience to change certain aspects of a learning algorithm, or the learning method

itself. While, Development Learning is an approach to robotics that is directly inspired

by the developmental principles and mechanisms observed in children’s cognitive de-

1. Background 6

velopment. The main idea is that the robot, using a set of intrinsic developmental

principles regulating the real-time interaction of its body, brain, and environment, can

autonomously acquire an increasingly complex set of mental capabilities [18].

A different categorization of ML emerges considering the desired output of a machine-

learned system: [19]

• Classification is the problem of identifying to which of a set of categories (sub-

populations) a new observation belongs, on the basis of a training set of data

containing observations (or instances) whose category membership is known. A

typical example would be assigning a given email into ”spam” or ”non-spam”

classes. Classification is considered an instance of supervised learning.

• Regression is also a supervised problem, but the outputs are continuous rather

than discrete.

• In clustering, a set of input data is sub-divided into groups (clusters) such that

the elements within a cluster are very similar to one another. Clustering is typically

an unsupervised task.

• Density estimation finds the distribution of input patterns in some space

• Dimensionality reduction simplifies inputs by mapping them into a lower-

dimensional space.

1.1.2 The importance of generalization

The goal in building a machine learning model is to have the model performing well

on training data, as well as test data. The training examples are considered representa-

tive of the space of occurrences, the goal of a learner is to build a general model about

this space. In this context, generalization refers to how well the concepts learned by a

ML model apply to specific examples not seen by the model when it was learning.

For example, in a classification problem, the error on test data is an indication of how

1. Background 7

well the classifier will perform on new data. Hence the test error indicates how well your

model generalizes to new data.

A related concept to generalization is overfitting. Overfitting occurs when the model has

learned to fit the noise in the training data, instead of learning the underlying structure

of the data. In figure 1.1 the green line represents an overfitted model and the black line

Figure 1.1: Example of overfitting [4].

represents a regularised model. The green line best follows the training data, and it is

likely to have a higher test error, compared to the black line.

Overfitting manifests itself when a model is more flexible than it needs to be or

includes irrelevant components [20]. Underfitting on the contrary, arises when the model

has not learned the structure of the data.

1.2 Computer Vision

Computer vision is a subfield of Artificial Intelligence which aims at the analysis and

interpretation of visual information. Image understanding is considered as a process

starting from an image or from image sequences and resulting in a computer-internal

description of the scene [21]. Human beings and animals have the innate capability of

take decisions on what they see, providing such a visual understanding to computers

1. Background 8

would allow them the same power. The approach to CV can be decomposed in three

main processing components:

• Image acquisition: is the process of translating the analog world around us into

digital representations.

• Image processing: applies algorithms to the digital data acquired in the first step

to infer low-level information on parts of the image (includes methods to handle

processing problems such as noise reduction and signal restoration).

• Image analysis and understanding: high-level algorithms are applied to both

the image data and the low-level information which are computed in the previous

steps.

Computer vision is closely related to a number of fields. For instance, because it

elaborates image data, many methods are shared with the Image Processing and more

generally with Signal Processing research fields. Computer vision algorithms make use of

mathematical and engineering fields such as Geometry, Optimization, Probability The-

ory, Statistics, etc. [22].

Computer vision has several applications in different domains. Indeed, the use of

a vision sense is not limited simply to robotics, other examples are medical research,

military applications and space explorations. Each of the domains mentioned above

employs a range of computer vision tasks. Some examples of typical computer vision

tasks are presented below:

• Recognition: aims to decide whether or not the image data contains some specific

element (object, activity, etc.).

• Motion analysis: aims to analyze the motion of an element in a sequence of

images.

• Scene reconstruction: tries to reconstruct a 3-Dimensional model from more

images of a specific scene.

1. Background 9

• Image restoration: executes the removal of noise (sensor noise, motion blur, etc.)

from images.

According to the context of this dissertation, in the following sub-sections, a brief

introduction to image processing, and its operation of segmentation, is provided. More-

over, the recognition’s task and the applications of computer vision to Robotics are

discussed in detail.

1.2.1 Image Processing

The acquisition of a digital image is a two-dimensional representation of a three-

dimensional visual world. Sometimes the captured images are noisy or degraded. For

instance, we receive blurred images if the camera is not appropriately focused or the scene

is captured outdoor in foggy conditions. In this case, image processing’s techniques aim

to refine the images so that the resultant images are of better visual quality, free from

noise.

In general terms, image processing is processing of images using mathematical opera-

tions by using any form of signal processing for which the input is an image, a series of

images or a video, such as a photograph or video frame; the output of image processing

may be either an image or a set of characteristics or parameters related to the image

[23]. Among many other, common image processing operations are[24]:

• Euclidean geometry transformations such as enlargement, reduction, and rotation

• Color corrections such as brightness and contrast adjustments, color mapping, color

balancing, quantization, or color translation to a different color space

• Image differencing and morphing

• Interpolation, demosaicing, and recovery of a full image from a raw image format

using a Bayer filter pattern

• Image segmentation

• High dynamic range imaging by combining multiple images

1. Background 10

Image Segmentation

In this context, image segmentation is the process of partitioning a digital image

into multiple regions (segments) of related contents. Each of the pixels in a segment

are similar with respect to some characteristic, such as gray tone or texture. Image

segmentation is an important step from the image processing to image analysis because

it affects the feature measurement helping high-level image analysis and understanding.

According to [25], image segmentation methods can be classified in layer-based and block-

based. Layer-based methods are used for object detection and image segmentation that

relies on the output of several object detectors. This class of techniques are of less interest

for this dissertation.

Block-Based methods are based on various features found in the image such as color

or information about the pixels that indicate edges, boundaries, texture. This class of

methods can be sub-divided in:

• Region-based methods: aim to segment the entire image into sub regions or

clusters, for example on the basis of the gray color level in one region.

• Edge or boundary based methods: transform images to edge images using

changes of gray tones in the images. Edges are important because signalize the

lack of continuity and occur on the boundary between two regions.

Within region-based class methods, thresholding is the simplest image segmentation

method. Starting from a grayscale image, thresholding can be used to separate fore-

ground (region of interest) from the background.

The simplest thresholding method converts grayscale images to binary images by select-

ing a single threshold value. Other thresholding methods are the following:

• Histogram Dependent: selects the threshold value by analyzing image his-

tograms which can be one of two models: Bimodal and Multimodal. In the former,

histograms present two peaks and a clear valley where threshold is the valley point.

The latter presents a more complex threshold selection because there are many

peaks and not a clear valley.

1. Background 11

• P-Tile: uses knowledge about the area size of the object, based on the gray level

histogram, assumes the objects are brighter than the background and occupy a

fixed percentage.

• Edge Maximization: depends on the maximum edge and edge detection tech-

niques.

• Local: adapts the threshold value on each pixel to the local image characteristics.

In these methods, a different threshold is selected for each pixel in the image.

• Mean:uses the mean value of the pixels as threshold value.

1.2.2 Object Recognition

In computer vision, object recognition is a subclass of the Recognition problem. The

aim of object recognition is to process images or video sequences in order to identify and

classify objects. This task represents a complex challenge for computer vision systems.

In fact, object recognition involves segmentation, dealing with variations in lighting,

viewpoint and occlusions (parts of an object can be hidden behind other objects).

Figure 1.2: Object recognition as labeling problem [5].

As shown in Figure 1.2, Object recognition can be defined as a labeling problem.

Formally, first the system receives an image containing one or more objects of interest

1. Background 12

and a set of labels, then it assigns the correct labels to regions, or a set of regions, in the

image. In the last decades, several algorithms and model have been used to achieve ob-

ject recognition such as SIFT (Scale-Invariant Feature Transform), SURF (Speeded-Up

Robust Features), LDA (Linear Discriminant Analysis) and CNN (Convolutional Neural

Network).

Most of the above mentioned algorithms, for instance SIFT, are hand-crafted and require

a certain amount of engineering behind them. These techniques are known as shallow,

where the learning is done only at mid-level by training classifiers such as Support Vec-

tor Machines (SVM), Random Forest or Naive Bayes classifier [26]. On the other hand,

CNNs have become in the last few years the state-of-the-art for a variety of large-scale

pattern recognition problems [27], among which Object Recognition. Convolutional Neu-

ral Networks are introduced in chapter 2 .

1.2.3 Robotic Applications

Computer vision algorithms are widely used in Robotics. As an example, personal

robotics is an exciting research frontier with a range of potential applications including

domestic housekeeping, caring of the sick and the elderly, and office assistants for boost-

ing work productivity. In this context, the ability to detect and identify objects in the

environment is fundamental.

Robot vision involves using a combination of camera hardware and computer vision al-

gorithms to allow robots to process visual data from the world. Unlike pure computer

vision research, robot vision must incorporate aspects of robotics into its techniques and

algorithms, for instance visual servoing consists in controlling the motion of a robot by

using the feedback of the robot’s position as detected by a vision sensor.

Nowadays, providing robots with accurate and robust visual recognition capabilities in

the real-world is a challenge which obstacles the use of autonomous agents for concrete

applications.

In fact, the majority of tasks, as manipulation and interaction with other agents,

severely depends on the ability to visually recognize the entities involved in a scene.

Object recognition represents a complex challenge for robotic vision systems because

1. Background 13

the real-world setting differs from the typical retrieval scenario. In robotic systems, the

ability to learn incrementally, in a human-like fashion, new classes of objects is highly

desirable. This problem of learning from a continuous stream or a block of new images

is known as Incremental Learning.

The nature of the learning problem is affected by the amount and type of visual data,

this means that datasets must present specific properties according to the specific task,

as an example datasets for incremental learning are made of few video frames rather

than millions of independent images.

In the last years, many vision systems have been ultimately tested on datasets tailored

to image retrieval problems while only few datasets and benchmarks suitable for robotic

object recognition have been made available.

1.3 Artificial Neural Networks

In machine learning, Artificial Neuron Networks (ANNs) are a computational model

based on the structure and functions of biological neural networks which are common in

the brains of many mammals. Figure 1.3 illustrates the analogies between a biological

neuron and an artificial neuron unit.

Figure 1.3: A biological neuron and the relative inspired mathematical model[6].

As we can see, a biological neuron consists of a cell body, a collection of dendrites

and an axon. Dendrites bring electrochemical information into the cell, from external

1. Background 14

impulses. If these impulses reach a certain threshold, the axon fires electrochemical

information out of the cell. The axon from one neuron can influence the dendrites of

another neuron across junctions called synapses.

The artificial neural unit is a mathematical model of the biological neuron behavior and

structure. Dendrites are formalized as the multiplication w0x0 between the axon x0, and

the synapse w0 (input weight of the neuron). The dendrites carry out the signals w0x0

to the cell body where all the inputs plus a bias b are summed. If the final sum exceeds

a certain threshold, the neuron fires. This firing strength is modeled by the activation

function f . Commonly used activation functions are the sigmoid, tanh and rectifier.

An ANN can dynamically learn to change its weights and bias, in order to control the

strength of influence of one neuron on another.

1.3.1 Feedforward Neural Network architecture

A Feedforward Neural Networks is the simplest type of ANN: the information moves

in only one direction, forward, from the input neurons, through the hidden neurons (if

they exist) and to the output neurons. Thus, in this network the connections between

units do not form a cycle. Instead of an amorphous set of connected neurons, neural

network models are often organized into distinct layers of neurons. Figure 1.4 illustrates

a simple 3-layer Feedforward Neural Network architecture with two hidden layers.

Figure 1.4: A 3-layer Feedforward Neural Network architecture [6].

1. Background 15

Hidden layers are a set of neurons connected to other layers of neurons, therefore

they are not visible as a network output (this explains the term hidden layer).

Hidden layers are important because they can find features within the data and allow

following layers to operate on those features rather than the noisy and large raw data.

The typical layer type is the fully-connected layer in which neurons between two adjacent

layers are fully connected pairwise. Neurons in a single layer do not share any connec-

tions. Even though, feedforward networks is a simple ANN model, it has been proved

that multilayer feedforward networks are a class of universal approximators [28].

This result establishes that for every possible function, f , and input, x, exists a standard

multilayer feedforward networks with as few as one hidden layer able to return, as output

from the network, the value f(x) (or some close approximation).

1.3.2 Backpropagation algorithm

Backpropagation (BP) is an efficient method of computing gradients in directed

graphs of computations, such as neural networks. BP provides detailed insights into

how changing the weights and biases changes the overall behaviour of the network. At

the hearth of BP is an expression for the partial derivative ∂C/∂w of the cost function

C with respect to any weight w (or bias b) in the network. During the training phase,

an ANN learn how to change the weights w and b in order to minimize C that represents

the distance from the goal of the training.

Let N be a feedforward neural network with e connections, where x, x1, x2, . . . , xj ∈ Rn

are the input vectors, w,w1, w2, . . . , wt ∈ Re are the weights vectors, y, y1, y2, . . . , yj ∈ Rn

are the output vectors. We can define the neural network as a function:

y = fN(w, x)

The above function, given a weight w vector maps an input x to an output y. Let ý

be our target correct output, we can use an error function E in order to measure the

difference between the two outputs. A common choice is the the square of the Euclidean

distance:

E(y, ý) = |y − ý|2

1. Background 16

During the training phase, the backpropagation algorithm takes as input a sequence of

training examples (x1, y1), (x2, y2) . . . , (xj, yj) and produces a sequence of weights vector

w0, w1, . . . , wj which starts with some initial random weight w0.

The goal of the backpropagation algorithm is to find the weights that best minimize the

error function E. The backpropagation algorithm can be divided into two phases:

1. Forward pass: computes for each (x0, w0) . . . , (xj, wj) the output activation y0 . . . yj

and the relative training error E(y, ý).

2. Backward pass computes the wi using only (xi, yi, wi−1) for i = 1, . . . , p. The

weight vector wi is produced applying gradient descent to the function wi−1 →
E(fN(wi−1, xi), yi) to find a local minimum. The error is propagated backward

starting from the output layer, through the hidden layers, to the input layer. Hence,

wi is the minimizing weight vector found by gradient descent with some update

rule. It’s worth noting that the weight update difference, from wi−1 to wi, is

proportional to the negative of the gradient at the current point (in the network)

and the value of the learning rate.

The learning rate multiplies the gradient of a weight before the updating, therefore

the greater the value, the faster the neuron trains, but the lower the value, the more

accurate the training performs. The sign of the gradient of a weight points out where

the error is increasing, this explains why the weight must be updated in the opposite

direction.

1.4 Deep Learning

Deep learning (DL) is a collection of machine learning algorithms that use a specific

approach for building and training neural networks. Deep learning algorithms model

high-level abstractions in data by using ANNs with multiple processing layers, com-

posed of multiple linear and non-linear transformations [27].

DL is part of a broader family of machine learning methods based on learning data

representations which replaces the more difficult manual feature engineering. Many dif-

ferent architectures such as convolutional deep neural networks, deep belief networks

1. Background 17

and recurrent neural networks have proved to achieve state-of-the-art results on various

tasks of computer vision, natural language processing, automatic speech recognition and

bioinformatics.

Over the years, the path towards deep learning models has faced several challenges

and limitations, such as slowness of computations and problems related to the gradient

descent strategy. For instance, traditional deep feedforward or recurrent networks suf-

fer from the famous problem of vanishing or exploding gradients [29]. In basic terms,

backpropagation relies on backpropagating the error from the output to prior layers. Net-

works with many layers, lead to a long sequence of calculus-based computations which

produce either huge or tiny numbers. In this scenario the resulting neural net is not able

to update significantly or correctly prior layers weights, thus it is not learning at all.

The following findings are some of the main discoveries that have contributed to overcome

the problems related to deep neural networks:

• Parallel computation: parallel computing power of GPUs over CPUs leads to

much faster training phase.

• Rectified linear activation function: leads to sparse representations, mean-

ing significant computational efficiency. The simplicity of this function, and its

derivatives, makes it much faster to work with than the sigmoid activation func-

tion. Rectified Linear Unit saturates only when the input is less than 0, avoiding

meaningless backward pass when the derivative is very close to 0.

• Weight initialization: backpropagation converges to different optimal points for

different initial conditions. So it not only affects the speed of the convergence but

optimality. Thus, it is important to use efficient common initialization techniques

such as normalized Gaussians.

Chapter 2

CNN for Object Recogntion

“The key to artificial intelligence has always been the representation.”

- Jeff Hawkins, On Intelligence (2004)

The current chapter describes the Convolutional Neural Network (CNN) learning

model in the context of object recognition. In the following sections we provide an

introduction to the basic concept of convolution, an overview of the CNN model and

details about its layers, architecture and learned features.

2.1 Digital images and convolution operations

A digital image is a numeric representation of a two-dimensional real image. There

are two main type of digital images: vector and raster. Vector graphics describes the

primitive elements, which compose the image, through the use of vectors.

On the other hand, raster graphics describes a real image with a matrix of points, called

pixels. One or more digital values define the color of pixels. Raster images are also

referred as bitmap images.

An image can be stored as a two-dimensional (matrix) or three-dimensional data

structure depending on whether it is a coloured bitmap or grayscale bitmap. For in-

stance, in the RGB model, the color is represented as level of intensity of three basic

18

2. CNN for Object Recogntion 19

Figure 2.1: A coloured bitmap mapped as three-dimensional data structure

colors: red, green and blue. Figure 2.1 illustrates a RGB bitmap mapped as three-

dimensional structure where each matrix maps the information about the intensity of

the relative color. In grayscale bitmaps, for each pixel one numeric value is enough to

indicate the different gray intensities ranging from black to white, therefore just one ma-

trix is needed. A bitmap is characterized by the width and height of the image in pixels

and by the number of bits per pixel. As an example with 8-bit per pixels is possible to

represent 256 gray levels. Depending on the compression algorithm, generally lossy or

lossless, bitmap images can be stored in different formats.

Convolution is a mathematical operation which is fundamental to many common

image processing operators. Convolution provides a way of ”multiplying together” two

arrays of numbers, generally of different sizes, but of the same dimensionality, to produce

a third array of numbers of the same dimensionality [30].

In image processing, one of the input arrays is normally a grayscale image, while the

second array is a smaller matrix known as convolution matrix, filter or kernel. In this

context an operator that implements convolution produces an output image as simple

linear combinations of the input pixel values.

A filter can be thought as a sliding window moving, from left to right and from top to

bottom, across the original image. Generally the filter moves through all the positions

where it fits entirely within the boundaries of the image. At each shift, the filter produces

a single output pixel, whose value is calculated by summing all the products between

2. CNN for Object Recogntion 20

the filter elements and the corresponding pixels.

Figure 2.2: A single step of convolution performed on 9× 9 image and a 3× 3 kernel.

Figure 2.2 shows the output produced from a 3 × 3 filter at the center of 9 × 9

image. The resulting image highlights the characteristics enhanced by the filter used.

As a result, in computer vision, several filters are used for different purposes. The more

popular are:

• Gaussian filters: normally used to remove noise by taking average between the

current pixel and a specific number of neighbours.

• High-pass filters: normally used to improve image details.

• Emboss filters: normally used to enhance brightness differences.

• Sobel filters: normally used to highlight edges.

Until now, we have only discussed one to one convolutions that apply a filter to single

image. We can identify other two kinds of convolution:

• One to many convolution: when there are n filters and only one input image.

In this case, each filter is used to generate a new image.

• Many to many convolution: when there is n filters and more than one input

image. Each connection in between input and output images is characterized with

specific different filters.

2. CNN for Object Recogntion 21

2.2 Convolutional Neural Network: an overview

Convolutional Neural Networks (CNNs) are a category of Feedforward Neural Net-

works. Likewise, CNNs are made up of neurons with learnable weights and biases. Again,

backpropagation is the algorithm used for training the network.

Historically, CNNs have been used in the context of image classification, indeed the

typical CNN input is a multi-channeled image. In the last decades, the neuroscience

community has proved that one of the unique ability of the human visual system is

called perceptual invariance and it emerges from the complex (and generally hierarchi-

cal) organization of connections in the brain. This and other studies, have directly

inspired the architecture of CNNs.

The CNN multi-layer architecture resembles the organization of information in the

human visual system in order to achieve robustness against shifting, distortion and scal-

ing of objects.

Deep neural networks composed by only fully connected layers involve a huge number of

parameters which would most likely lead to overfitting or it can just be wasteful in terms

computation. Therefore, CNNs use convolutional layers which rely on ideas like local

receptive fields and shared weights. Normally convolutional layers execute many to many

convolutions. Each neuron of the layer performs a convolution where its weights are the

values of the filter. Convolution layers involve a smaller number of weights respect fully

connected layers. For example, when processing an image, the input image might have

thousands or millions of pixels, but we can detect small, meaningful features such as

edges with kernels that occupy only tens or hundreds of pixels [31]. This means that

we need to store fewer parameters, which both reduces the memory requirements of the

model and improves its statistical efficiency.

In brief, CNNs differ from other ANN models in that they are composed of a particular

set of layers, such as convolutional layers or downsampling layers, which are inserted in

a specific sequence.

2. CNN for Object Recogntion 22

2.3 Layers used to build CNN

One of the key characteristics of CNN is the particular set of layers which composes

the network. In literature, it is possible to identify three main kinds of layers which are

described in the following sub-sections.

2.3.1 Convolutional layer

The first layer in a CNN is always a convolutional layer. In a convolutional layer only

small localized regions of the input are connected to every hidden neuron. That region in

the input image is called the local receptive field for the hidden neuron. Figure 2.3 shows

a 5×5 local receptive field which corresponds a filter of the same size. The filter numeric

values represent the weights of the hidden neuron. Likewise convolutions in computer

vision, each filter convolves over all the locations of the input image, producing an output

image called activation map.

Figure 2.3: A 5× 5 filter convolving an input volume and producing an activation map

[7].

It is worth noting that, the extent of the connectivity along the depth axis of the

local receptive field is always equal to the depth of the input volume. For example, if

the receptive field is 5 × 5 and the input image is [32 × 32 × 3], then each neuron will

2. CNN for Object Recogntion 23

have weights to a [5× 5× 3] region in the input volume.

Moreover, convolutional layers implement parameter sharing. Basically, parameter

sharing constrains the neurons to use the same weights and bias. Thus, because the fil-

ter is shared, all the neurons in the convolutional layer detect exactly the same feature,

just at different locations in the input image. Informally, a feature is a type of input

pattern (an edge in the image) that will cause the neuron to activate. For this reason,

the activation map is also called feature map. The number of feature maps corresponds

to the depth (third dimension) of the convolution output volume.

The importance of detecting different image features explains why a convolutional

layer produces several feature maps. In fact, generally, a convolutional layer increase the

dimensionality of the input volume on the depth axis (third dimension). A real world

example is the Krizhevsky architecture [2] that won the ImageNet challenge in 2012.

Figure 2.4 shows 90 of the 96 filters learned by Krizhevsky at the first convolutional

layer. The size of each filters is [11 × 11 × 3], and each one is shared by the 55 ∗ 55

neurons in one feature map.

Figure 2.4: Example filters learned by Krizhevsky [2].

In general the output volume is controlled by three hyperparameters:

• Depth: this parameter sets the amount of filter used equivalent to the amount of

feature map produced.

2. CNN for Object Recogntion 24

• Stride: this parameter controls how we slide the filter. For instance, when the

stride is 1, the filter moves one pixel at time.

• Zero-padding: if greater than zero, this parameter pads the input volume around

the border with a number of zeros according to the specified value.

The following formula can be used to find the size (first two dimensions) of the output

volume:

(W − F + 2P)/S + 1

where W is the input volume size, F represents the filter size of the convolutional

layer, S and P are the stride and the amount of zero padding respectively.

2.3.2 ReLU Layer

Generally, after each convolutional layer, it is convention to apply a ReLU (Rectified

Linear Units) layer (or activation layer). The ReLU layer applies the rectifier activation

function:

f(x) = max(0, x)

to all of the values in the input volume. Practically speaking, this layer just changes

all the negative activations to 0. As mentioned in chapter 1, there are other activation

functions like tanh and sigmoid. In the last decade, Researchers have found out that

ReLU layers work far better [32] because the network is able to train a lot faster without

making a significant difference to the accuracy. Additionally, it helps to alleviate the

vanishing gradient problem.

2.3.3 Pooling layer

A Pooling layer applies a form of non-linear downsampling. The aim of downsampling

is to reduce the spatial size of the representation. In this category maxpooling layer are

the most popular. This pooling layer uses the MAX operation on a subregion of the

input (filter), normally of size 2× 2, with a stride of the same length. Hence, it outputs

2. CNN for Object Recogntion 25

Figure 2.5: Example of maxpooling with a 2× 2 filter and stride 2 [6].

the maximum number in every subregion that the filter convolves around. For three-

dimensional input, every depth slice is downsampled along both width and height.

In figure 2.5, the output of maxpooling layer with a 2× 2 filter and stride 2 is shown.

There are two main benefits from using pooling layers in CNN:

1. The number of parameters is drastically decreased, thus lessening the computation

cost.

2. The threat of overfitting is reduced, thus the network’s ability of generalization is

improved.

As an aside, some CNNs use 1x1 convolutions as a feature pooling technique. For

example, an image of 150× 150 with 30 features on convolution with 10 filters of 1× 1

would result in size of 150 × 150 × 10. In this context, 1 × 1 convolution can be useful

because we operate on 3-dimensional volume, although, on two dimensional input, it

would be pointless.

2.3.4 Fully connected layer

In chapter 1, the fully connected layer it has been introduced as the typical layer of an

ANN. In a CNN they are normally used for learning non-linear combinations of high level

2. CNN for Object Recogntion 26

features. Essentially, the aim of convolutional layers is to provide an invariant feature

space, and the aim of fully-connected layer is learning a function (generally non-linear)

in that space.

2.4 CNN architecture

In this section we discuss how the layers, described in the previous section, are stacked

together to form a CNN. The architecture of a CNN can be divided into three parts, as

shown in figure 2.6. First of all, a CNN receives in input a sequence of digital images; then

the input is given to a feature extraction module which generates an array of features;

finally this array is delivered to a full connected neural network that produces the results.

Figure 2.6: General CNN architecture divided in its fundamental parts

The feature extraction module is composed by an alternation of three layer types:

CONV(Convolutional), ReLU and POOL (Pooling). The most common architecture

follows the pattern:

INPUT → [[CONV → RELU]] ∗N → POOL?] ∗M

where * represents repetition and POOL? an optional Pooling layer. Usually 0 ≤ K ≤ 3

and 0 ≤ N ≤ 3.

2. CNN for Object Recogntion 27

Instead, the full connected neural network is composed by an alternation of FC (Fully

connected) and RELU layers. It can be described by the following pattern:

[FC → RELU] ∗K → FC

where again 0 ≤ K ≤ 3.

Figure 2.7 provides an overview of a typical CNN architecture with 5 layers. All

the convolutions are many to many, i.e. each feature map has a neuron that can be

connected with two or more feature maps of the previous layer.

Figure 2.7: A simple CNN architecture [8]

In this section we have discussed the typical CNN architecture, however there many

variants depending on the task. For instance, there are CNN without final neural net-

work. In this case other classifier, such as Support Vector Machine, can be used.

2.5 CNN training

The backpropagation algorithm, introduced in the previous chapter, computes (an-

alytically using the chain rule) the gradient of a CNN loss function with respect to its

weights. The backpropagation (BP) is used as a gradient computing technique by the

gradient descent optimization algorithm. Gradient descent is currently the most common

and established way of optimizing CNN loss functions. Training a CNN from scratch

with the gradient descent algorithm is not the only strategy. Gradient descent and other

CNN training strategies are described in the following subsections.

2. CNN for Object Recogntion 28

2.5.1 Gradient descent

The procedure of repeatedly evaluating the gradient of a loss function and then

performing a parameter update is called gradient descent. This algorithm is widely used

to train CNNs. A code implementation of gradient descent looks as follows:

1 for i in range (i t e r a t i o n s) :

2 we ights grad = eva l ua t e g r ad i en t (l o s s f un , t ra in data , weights)

3 weights += − s t e p s i z e ∗ weights grad

This simple loop is at the core of all Neural Network libraries.

Besides, there are some variants of gradient descent, which differ in how much data we

use to compute the gradient of the loss function:

• Batch gradient descent: it computes the gradient of the cost function with

respect to its parameters for the entire training dataset. Thus, we need to calculate

the gradients for the whole dataset to perform just one update. It can be very

slow and expensive in terms of memory (dataset could not fit in RAM). BGD is

guaranteed to converge to the global minimum for convex error surfaces and to a

local minimum for non-convex surfaces.

• Stochastic gradient descent: it computes the gradient of the cost function with

respect to its parameters for one training example at each step. Hence, SGD

performs a parameter update for each training example with a high variance that

cause the loss function to fluctuate heavily. SGD’s fluctuation allows it to jump

to new and potentially better local minima. On the other hand, this ultimately

complicates convergence to the exact minimum. SGD is usually much faster than

BGD since it updates weights more frequently.

• Mini-batch gradient descent: a compromise between BGD and SGD, is to

compute the gradient against more than one training example at each step. MGD

performs an update for every mini-batch of n training examples. This approach

reduces the variance of the parameter updates, which can lead to more stable

convergence. Mini-batch gradient descent is typically the algorithm of choice when

training ANN. Common mini-batch sizes range between 50 and 256, but can vary

for different applications.

2. CNN for Object Recogntion 29

Even though SGD technically refers to using a single example at a time to evaluate

the gradient, the term SGD is employed even when referring to mini-batch gradient

descent, where it is usually assumed that mini-batches are used.

2.5.2 Training strategies

When training a CNN from scratch (with random initialization), it is relatively rare

to have a dataset of sufficient size. Moreover, training from scratch might take a long

time to complete (days, weeks).

Instead, it is common to pre-train a deep CNN (base network) on a very large dataset

and then use its the weights as an initialization for a second CNN (target network). This

scenario is known as Transfer Learning. There are two main strategies, in the context of

transfer learning:

• Fine-tuning the ConvNet: it consists in copying the first n layers of the trained

base network to the first n layers of the target network and in fine-tuning the copied

weights of target network by continuing the backpropagation (training). The choice

of whether or not to fine-tune the first n layers of the target network depends on

the size of the target dataset and the number of parameters in the first n layers [33].

This strategy is motivated by the observation that earlier layers of a ConvNet learn

more generic features (e.g. Gabor filters or color blobs) which should be useful to

many tasks, instead later layers of the ConvNet are progressively more specific to

the details of the classes contained in the original base dataset. When transferred

layers are not fine-tuned, copied weights are left frozen, meaning that they don’t

change during training on the new task.

• ConvNet as fixed feature extractor: as mentioned in section 2.4, the central

module of a CNN works as feature extractor. In this strategy, again, layers from

the trained base network are copied into the target network. Then, the last fully-

connected layers are removed from the target network, which is treated as fixed

feature extractor for a new dataset. For every image in the dataset, a corresponding

feature vector is extracted and used to train a linear classifier (e.g. Linear SVM or

Softmax classifier).

2. CNN for Object Recogntion 30

2.6 Visualizing and understanding deep CNN

In the last years there has been considerable improvements in the creation of high-

performing architectures and learning algorithms for deep neural networks. On the other

hand, the understanding of how these large neural models operate has lagged behind. In

fact, it is tough to understand exactly how any trained neural network works due to the

huge number of interacting, non-linear parts. This has led to consider neural netowrks

as black boxes, especially deep neural networks composed by several layers.

According to [34] there are different approaches that try to understand, through

features visualization, what is learned at each level of a DNN. One approach is to interpret

the function computed by each individual neuron. Past studies in this vein divide into

two different camps: dataset-centric and network-centric. Examples from the two classes

will be discussed in the following subsections.

2.6.1 Dataset-centric approach

Dataset-centric techniques require both a trained DNN and running data through that

network. One famous dataset-centric approach is the deconvolution method [9] which

highlights the portions of a particular image that are responsible for the firing of each

neural unit (within its feature map) at any layer in the model. This technique is based

on a Deconvolutional Network (deconvnet). A deconvnet uses the same components of

a convnet (convolutional, pool layers etc.) but in reverse (unpool, rectify, etc.), thus it

maps features to pixel. At the beginning an input image is forwarded throughout the

convnet, then to examine a given layer activation, one of the relative feature maps is

passed as input to the attached deconvnet layer. The deconvnet layer reconstruct the

activity in the layer beneath that gave rise to the chosen activation. This is then repeated

until input pixel space is reached.

Figure 2.8 shows the top nine activations in a random subset of feature maps across

the validation data, projected down to pixel space using the deconvolutional network

approach in [9].

2. CNN for Object Recogntion 31

Figure 2.8: Visualization of features in a fully trained model [9]

2.6.2 Network-centric approach

Network-centric techniques require only the trained network itself. Consequently,

they investigate directly a DNN without any data from a dataset. In this category, as

an example, Simonyan et al. (2013) [10] use the gradient ascent technique, introduced

by [35], in order to address the visualization of deep image classification CNNs.

The procedure is related to the CNN supervised training procedure, but in this case

the optimization is performed with respect to the input image (weights are fixed to those

found during the training stage). In basic terms, the objective of the optimization is to

maximize the score (neuron response in the final layer) of a given class of images.

In the first step (forward pass) of the algorithm, an image with random pixel colors is

forwarded throughout the network. Also, it is selected the class score to be maximized. In

the second step (backward pass), the gradient of the class score with respect to the input

image is performed. The pixel color values are updated adding the product between the

2. CNN for Object Recogntion 32

gradient result and the learning rate. This two-step process is repeated until satisfying

results are achieved.

Figure 2.9: Pictures produced by maximization of three different class scores [10]

Figure 2.9 shows three images produced by maximizing a given class score: bell pep-

per, lemon , husky. The three pictures resemble some recognizable features of the related

class models. It was worth mentioning that these results were achieved by employing

L2-regularization. In fact, without such a regularization form, would have been harder

to recognize class appearance models.

The visualization of such images suggest qualitatively which invariant features the net-

work has learned from different classes.

Chapter 3

CORe50

“In God we trust; all others must bring data.”

- professor W. Edwards Deming

In this chapter, CORe50 a new dataset and benchmark for continuous object

recognition, is introduced. In the first section few datasets similar to CORe50

are briefly described. In section two, an overview of CORe50, with details on

its design and aim, is provided. Finally, the process for integrating the depth

information in CORe50 is illustrated.

3.1 Existing datasets and their limitations

In the context of object recognition, CORe50 is a dataset for incremental learning.

Therefore, we present only existing datasets suitable for incremental learning strategies.

Most of the datasets described in the following sub-sections have been used by Maltoni

and Lomonaco [36] for accuracy evaluation of incremental learning strategies. In par-

ticular, we focus on the limitations of such datasets in order to justify the creation of

CORe50.

33

3. CORe50 34

3.1.1 iCubWorld28

iCubWorld28 is a significant dataset in the robotics field. It consists of 28 different

objects organized into 7 categories. For each object are acquired 220 images (128× 128

pixels in RGB format) for both train and test set. This acquisition collects one dataset

of more than 12K images and runs over four days (4 dataset).

Maltoni and Lomonaco [36] reach an averaged accuracy of 75% using the fine-tuning

strategy over the CaffeNet network. In the context of Incremental Learning, the main

limitations of this dataset are:

• the small number of sessions: 4;

• the small number of objects: 28;

• the maximum resolution of 128× 128;

• the limited background variation: only indoor acquisition

3.1.2 Big Brother

The BigBrother dataset is composed by 23.842 70 × 70 gray-scale images of faces

belonging to 19 competitors of famous Italian reality show. The dataset is divided into

training set, test set and an additional set of images, called ”updating set “. The updating

set is provided for incremental learning/tuning purposes.

Again, according to [36], fine-tuning the CaffeNet with a pretrained model is the most

effective strategy, even though the best reached averaged accuracy is smaller (of some

points) respect the ICubWorld28. The BigBrother dataset has a small number of images

compared to the iCubWorld28 dataset. Moreover, it presents only faces and it is not

useful for generic object recognition.

3.1.3 NORB dataset

NORB is one of the best dataset to study invariant object recognition. It is composed

by 50 uniform-colored objects under 36 azimuths, 9 elevations, and 6 lighting conditions

(for a total of 194,400 individual images). The objects are 10 instances of 5 classes. The

3. CORe50 35

image resolution and image format are 640 × 480 and RGB respectively. Furthermore,

temporally coherent video sequences can be generated from NORB by randomly walking

the 3D variation space.

Thus, the NORB dataset contains a significant number of frames and variations. On the

other hand, the images recorded are untextured toys without natural background.

3.2 CORe50: an overview

Maltoni and Lomonaco introduce CORe50 [3] as a new dataset and benchmark for

continuous object recognition. Being specifically designed for incremental learning strate-

gies, Core50 is well-suited to this purpose. As we have seen in the previous sections,

several datasets used for incremental learning lack of fundamental properties.

CORe50 consists of 50 domestic objects belonging to 10 classes: markers, plug

adapters, balls, mobile phones, scissors, light bulbs, cans, glasses, cups and remote con-

trols (see Figure 3.1)

Figure 3.1: The 50 different objects of CORe50. Each column denotes one of the 10

categories [3].

CORe50 supports classification at object level (50 classes) or at category level (10

classes). The former (the default one) is much more challenging because objects of the

same class are very difficult to be distinguished under certain poses. The dataset has

3. CORe50 36

been collected in 11 distinct sessions (8 indoor and 3 outdoor) characterized by differ-

ent backgrounds and lighting (see Figure 3.1). For each session and for each object, a

15 seconds video (at 20 fps) has been recorded with a Kinect 2.0 sensor delivering 300

RGB-D frames. The presence of temporal coherent sessions (i.e., videos where objects

gently move in front of the camera) is another key characteristic since temporal smooth-

ness can be employed to ease object detection, improve classification accuracy and to

address semi-supervised (or unsupervised) scenarios. The camera point of view coincides

with the operator eyes. Objects are hand hold by the operator, therefore relevant object

occlusions are often produced by the hand itself. Moreover, a point-of-view with objects

at grab-distance is appropriate for a number of robotic applications.

Figure 3.2 depicts one frame of the same object throughout the eleven session. Note

the variability in terms of illumination, background, blurring, occlusion, pose and scale.

Figure 3.2: One frame of the same object throughout the 11 acquisition sessions [3].

3.2.1 RGB-D dataset

An important feature of CORe50 is the opportunity to run experiment exploiting

the depth information of the images. The Kinect RGB-D cameras provide dense depth

estimations together with color images at a high frame rate. During acquisition, the

Kinect records 1024 × 575 RGB + 512 × 424 Depth frames. A central region, in the

acquisition interface, points out where the object should be kept (see Figure 3.3). This

can be used for reducing (cropping) the RGB frame size to 350× 350.

Because only a small fraction of the RGB frame contains the object of interest, it

3. CORe50 37

Figure 3.3: The Acquisition interface [3].

has been exploited temporal information to crop from each 350× 350 frame a 128× 128

box around the object. In most cases, the motion-based tracker implemented to this

purpose fully contains the objects in the crop window. Nevertheless, sometimes objects

can extend beyond border due to tracking imperfections.

Moreover, since the motion based tracker is not always able to identify an object in the

first frames of a session, less images have been acquired for the cropped dataset.

In summary, three dataset have been produced:

• CORe50 350x350 rgb: composed by 165,000 350 × 350 images: 11 sessions ×
50 objects × 300 frames per session.

• CORe50 128x128 rgb: composed by 164,866 128 × 128 images: 11 sessions ×
50 objects × ∼ 300 frames per session.

• CORe50 512x424 depth: composed by 164,740 512 × 424 images: 11 sessions

× 50 objects × ∼ 300 frames per session.

Note that also CORe50 512x424 depth presents less images. This is due to the fact

that, during acquisition, the Kinect depth sensor was not perfectly synchronized with

3. CORe50 38

the RGB camera.

The Kinect 2.0 contains a Time-of-Flight (ToF) camera and determines the depth by

measuring the time emitted light takes from the camera to the object and back. There-

fore, it constantly emits infrared light with modulated waves and detects the shifted

phase of the returning light [37]. In the following, we refer to both cameras (Pattern

Projection and ToF) as depth camera.

The color and depth camera have different resolutions and are not perfectly aligned,

so their view areas differ. Consequently, the color camera covers a wider area than the

depth camera. Moreover, elements visible from one camera may not be visible from the

other. Figure 3.4 shows an example of the same scene recorded by the color camera

(left) and depth camera (right). We will refer to the two images as color frame and

depth frame. In particular, the depth frame is a 512× 424 grayscale image. The scale of

grays map the raw depth information (expressed in mm): dark colors represent object

closeness. Black pixels indicate portion of the image with no depth information. The

color frame is a 350× 350 cropped RGB image as introduced before.

Figure 3.4: Color frame and corresponding depth frame.

In order to correctly exploit the depth information, the depth frame is needed to be

mapped to the color frame.

3. CORe50 39

3.3 Integration of the depth information

In light of the two different view areas recorded by color and depth camera, a script

for mapping the depth frame to the color frame has been implemented.

The integration of the depth information is based on functions within the Kinect for

Windows SDK 2.0. The SDK provides tools, APIs both native and managed and sup-

port for the features of the Kinect (color images, depth images, audio input, etc.)

In particular, the APIs include an handy utility named Coordinate Mapper.

CoordinateMapper’s typical job is to identify whether a point from the 3D space corre-

sponds to a point in the color or depth 2D space and vice-versa. It can also be used to

directly map 2D locations from the depth frame to color frame and vice-versa.

Thus, we have implemented a script in C# that takes in input the CORe50 512x424 depth

dataset and produces, for each depth frame, a RGBA frame of the correct mapping (depth

to color). The alpha channel has value 0 for all the pixels where no depht information is

available, 255 otherwise.

3.3.1 Script details

The algorithm can be divided into four phases. In the following, each phase will be

described along with snippets of code.

The first phase regards input handling and processing. For each session and for each

object, all the depth frames are retrieved. The images are in PNG format, thus they

require an appropriate decoding in order to operate on pixels.

1 // FIRST PHASE

2 In i t i a l i z eComponent () ;

3 s enso r = KinectSensor . GetDefault () ;

4 coordinateMapper = senso r . CoordinateMapper ;

5 s enso r . Open () ;

6 for (int s = 1 ; s < 12 ; s++)

7 {
8 for (int o = 1 ; o < 51 ; o++)

9 {
10 for (int index = 0 ; index < 300 ; index++)

3. CORe50 40

11 {
12 // Open a Stream and decode a Depth PNG image

13 Stream imageStreamSource = new

Fi leStream (” . . / core50 512x424 depth / s ” + s + ”/o” + o + ”/D ”

+ formatInt (index , 3) + ” . png” , FileMode .Open ,

F i l eAcce s s . Read , F i l eShare . Read) ;

14 PngBitmapDecoder decoder = new

PngBitmapDecoder (imageStreamSource ,

BitmapCreateOptions . PreservePixelFormat ,

BitmapCacheOption . Defau l t) ;

15 bitmapSourceDepthFrame = decoder . Frames [0] ;

16 byte [] depthImageArray = new byte [depthFrameDim] ;

17 int s t r i d e = (int) bitmapSourceDepthFrame . PixelWidth ∗
(bitmapSourceDepthFrame . Format . B i t sPerP ixe l / 8) ;

18 bitmapSourceDepthFrame . CopyPixels (depthImageArray , s t r i d e , 0) ;

19 // GrayScal ing depth Frame in input

20 bitmapSourceDepthFrameGrayScale =

GetBmpSourceFromByteArray (depthImageArray , 512 , 424 , 1) ;

In the second phase, the depth frame is transformed into an array of ushort and

passed as input to the function MapColorFrameToDepthSpace(), method of the Coordi-

nate Mapper class. This function takes in input the 512× 424 depth frame (as an array

of ushort) and return an array of 1920× 1080 (color frame max resolution) DepthSpace-

Points.

Depth space is the term used to describe a 2D location on the depth frame. A DepthSpace-

Point is composed by two coordinates, X and Y. They specify a row/column location of

a pixel where X is the column and Y is the row. So X = 0, Y = 0 corresponds to the

top left corner of the image and X = 511, Y = 423 (width-1, height-1) is the bottom

right corner of the image.

The output array maps for each pixel of the color frame (1920×1080) a DepthSpacePoint

that indicates the position on the depth frame (Depth Space).

1 // SECOND PHASE

2 ushort [] depthArray = Process ingArray (depthImageArray) ;

3 i f (p r o c e s s i ng) {
4 depthSpacePoints = new DepthSpacePoint [kinectColorImageDim] ;

5 coordinateMapper . MapColorFrameToDepthSpace (depthArray ,

3. CORe50 41

depthSpacePoints) ;

6 }

In the third phase, the MappingDepthToColorFrame with DepthSP() function is

called in order to map the depth information to the color frame. This method iter-

ates on all the DepthSpacePoints of the output array from the previous phase. If a

DepthSpacePoint maps to a valid point in Depth Space, an RGBA pixel expressing the

depth information in scale of grays is assigned to a 1920 × 1080 mapping image array

(original resolution of the color image). Again, depth information is represented with a

scale of grays where closeness is expressed with light colors (dark colors otherwise).

The if condition at the lines 10/11 checks that depth pixel coordinates are not negative

infinity which represent unknown values of depth. In this case the Kinect depth camera

could not record depth information due to infrared shadow or noise in the signal.

1 // THIRD PHASE

2 public byte [] MappingDepthToColorFrame with DepthSP (DepthSpacePoint []

depthspacePoints , byte [] depthImageArray) {
3 byte [] mappingImageArray = new byte [kinectColorImageDim ∗ 4] ; //

1920 x1080 ∗ 4 (RGB−A)

4 // Loop over each row and column o f the c o l o r image

5 for (int co lo r Index = 0 ; co l o r Index < kinectColorImageDim ∗4 ;
co l o r Index=co lo r Index+4){

6 f loat colorMappedToDepthX = depthspacePoints [co l o r Index / 4] .X;

7 f loat colorMappedToDepthY = depthspacePoints [co l o r Index / 4] .Y;

8

9 // The s e n t i n e l va lue i s −i n f , −i n f , meaning that no depth p i x e l

cor responds to t h i s c o l o r p i x e l .

10 i f (! f loat . I sN e g a t i v e I n f i n i t y (colorMappedToDepthX) &&

11 ! f loat . I sN e g a t i v e I n f i n i t y (colorMappedToDepthY)) {
12 // Make sure the depth p i x e l maps to a va l i d po int in Depth space

13 int depthX = (int) (colorMappedToDepthX + 0.5 f) ;

14 int depthY = (int) (colorMappedToDepthY + 0.5 f) ;

15 // Are coo rd ina t e s i n s i d e the 512x424 Depth Frame?

16 i f ((depthX >= 0) && (depthX <= 512) && (depthY >= 0) && (depthY

<= 424)) {
17 int colorMappedToDepthXnorm =

(int)Math . Floor (colorMappedToDepthX) ;

3. CORe50 42

18 int colorMappedToDepthYnorm =

(int)Math . Floor (colorMappedToDepthY) ;

19 int depthIndex = (depthY ∗ 512) + depthX ;

20 mappingImageArray [co l o r Index] = (byte) (255 −
depthImageArray [depthIndex]) ;

21 mappingImageArray [co l o r Index + 1] = (byte) (255 −
depthImageArray [depthIndex]) ;

22 mappingImageArray [co l o r Index + 2] = (byte) (255

−depthImageArray [depthIndex]) ;

23 mappingImageArray [co l o r Index + 3] = 255 ;

24 }
25 } else {
26 mappingImageArray [co l o r Index] = 0 ; // Black

27 mappingImageArray [co l o r Index + 1] = 0 ;

28 mappingImageArray [co l o r Index + 2] = 0 ;

29 mappingImageArray [co l o r Index + 3] = 0 ;

30 }
31 }
32 return mappingImageArray ;

33 }

Finally, the 1920× 1080 mapping image (RGBA format) from the previous phase is

scaled (1024 × 575 acquisition resolution) and cropped. The resulting 350 × 350 image

(mapping frame) is finally saved to PNG format.

1 //FOURTH PHASE

2 byte [] mappingImageArrayDepthReverse =

MappingDepthToColorFrame with DepthSP (depthSpacePoints ,

depthImageArray) ;

3 mappingBmpSourceDepthReverse =

GetBmpSourceFromByteArray (mappingImageArrayDepthReverse , 1920 , 1080 ,

4) ;

4 bfDepthSpace = (BitmapFrame)mappingBmpSourceDepthReverse . Clone () ;

5 TransformedBitmap tbColorSpaceReverse = new

TransformedBitmap (bfDepthSpace , new ScaleTransform (sca l e , s ca l e , 0 ,

0)) ;

6 bfDepthSpace = BitmapFrame . Create (tbColorSpaceReverse) ;

7 CroppedBitmap chainedReverse = new CroppedBitmap (bfDepthSpace ,

r e c t ang l eCo l o r) ;

3. CORe50 43

8 BitmapFrame bfcropReverse = BitmapFrame . Create (chainedReverse) ;

9 bfDepthSpace = (BitmapFrame) bfcropReverse . Clone () ; // cropped

10 SaveBmpFromBitmapSource (bfDepthSpace , index , s , o) ;

The final output of the script is a dataset

Figure 3.5 illustrates the color frame (left), the mapping frame (right), the overlap

of the color frame over the mapping frame for a specif threshold (overlap frame) and a

rectangular scale of grays used to map the distance information.

Visualizing the overlap frame provides a qualitative method to evaluate the correctness

of mapping. Note that the blue color represents portions of the image with unknown

depth values.

Figure 3.5: Evaluation of the correct mapping

Moreover, the cropping coordinates previously found by the motion-based tracker

algorithm have been saved to .txt file. Therefore, the 350×350 mapping frame is cropped

to 128× 128 box around th object. In conclusion, two datasets have been produced:

• CORe50 350x350 depthMap: composed by 164,606 350×350 images in RGBA

format.

• CORe50 128x128 depthMap: composed by 164,606 128×128 images in RGBA

format.

Chapter 4

Strategies for preprocessing depth in

CORe50

“The goal is to turn data into information, and information into insight. ”

- Carly Fiorina, former CEO, Hewlett-Packard Co.

In this chapter we discuss different approaches for transforming depth into a repre-

sentation which is easily interpretable by a CNN or others classifiers. Before using CNN

for object recognition tasks, the image data needs to be carefully prepared. After per-

forming the RGB-D mapping, as shown in the previous chapter, for each RGB dataset

(128 × 128 and 350 × 350), CORe50 has an equivalent RGBA dataset that express the

depth information in the form of grayscale intensity.

Specifically, it is less computationally expensive to work with 128×128 images, therefore

preprocessing strategies and related experiments are executed on this image size.

Several processing approaches can be taken in consideration when training a CNN with

RGB-D images. In fact, before running CNN training experiments, it is fundamental to

determinate an effective strategy for exploiting the depth information. Three strategies

have been identified, all of them lead to different experimental results which will be dis-

cussed in the next chapter. In the following sections, a detailed description for each of

the processing strategies is provided:

• Background removal described in section 4.1;

44

4. Strategies for preprocessing depth in CORe50 45

• RGB-D as RGBA described in section 4.2;

• Feature extraction described in section 4.3.

4.1 Background removal

The background removal approach aims to exploit the depth information in order to

remove confounding background in RGB images. This will let the CNN focus on the

object’s region of interest (foreground). The preprocessing pipeline consist of two main

phase: segmentation and background fading .

The former takes in input RGBA depth frames and returns a binary image (pixels have

only two possible values) where black and white represent foreground and background

respectively. We will refer to this binary image as segmentation mask.

The background fading phase takes in input RGB images and their corresponding seg-

mentation mask in order to identify foreground and background pixels. Subsequently, it

fades the background from the RGB image according to the distance from the foreground

pixels.

4.1.1 Segmentation

Segmentation aims to transform the mapping frame into a binary image. To this

purpose, image thresholding, the simplest method of image segmentation, is employed.

The mapping frame is a grayscale RGBA image where the alpha channel has only two

values: 255, meaning presence of depth information and 0, meaning absence of depth

information.

Let T be some fixed constant (threshold), (x, y) two coordinates which identify a pixel and

let I be a function that returns the pixel color intensity, we can define the thresholding

as a function:

t(x, y) =

{
black(x, y), if I(x, y) > T

white(x, y), otherwise

4. Strategies for preprocessing depth in CORe50 46

where black(x,y) and in white(x,y) are two methods that color a pixel in black and

white respectively.

The thresholding methods tested in this work can be categorized in three classes: static

thresholding (or global thresholding), dynamic thresholding, hybrid thresholding. In static

thresholding the threshold value T is specified before the computation for all the dataset

images, while in dynamic thresholding for each image of the dataset a specific threshold

value is calculated. Hybrid thresholding first executes a static thresholding and then

tries to perform a dynamic thresholding.

In figure 4.1, it is shown a 128 × 128 mapping frame and its histogram. Note that

pixels with zero in the alpha channel are expressed with the black color. The portion of

mapping frame with no depth information will be referred as black portion.

Figure 4.1: A 128× 128 mapping frame and its histogram

Most of the mapping frames present histograms with three peaks like the one in the

figure above (from left to right): black portion peak, background peak and foreground

peak.

Peaks and valleys of the image histogram can help in picking the appropriate value for

the threshold. Generally, some factors affects the suitability of the histogram for guiding

the choice of the threshold:

• the separation between peaks;

• the noise content in the image;

• the relative size of objects (foreground) and background;

Dynamic thresholding has been the first tested approach. The Otsu’s Binarization

[38] is used to find an ad hoc threshold value for each image in input. The Otsu’s Bina-

4. Strategies for preprocessing depth in CORe50 47

rization automatically calculates a threshold value from image histogram for a bimodal

image (bimodal image is an image whose histogram has two peaks). For images which

are not bimodal, Otsu’s Binarization won’t be accurate images.

Even though the black portion peak is cleared away (assigned to the background peak)

and the image noise is removed, the Otsu’s Binarization fails to find an acceptable thresh-

old value for several images (values too low).

A function for finding exactly two peaks from the histogram of an image has been em-

ployed over the whole dataset. The table below shows the success rate for each of the

dataset sessions.

Session Success rate in finding two peaks Percentage of the black portion

1 71.05 10.02 %

2 76.40 9.94 %

3 67.24 4.46 %

4 0.17 36.80 %

5 7.17 20.51 %

6 30.48 12.07 %

7 73.48 5.56 %

8 88.53 15.74 %

9 80.10 8.15 %

10 0.45 42.04 %

11 0.68 32.49 %

Table 4.1: Success rate in finding two peaks and percentage of the black portion.

By looking at the success rate of session 4 (outdoor),5 (indoor),10 (outdoor) and 11

(outdoor), we understand why the Otsu’s binarization doesn’t perform well. To note

that the Otsu’s binarization uses a different algorithm for finding two peaks, therefore it

could outperform the table’s results.

Furthermore, we have calculated the percentage of the black portion over the eleven ses-

sions, as shown in the third column of the table above. Again results diverge significantly

for session 4, 5, 10 and 11.

4. Strategies for preprocessing depth in CORe50 48

The histogram in figure 4.2 belongs to an object from session 4. Most of the objects’

histograms from outdoor sessions present noise, an high percentage of black portion,

several short peaks and an unbalanced relative size of foreground and background.

Figure 4.2: Typical histogram of objects recorded in outdoor sessions

In summary, an accurate dynamic thresholding is quite tough to perform due to the

complexity and heterogeneity of the dataset.

On the other hand, static thresholding guarantees a certain segmentation quality over

the whole dataset.

For instance, the Otsu’s Binarization finds, for several images, low threshold values which

range from 30 to 70. Consequently, most of the background will not be removed but

considered foreground (object’s region of interest).

The static thresholding approach has been implemented with a global threshold value of

216 which corresponds approximately to 1300 millimeters.

As expected, the resulting segmentation masks have demonstrated to be significantly

more accurate for outdoor sessions and to present more background noise in the indoor

sessions. This has led to conceive and implement the hybrid thresholding.

Indeed the hybrid thresholding first executes a static thresholding with a global threshold

value of 209 and then performs a dynamic thresholding to achieve a more accurate

segmentation. Note that before performing the second dynamic thresholding, foreground

pixels are left unchanged (not colored in black). Then we identify relevant peaks from the

foreground histogram, according to some specific constrains. Finally a weighted average

of the selected peaks is performed in order to assess the dynamic threshold value.

Finally, two 128× 128 segmentation mask’s datasets have been produced: one with the

static thresholding approach and the other one with hybrid thresholding approach. After

4. Strategies for preprocessing depth in CORe50 49

thresholding, morphological operations of dilation have been performed on both datasets.

Figure 4.3: Static thresholding (center) and relative dilation operation (right).

Indeed, some object classes, among which scissors and glasses, require operations of

dilation. Unfortunately, for these object classes, the recorded depth information is frag-

mentary, noisy and inaccurate due to limitations of the Kinect depth recording system.

Dilation is a morphological operator that gradually enlarge the boundaries of regions of

foreground pixels (black pixels in this case).

Figure 4.3 demonstrates that dilation improves the segmentation accuracy, incorporating

important foreground pixels. On the negative side, dilation adds background noise. A

good compromise was achieved iterating dilation operations only on particular objects

classes (glasses, scissors, mobile phones) of the training set.

Figure 4.4 and 4.5 illustrate a comparison between the segmentation maps produced with

hybrid (left) and static (right) thresholding.

Figure 4.4: Hybrid (left) thresholding outperform static (right) thresholding.

4. Strategies for preprocessing depth in CORe50 50

In the first one, the hybrid approach segments well the image foreground (hand hold

object). Instead the static approach considers most of the background as foreground.

Conversely, figure 4.5 shows that static thresholding is more accurate (it segments better

the object shape), although it adds some background noise.

Figure 4.5: Static (right) thresholding outperform hybrid (left) thresholding.

In conclusion two segmentation datasets have been produced:

• CORe50 128x128 Mask hybrid: composed by 164,606 128× 128 grayscale im-

ages

• CORe50 128x128 Mask static: composed by 164,606 128 × 128 grayscale im-

ages

The segmentation procedure for CORe50 is not straight due to the high variance of the

depth information. The Kinect depth recording system is the main responsible of such

complexity. Indeed we have identified issues only during the segmentation of particular

sessions or object classes.

Either the static and the hybrid approach seem valid solutions (each one has pros and

cons), thus we have decided to run experiments on both, in order to understand which

one is the best.

4.1.2 Background fading

In the background fading phase, the segmentation mask is used to identify foreground

pixels and background pixels. Then, each background pixel is faded to a mean image

4. Strategies for preprocessing depth in CORe50 51

pixel (gray color) on the basis of its pixel distance to the nearest foreground pixel.

The python script that implements the background fading phase is shown below.

1 # I n i t i a l i z a t i o n

2 mask main fo lder path = ’ . . / core50 128x128 Mask hybridApproach/ s ’

3 ma in f o l d e r d s t pa th = ’ . . / core50 128x128 backgroundRemoved hybrid / s ’

4 c o l o r ma in f o l d e r pa th = ’ . . / core50 128x128 / s ’

5 mask img path = ’ ’

6 co lo r img path = ’ ’

7 dest img path = ’ ’

8 s e s s i o n s = 12

9 ob j e c t s = 51

10 img s i z e = 128 .0 ∗ 128 .0

11 mean img = np . z e r o s ((128 , 128 , 3) , np . u int8)

12 # gray c o l o r

13 mean img [: , : , 0] = 104

14 mean img [: , : , 1] = 117

15 mean img [: , : , 2] = 123

16

17 for s e s s in range (7 , s e s s i o n s) :

18 os . mkdir (ma in f o l d e r d s t pa th + ”%s/” % (s e s s))

19 for obj in range (1 , ob j e c t s) :

20 os . mkdir (ma in f o l d e r d s t pa th + ”%s/o%s/” % (se s s , obj))

21 mask path = mask main fo lder path + ”%s/o%s/” % (se s s , obj)

22 co l o r pa th = co l o r ma in f o l d e r pa th + ”%s/o%s/” % (se s s , obj)

23 f o l d e r s i z e = len (os . walk (mask path) . next () [2])

24 f i r s t f i l e p a t h = Path (mask path + ”D %02d %02d %03d . png” % (se s s ,

obj , 0))

25 s t a r t = 0

26 while not f i r s t f i l e p a t h . i s f i l e () :

27 s t a r t = s t a r t + 1

28 f i r s t f i l e p a t h = Path (mask path + ”D %02d %02d %03d . png” % (se s s ,

obj , s t a r t))

29 f o l d e r s i z e = f o l d e r s i z e + s t a r t

30

31 for i in xrange (f o l d e r s i z e) :

32 mask img path = mask path + ”D %02d %02d %03d . png” % (se s s , obj ,

i)

4. Strategies for preprocessing depth in CORe50 52

33 co lo r img path = co l o r pa th + ”C %02d %02d %03d . png” % (se s s ,

obj , i)

34 # load image in g r ay s c a l e

35 mask = cv2 . imread (mask img path , 0)

36 ## load in BGR format , unchanged

37 co lo r img = cv2 . imread (co lor img path , −1)
38 # i f the re i s n ’ t any image jump i t e r a t i o n

39 i f (mask i s None) :

40 continue

41 # get d i s t anc e from foreground p i x e l s

42 d i s t = cv2 . d istanceTransform (mask , cv2 . DIST L2 ,

cv2 .DIST MASK PRECISE)

43 max = np .max(d i s t)

44 g = d i s t / (max / 4)

45 g [d i s t > max / 4] = 1 # f u l l gray po in t s

46 g3 = cv2 . merge ((g , g , g))

47 # output image

48 r e s u l t = co lo r img ∗ (1 − g3) + mean img ∗ g3

49 dest img path = ma in f o l d e r d s t pa th + ”%s/o%s/” % (se s s , obj) +

”D %02d %02d %03d . png” % (se s s , obj , i)

50 cv2 . imwrite (dest img path , r e s u l t)

The function cv2.distanceTransform(), at line 44, takes in input the segmentation

mask and returns an image of the same size where each pixel expresses the minimum

distance from foreground pixels (foreground pixels has value 0). At line 50, the output

image is created according the pixel value of g3.

Figure 4.6 exhibits the output of the background removal pipeline for a given 128× 128

RGB image and its segmentation map.

The fading operation allows the foreground to gradually turn to gray (background). In

this way, when the segmentation map is not accurate, important object pixels can be

part of the foreground.

In conclusion, two datasets have been generated according to the two segmentation

strategies:

• CORe50 128x128 backgroundRemoved hybrid: composed by 164,866 128×
128 RGB images

4. Strategies for preprocessing depth in CORe50 53

Figure 4.6: Background removal output (right) for an RGB image (left) and its segmen-

tation map (center)

• CORe50 128x128 backgroundRemoved static: composed by 164,866 128 ×
128 RGB images

Notice that both datasets have 164,866 images, instead of 164,606 which is the total

for each segmentation datasets. Indeed, both the datasets have been integrated with

images from CORe50 128x128 rgb. Although we cannot remove background from the

integrated images (we don’t actually have a segmentation map), it’s fundamental to

compare accuracy on datasets of same size.

4.2 RGB-D as RGBA

The RGB-D as RGBA approach intends to generate RGBA images which use the

alpha channel to represent the depth information. The depth information corresponds

to the two segmentation approaches of the previous section: static and hybrid thresh-

olding. In particular, again, it is applied the fading operation to both the segmentation

mask techniques. In details, an RGBA output image contains on the alpha channel the

depth information extracted from the static or hybrid segmentation mask, and on the

RGB channels the corresponding color information from CORe50 128x128 rgb.

We developed a script that generates an RGBA output image for each couple of im-

ages from CORe50 128x128 rgb and the relative segmentation mask dataset (for both

the segmentation approaches). Because CORe50 128x128 rgb has a greater number of

images than both the segmentation mask datasets, some RGBA output images don’t

4. Strategies for preprocessing depth in CORe50 54

have corresponding depth information (in this case the alpha channel is set to 255). The

python code that implements the RGB-D as RGBA approach is shown below.

1 # I n i t i a l i z a t i o n

2 mask main fo lder path = ’ . . / co re50 128x128 Mask s ta t i c / s ’

3 ma in f o l d e r d s t pa th = ’ . . / c o r e 50 128x128 r gba s t a t i c / s ’

4 c o l o r ma in f o l d e r pa th = ’ . . / core50 128x128 rgb : / s ’

5 mask img path = ’ ’

6 co lo r img path = ’ ’

7 dest img path = ’ ’

8 i s c o r e 5 0 r g b = False

9 s e s s i o n s = 12

10 ob j e c t s = 51

11 img s i z e = 128 .0 ∗ 128 .0

12 for s e s s in range (1 , s e s s i o n s) :

13 os . mkdir (ma in f o l d e r d s t pa th + ”%s/” % (s e s s))

14 for obj in range (1 , ob j e c t s) :

15 os . mkdir (ma in f o l d e r d s t pa th + ”%s/o%s/” % (se s s , obj))

16 mask path = mask main fo lder path + ”%s/o%s/” % (se s s , obj)

17 co l o r pa th = co l o r ma in f o l d e r pa th + ”%s/o%s/” % (se s s , obj)

18 f o l d e r s i z e = len (os . walk (mask path) . next () [2])

19 f i r s t f i l e p a t h = Path (mask path + ”D %02d %02d %03d . png” % (se s s ,

obj , 0))

20 s t a r t = 0

21 while not f i r s t f i l e p a t h . i s f i l e () :

22 s t a r t = s t a r t + 1

23 f i r s t f i l e p a t h = Path (mask path + ”D %02d %02d %03d . png” %

(se s s , obj , s t a r t))

24 f o l d e r s i z e = f o l d e r s i z e + s t a r t

25 for i in xrange (f o l d e r s i z e) :

26 co lo r img path = co l o r pa th + ”C %02d %02d %03d . png” % (se s s ,

obj , i)

27 co lo r img = cv2 . imread (co lor img path , −1)
28 i f not i s c o r e 5 0 r g b :

29 mask img path = mask path + ”D %02d %02d %03d . png” % (se s s ,

obj , i)

30 # load in g r ay s c a l e 0

31 mask = cv2 . imread (mask img path , 0)

4. Strategies for preprocessing depth in CORe50 55

32 # i f the re i s n ’ t any image jump i t e r a t i o n

33 i f (mask i s None) :

34 continue

35 # Fading Operation

36 d i s t = cv2 . d istanceTransform (mask , cv2 . DIST L2 ,

cv2 .DIST MASK PRECISE)# get d i s t anc e from black p i x e l s

37 max = np .max(d i s t)

38 g = d i s t / (max / 4)

39 g [d i s t > max/4] = 0

40 focus = g [d i s t < max / 4]

41 g [d i s t < max / 4] = (1 − f o cu s) ∗ 255

42 g [d i s t == 0] = 255

43 else :

44 g = np . ones (128∗128 , dtype=np . u int8) . reshape ((128 , 128)) ∗255
45 b channel , g channel , r channe l = cv2 . s p l i t (co l o r img)

46 rgba = cv2 . merge ((b channel , g channel , r channe l ,

g . astype (’ u int8 ’)))

47 dest img path = ma in f o l d e r d s t pa th + ”%s/o%s/” % (se s s , obj) +

”D %02d %02d %03d . png” % (se s s , obj , i)

48 cv2 . imwrite (dest img path , rgba)

Two executions of the script above are needed to produce two output datasets, one

takes in input the static segmentation mask while the other takes in input the hybrid

segmentation mask.

• CORe50 128x128 rgba hybrid: composed by 164,866 128×128 RGBA images

• CORe50 128x128 rgba static: composed by 164,866 128× 128 RGBA images

An additional dataset is produced if the boolean flag is core50 rgb is set to true. In

this case, the RGBA version of CORe50 128x128 rgb (RGB format) is generated:

• CORe50 128x128 rgba original: composed by 164,866 128 × 128 RGBA im-

ages, where the alpha channel has fixed value of 255.

Notice that again, like in the previous section, CORe50 128x128 rgba hybrid and

CORe50 128x128 rgba static have been integrated with images from CORe50 128x128 rgba

in order to have the same size.

4. Strategies for preprocessing depth in CORe50 56

4.3 Feature extraction

The Feature extraction strategy employs the depth information in a totally different

process respect the two other strategies. An already trained CNN is used to extract

features from depth images which are first converted in a heat map color scale (RGB

format). This strategy can be summed up in two steps:

• The first step is to convert CORe50 128x128 depthMap to a RGB format. In

particular, the scale of grays is converted to an heat map color scale. The output

dataset is called CORe50 128x128 depthMap heatmap .

• In the second step a CNN acts as a feature extractor. Images from CORe50 128x128

and CORe50 128x128 depthMap heatmap are forwarded throughout a CNN. For

each image, high-level features are extracted from a deep convolutional layer. Fi-

nally, feature vectors of the same image are concatenated. As a result, the first

half of a feature vector represents depth features while the second half expresses

typical color image features.

The feature extraction strategy produces a 2-dimensional data structure which has

on the rows, CORe50 images and on the columns concatenated vectors which express

features of the image depth (RGB heatmap) and image color (RGB).

In figure 4.7, the result of mapping a grayscale image to a color heat map is illustrated.

In this example the final feature vector is a concatenation of the two feature vectors that

are extracted from the original color image and the color heat map image, respectively.

Figure 4.7: An RGB color image (left), its depth grayscale representation (center) and

its depth color heat map representation (right).

Chapter 5

Experiments and Results

“Experimental confirmation of a prediction is merely a measurement. An

experiment disproving a prediction is a discovery. ”

- Enrico Fermi, Nobel Prize in Physics (1938)

In this chapter, experimental results from comparing CORe50 with and without the

depth information are reported. Three different class of experiments have been executed

according to the three different strategies introduced in chapter 4.

The feature extraction strategy is best suited to perform training on a linear classifier

like SVM. On the contrary, the other two strategies conduct training on a CNN.

In the first section we introduce Caffe, the Deep Learning framework used to implement

experiments. In the second section a description of the employed CNN an its config-

uration is provided. In the third section results of our experiments are reported and

discussed.

5.1 Caffe

Caffe is a deep learning open source framework maintained and developed by the

Berkeley Vision and Learning Center (BVLC) with the help of an active community of

contributors on GitHub [39]. Caffe provides a complete toolkit for training, testing, fine-

tuning, and deploying models DNNs. Caffe’s implementation is completely C++ based

57

5. Experiments and Results 58

with CUDA used for GPU computation, and well-supported bindings to Python/Numpy

and MATLAB. Caffe has several important properties which contribute to make it one

of the most popular deep learning software tools:

• Modulairty:: The software is as modular as possible, allowing easy extension to

new data formats, network layers, and loss functions.

• Separation of representation and implementation: Caffe model definitions

are written as config files using the Protocol Buffer language. It supports network

architectures in the form of arbitrary directed acyclic graphs. By setting a single

flag, it is possible to switch between CPU and GPU.

• Speed: Caffe can process over 60M images per day with a single NVIDIA K40

GPU. That’s 1 ms/image for inference and 4 ms/image for learning and more recent

library versions and hardware are faster still [11].

• Python and MATLAB bindings: Caffe presents Python and MATLAB bind-

ings in order to provide rapid prototyping and interfacing with existing research

code. Moreover, both languages can be used to build networks and classify inputs.

• Pre-trained reference models: Caffe Model zoo provides reference models ap-

plied for problems ranging from simple regression, to large-scale visual classifica-

tion, to speech and robotic applications.

In the following subsections we provide an overview of the Caffe computational model

and a description of its command line and Python interfaces.

5.1.1 Anatomy of the Caffe computational model

Caffe defines a net layer-by-layer in its own model schema. The network architecture

is defined in the network.prototxt. This file defines the entire model bottom-to-top from

input data to loss. The solver.prototxt file orchestrates model optimization by coordinat-

ing the network’s forward inference and backward gradients to form parameter updates

that attempt to improve the loss.

As data and derivatives pass through the network in the forward and backward phases

5. Experiments and Results 59

Caffe stores, communicates, and manipulates the information as blobs. A blob is the

standard array and unified memory interface for the framework. It works as a wrapper

over the actual data being processed and passed along by Caffe. For instance a blob

holds batches of images, model parameters, or derivatives for optimization.

The layer is the essence of a model and the fundamental unit of computation. Caffe

provides a complete set of layer types needed for state-of-the-art visual tasks. Basically,

layers apply typical CNN operations to blobs.

Figure 5.1: A Caffe layer [11]

Each layer determines three critical computations:

• Setup: initializes the layer and its connections once at model initialization.

• Forward: takes input from bottom blobs, computes the output and sends to the

top blobs.

• Backward: takes in input the gradient w.r.t. the top output, computes the gradi-

ent w.r.t. to the input and sends to the bottom. A layer with parameters computes

the gradient w.r.t. to its parameters and stores it internally.

Furthermore, it is possible to code custom layers with minimal effort due to the

modular composition of networks. A typical net begins with a data layer that loads from

5. Experiments and Results 60

disk and ends with a loss layer. Data layers accept different data formats: LEVELDB,

LMDB, HDF5 or or common image formats (PNG, JPEG, etc.). In the case we want to

pass raw images, it is necessary to define a list of images in the following format:

/path/to/folder/image1.png 2

/path/to/folder/image2.png 0

/path/to/folder/image3.png 1

/path/to/folder/image4.png 5

/path/to/folder/image5.png 1

...

...

/path/to/folder/imageN.png N-1

Caffe provides a binary file convert imageset, located in /CAFFE ROOT/build/tools,

that converts to the LMDB format a list of images like the one shown above. An example

of the command to generate an LMDB database for a list of training images is presented

below:

~$ $CAFFE_ROOT/build/tools/convert_imageset \ --shuffle \

/path/to/folder/imageslist \

/path/to/lmdb/train_lmdb

In conclusion, the Solver configured in solver.prototxt, optimizes a model by first

calling forward to yield the output and loss, then calling backward to generate the

gradient of the model, and then incorporating the gradient into a weight update that

attempts to minimize the loss [11]. Division of labor between the Solver, Net, and Layer

keep Caffe modular and open to development.

5.1.2 Command line and Python interfaces

In our experiments we have used the command line and python interfaces. The

command line is the caffe tool for model training, scoring, and diagnostics.

During training, caffe learns models from scratch, resumes learning from saved snapshots,

and fine-tunes models to new data and tasks. As an example, the following commands

5. Experiments and Results 61

can be run:

train CNN

caffe train -solver full/path/to/_solver.prototxt

resume training

caffe train -solver full/path/to/_solver.prototxt -snapshot

full/path/to/network_iter_5000.solverstate

fine -tune CaffeNet model weights for style recognition

caffe train -solver full/path/to/_solver.prototxt -weights

full/path/to/bvlc_reference_caffenet.caffemodel

The Python interface, pycaffe, is the caffe module for loading models, doing forward

and backward, handling IO, visualizing networks, and even instrument model solving.

All model data, derivatives, and parameters are exposed for reading and writing.

As an example, the code below loads the solver.prototxt and print information about

the first convolutional layer. Note that solver.prototxt contains the path of the net-

work.prototxt used for instantiating the model.

1 import numpy as np

2 import c a f f e

3

4 c a f f e . set mode gpu ()

5 s o l v e r = c a f f e . g e t s o l v e r (’ f u l l /path/ to / s o l v e r . p ro to txt ’)

6 s o l v e r o r i g i n a l . net . forward () # forwarding

7

8 print s o l v e r . net . params [’ conv 1 ’] [0] # conta in s the weight parameters

9

10 print s o l v e r . net . params [’ conv ’] [1] # conta in s the b i a s parameters

11

12 print net . b lobs [’ conv 1 ’] . data . shape

5.1.3 Network architecture

In our experiments we used the classic CaffeNet model provided in the Caffe library

[39] “Model Zoo ”. The BVLC reference CaffeNet, or simply CaffeNet, is based on the

5. Experiments and Results 62

well-known “AlexNet ”architecture proposed in [2] and trained on ImageNet. Generally,

227× 227 pixels is the typical input size of CNN models pre-trained on ImageNet.

Thus, first the CaffeNet needs to be adapted to work with CORe50’s image size of

128 × 128 pixels. This is simple for convolutional and pooling layers thanks to local

(shared) connections, while it is much more complicated for fully connected layers, whose

have a fixed number of weights based on the input image size.

With this respect, Maltoni et Lomonaco [3] reshaped the input volume to 3× 128× 128,

halved the number of units in the fully connected layers fc6 and fc7 (from 4096 to 2048)

and re-trained them from scratch. The resulting mid-size model present a significant

speedup at inference time without compromising significantly the model’s accuracy. We

also apply such transformation of the CaffeNet model, therefore we will refer to our

network as Mid-CaffeNet.

CaffeNet comprises 5 convolutional layers, each followed by a pooling layer, and 3 fully-

connected layers. The mid CaffeNet network.prototxt file describes the CNN architecture

layer by layer. Below, starting from data layer, we will introduce all the types of CNN

layers present in our Mid-CaffeNet model.

name: "ior50_mid_CaffeNet"

layer {

name: "ior50"

type:"ImageData"

top: "data"

top: "label"

include {

phase: TRAIN

}

transform_param {

mean_value: 104

mean_value: 117

mean_value: 123

}

image_data_param {

5. Experiments and Results 63

source: "../ filelist/train_filelist.txt"

batch_size: 256

shuffle: true

root_folder:

"/home/martin/Exps/core50_128x128_rgb/"

}

}

The data layer illustrated above includes the phase which can be train or test, the

location of the pre-calculated mean image and the input data parameters. The latter is

list of images in the format described in 5.1.1.

All Caffe layers present name, type, top and bottom parameters which identify the layer

position respect the network. Next we show an example definition of a convolutional

layer.

layer {

name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

param {

lr_mult: 1

}

param {

lr_mult: 2

}

convolution_param {

num_output: 96

kernel_size: 11

stride: 4

weight_filler {

type: "gaussian"

std: 0.01

5. Experiments and Results 64

}

bias_filler {

type: "constant"

value: 0

}

}

}

Note that weight filler and bias filler are responsible for network’s weights initializa-

tion. The parameters num output, kernel size and stride set up the convolution opera-

tion. The following layers are Pooling and ReLU.

layer {

name: "relu1"

type: "ReLU"

bottom: "conv1"

top: "conv1"

}

layer {

name: "pool1"

type: "Pooling"

bottom: "conv1"

top: "pool1"

pooling_param {

pool: MAX

kernel_size: 3

stride: 2

}

}

The last type of layer is a fully connected layer whose Caffe type is Inner Product. Note

that the num output parameter represent the number of output unit, exactly the half

respect the CaffeNet original model.

5. Experiments and Results 65

layer {

name: "mid_fc6"

type: "InnerProduct"

bottom: "pool5"

top: "mid_fc6"

param {

lr_mult: 10

}

param {

lr_mult: 20

}

inner_product_param {

num_output: 2048

weight_filler {

type: "gaussian"

std: 0.005

}

bias_filler {

type: "constant"

value: 1

}

}

}

5.2 Experimental Setup

Experiments have been conducted on two GPUs: NVIDIA Tesla C2050 and C2075

Computing Processors. The Caffe framework was used to run experiments which were

implemented with the python wrapper. In the following subsections we describe the

experiment’s overall design and we provide details about each scenario’s implementation.

5. Experiments and Results 66

5.2.1 Experiment introduction and scenarios

Each of the experiments conducted belongs to one of three different scenarios which

differs for training configuration and strategy. Each scenario adopts one of the strategies

(they share the same name) for depth preprocessing introduced in chapter 3.

In all the scenarios, we trained our models at object level which means each object is a

class (50 classes). In brief, we consider the following scenarios:

• Background removal (BR): in this scenario experiments consist in fine-tuning

a CNN model on datasets of RGB images. The dataset employed are the two

produced by the Background removal preprocessing strategies(hybrid, static) plus

the original CORe50 128x128.

• RGB-D as RGBA (RGBA): in this scenario color and depth information are

represented as RGBA images. Three experiments need to be executed according

to the three dataset (hybrid, static, original) produced by the relative strategy.

Training needs to be performed from scratch, because we don’t dispose of a model

with pre-trained weights on RGBA input.

• Feature extraction (FE): a CNN model is used to extract depth and original

color features, in form of feature vectors, from CORe50 128x128 depthMap heatmap

and CORe50 128x128, respectively. The 2-dimensional data structure containing

feature vectors is fed to a SVM. The trained SVM is employed to compute classi-

fication accuracy on test set.

All the scenarios share the same data partitioning. Three of the eleven sessions of

CORe50 have been selected for testing and the remaining 8 sessions are used for training:

• testing set: 3, 7, 10 (outdoor). Approximately 45.000 testing images;

• training set: 1, 2, 4 (outdoor), 5, 6, 8, 9, 11 (outdoor). Approximately 120.000

training images.

In addition, Mid-CaffeNet is the CNN model employed by all the scenarios. While

the overall network architecture remains fixed, some of the layer parameters may change

depending on the scenario’s context.

5. Experiments and Results 67

Also the solver.prototxt file configuration changes depending on the scenario, even though

we tried to keep it as static as possible. For this reasons, in the following subsections we

provide details about the implementation of each scenario.

5.2.2 BR scenario implementation

In this scenario, first we load CaffeNet’s pre-trained weights into our Mid-CaffeNet

and then we fine-tune the model over two datasets where background was removed

(hybrid, static). The solver.prototxt used to implement this scenario is shown below.

net: "../ mid_CaffeNet_network.prototxt"

test_iter: 225

test_interval: 1000

base_lr: 0.001

display: 20

max_iter: 50000

lr_policy: "step"

gamma: 0.1

momentum: 0.9

weight_decay: 0.0005

stepsize: 2000

snapshot: 5000

snapshot_prefix: "../ models/mymodel/"

solver_mode: GPU

random_seed: 0

The solver contains settings for performing model optimization, where the main param-

eters are:

• test iter specifies how many forward passes the test phase should carry out. In

the case of Mid-CaffeNet, testing batch size has value 200, covering the full 45.000

testing images;

• test interval indicates to test the model every 1.000 training iterations;

5. Experiments and Results 68

• base lr indicates the initial learning rate of the model. It can vary depending on

the specified lr policy ;

• lr policy indicates, according to some policy, how the learning rate should change

over time. In this case, the “step ”policy multiplies base lr by gamma every stepsize

iterations;

• gamma indicates how much the learning rate should change every time we reach

the next ”step”;

• stepsize: indicates how often (at some iteration count) that we should move onto

the next ”step” of training;

• momentum specifies how much of the previous weight will be retained in the new

calculation;

• weight decay specifies the factor of (regularization) penalization of large weights

• max iter specifies when the maximum number of iterations. In the case of Mid-

CaffeNet, training batch size has value 256, thus approximately just 469 training

iterations are needed to cover the full training set.

The following python code fragment illustrates a typical BR scenario implementation.

1 [. .]

2 c a f f e . s e t d e v i c e (0)

3 c a f f e . set mode gpu ()

4 #load ing s o l v e r

5 s o l v e r = c a f f e . g e t s o l v e r (” . . / s o l v e r . p ro to txt ”)

6 #load ing weights o f p r e t r a in ed model

7 s o l v e r . net . copy from (” . . / models / b v l c r e f e r e n c e c a f f e n e t . ca f f emode l ”)

8 #running model opt imiza t i on accord ing to s o l v e r ’ s s e t t i n g s :

9 s o l v e r . s o l v e ()

5.2.3 RGBA scenario implementation

The RGBA scenario implements training on 4-dimensional inputs from scratch which

means pre-trained weights are not loaded into the model, instead weights are randomly

5. Experiments and Results 69

initialized.

Fine-tuning a model that accepts 4-dimensional input, with one that was trained on dif-

ferent input dimensions, is not doable because models have a distinct number of weights

for each layer. Within the available caffe models, a model pre-trained on 4-dimensional

input was not found, therefore we trained our model from scratch. The solver.prototxt

used to implement this scenario is shown below.

1 net : ” . . / mid CaffeNet network . pro to txt ”

2 t e s t i t e r : 225

3 t e s t i n t e r v a l : 1000

4 b a s e l r : 0 .01

5 d i sp l ay : 20

6 max iter : 50000

7 l r p o l i c y : ” s tep ”

8 gamma: 0 .1

9 momentum : 0 .9

10 weight decay : 0 .0005

11 s t e p s i z e : 5000

12 snapshot : 5000

13 snap sho t p r e f i x : ” . . / models /mymodel/”

14 so lver mode : GPU

15 random seed : 0

As we can see, solver’s parameters are unchanged with respect to the BR scenario

except for the base lr and stepsize parameters.

At the beginning, when training a model from scratch, setting the learning rate with

higher values is the preferable optimization strategy. In this way it is possible to change

significantly the model’s weights and move faster toward the global minimum.

On the contrary, when fine-tuning a model, the loaded weights don’t need to change

much because they are supposed to be already closer to global minimum.

This explains why we have set both the base lr and stepsize parameters to higher values.

The “image data layer”used to pass a list of images doesn’t support input data that has

more than three channels. Thus, we converted datasets to LMDB format and employed

the “data layer”which accepts 4-dimensional input data.

Below, we show the input data layer used in this scenario

5. Experiments and Results 70

name: "ior50_mid_CaffeNet_rgba"

layer {

name: "ior50"

type:"Data"

top: "data"

top: "label"

include {

phase: TRAIN

}

transform_param {

mean_value: 104

mean_value: 117

mean_value: 123

mean_value: 127

}

data_param {

source: "../ core50_lmdb_rgba_train/"

batch_size: 256

backend: LMDB

}

}

Moreover, validation experiments showed that decrementing bias parameters from 1

to 0.1 leads to critically reduce training loss in approximately 2000 iterations. Generally,

having the training loss stuck in the initial iterations is likely due to problems in the

weight initialization. The following python code fragment illustrates a typical RGBA

scenario implementation.

1 [. .]

2 c a f f e . s e t d e v i c e (0)

3 c a f f e . set mode gpu ()

4 #load ing s o l v e r

5. Experiments and Results 71

5 s o l v e r = c a f f e . g e t s o l v e r (” . . / s o l v e r . p ro to txt ”)

6 #running model opt imiza t i on accord ing to s o l v e r ’ s s e t t i n g s :

7 s o l v e r . s o l v e ()

5.2.4 FE scenario implementation

The implementation of this scenario can be divided into two phases. In the for-

mer, our Mid-CaffeNet model was used to extract features which were then saved in a

Python-specific format by the cPickle module. The following Python code illustrates the

implementation of the first phase. For the sake of brevity, we report only the feature

extraction of the training set.

1 # Set GPU

2 c a f f e . set mode gpu () ;

3 c a f f e . s e t d e v i c e (0) ;

4 # Load the net in the t e s t phase f o r i n f e r e n c e

5 net = c a f f e . Net (net , weights , c a f f e .TEST)

6

7 # Input p r ep ro c e s s i ng : ’ data ’ i s the name o f the input

8 t rans fo rmer = c a f f e . i o . Transformer ({ ’ data ’ : net . b lobs [’ data ’] . data . shape })
9 t rans fo rmer . s e t t r an spo s e (’ data ’ , (2 , 0 , 1))

10 # mean p i x e l

11 t rans fo rmer . set mean (’ data ’ , np . load (mean path) .mean (1) .mean (1))

12 # the r e f e r e n c e model ope ra t e s on images in [0 , 2 5 5] range in s t ead o f [0 , 1]

13 t rans fo rmer . s e t r aw s c a l e (’ data ’ , 255)

14 # the r e f e r e n c e model has channe l s in BGR order in s t ead o f RGB

15 trans fo rmer . s e t channe l swap (’ data ’ , (2 , 1 , 0))

16

17 # Loading t r a i n an t e s t images f o r o r i g i n a l CORe50

18 with open(t r a i n f i l e l i s t o r i g i n a l , ’ r ’) as f t r :

19 t r a i n l i n e s o r i g i n a l = f t r . r e a d l i n e s ()

20 with open(t e s t f i l e l i s t o r i g i n a l , ’ r ’) as f t e :

21 t e s t l i n e s o r i g i n a l = f t e . r e a d l i n e s ()

22

23 num train img = len (t r a i n l i n e s o r i g i n a l)

24 num test img = len (t e s t l i n e s o r i g i n a l)

25 num train batch = num train img / ba t ch s i z e

5. Experiments and Results 72

26 l a s t b a t c h s i z e t r = num train img % ba t ch s i z e

27 num test batch = num test img / ba t ch s i z e

28 l a s t b a t c h s i z e t e = num test img % ba t ch s i z e

29

30 i f e x t r a c t t r a i n :

31 # se t net to batch s i z e o f t r a i n i n g images

32 net . b lobs [’ data ’] . reshape (ba t ch s i z e , 3 , img s i ze , img s i z e)

33 i f (num train batch == 0) :

34 cu r r en t ba t ch s z = l a s t b a t c h s i z e t r

35 else :

36 cu r r en t ba t ch s z = ba t ch s i z e

37

38 # ORIGINAL CORe50

39

40 print ” ex t r a c t i n g from o r i g i n a l CORe50”

41 for i , f i l e p a t h in enumerate(t r a i n l i n e s o r i g i n a l) :

42 r e l pa th , l a b e l = f i l e p a t h . s p l i t ()

43 t r a i n p a t h s o r i g i n a l . append (r e l p a th)

44 net . b lobs [’ data ’] . data [i % bat ch s i z e , : , : , :] = \
45 trans fo rmer . p r ep roce s s (’ data ’ ,

c a f f e . i o . load image (image s da t a pa th o r i g i n a l + r e l p a th))

46 t r a i n l a b e l s o r i g i n a l . append (int (l a b e l))

47 i f i % (ba t ch s i z e) == ba t ch s i z e − 1 and i != 0 :

48 # Pred i c t sav ing two l ay e r : l a y e r t o e x t r a c t and ’ prob ’

49 i f verbose :

50 print ’ Extract ing f ea tu r e s , batch ’ , i / b a t ch s i z e

51 out = net . forward ([l a y e r t o e x t r a c t])

52 # Loading f e a t u r e s as t r a i n i n g s e t

53 for j in range (cu r r en t ba t ch s z) :

54 t r a i n i n g s e t o r i g i n a l . append (copy . copy (out = \
55 [l a y e r t o e x t r a c t] [j] . f l a t t e n ()))

56 # prepar ing f o r the l a s t batch

57 i f ((i + 1) / ba t ch s i z e) == num train batch and

l a s t b a t c h s i z e t r != 0 :

58 # se t net to l a s t batch s i z e o f t r a i n i n g images

59 net . b lobs [’ data ’] . reshape (l a s t b a t c h s i z e t r , 3 , img s i ze ,

60 img s i z e)

61 cu r r en t ba t ch s z = l a s t b a t c h s i z e t r

5. Experiments and Results 73

62 e l i f i == num train img − 1 :

63 #i t i s the l a s t batch

64 print ’ Extract ing f e a t u r e s l a s t batch . . . ’

65 out = net . forward ([l a y e r t o e x t r a c t])

66 # Loading f e a t u r e s as t r a i n i n g s e t

67 for j in range (cu r r en t ba t ch s z) :

68 t r a i n i n g s e t o r i g i n a l . append (copy . copy (out = \
69 [l a y e r t o e x t r a c t] [j] . f l a t t e n ()))

70

71 # Heatmap CORe50

72 i f heatmap :

73

74 print ” ex t r a c t i n g from heatmap CORe50”

75 net . b lobs [’ data ’] . reshape (ba t ch s i z e , 3 , img s i ze , img s i z e)

76 i f (num train batch == 0) :

77 cu r r en t ba t ch s z = l a s t b a t c h s i z e t r

78 else :

79 cu r r en t ba t ch s z = ba t ch s i z e

80 for i , f i l e p a t h in enumerate(t r a i n l i n e s h ea tmap) :

81 r e l pa th , l a b e l = f i l e p a t h . s p l i t ()

82 tra in paths heatmap . append (r e l p a th)

83 net . b lobs [’ data ’] . data [i % bat ch s i z e , : , : , :] = \
84 t rans fo rmer . p r ep roce s s (’ data ’ ,

c a f f e . i o . load image (images data path heatmap + r e l p a th))

85 t r a i n l abe l s h ea tmap . append (int (l a b e l))

86 i f i % (ba t ch s i z e) == ba t ch s i z e − 1 and i != 0 :

87 # Pred i c t sav ing two l ay e r : l a y e r t o e x t r a c t and ’ prob ’

88 i f verbose :

89 print ’ Extract ing f ea tu r e s , batch ’ , i / b a t ch s i z e

90 out = net . forward ([l a y e r t o e x t r a c t])

91 # Loading f e a t u r e s as t r a i n i n g s e t

92 for j in range (cu r r en t ba t ch s z) :

93 t ra in ing s e t hea tmap . append (copy . copy (out = \
[l a y e r t o e x t r a c t] [j] . f l a t t e n ()))

94 # prepar ing f o r the l a s t batch

95 i f ((i + 1) / ba t ch s i z e) == num train batch and

l a s t b a t c h s i z e t r != 0 :

96 # se t net to l a s t batch s i z e o f t r a i n i n g images

5. Experiments and Results 74

97 net . b lobs [’ data ’] . reshape (l a s t b a t c h s i z e t r , 3 , img s i ze ,

img s i z e)

98 cu r r en t ba t ch s z = l a s t b a t c h s i z e t r

99 e l i f i == num train img − 1 :

100 #i t i s the l a s t batch

101 print ’ Extract ing f e a t u r e s l a s t batch . . . ’

102 out = net . forward ([l a y e r t o e x t r a c t])

103 # Loading f e a t u r e s as t r a i n i n g s e t

104 for j in range (cu r r en t ba t ch s z) :

105 t ra in ing s e t hea tmap . append (copy . copy (out = \
[l a y e r t o e x t r a c t] [j] . f l a t t e n ()))

106 print ” concatenat ion f e a t u r e s ”

107 mid fc6 out = np . concatenate ((t r a i n i n g s e t o r i g i n a l ,

t r a in ing s e t hea tmap) , ax i s=1)

108 print mid f c6 conca tenat i on . shape

109 else :

110 mid fc6 out = np . copy (t r a i n i n g s e t o r i g i n a l)

111 print mid f c6 conca tenat i on . shape

112

113 # Saving t r a i n f e a t u r e s and l a b e l s

114 f = f i l e (t r a i n f e a t u r e s f i l e n ame , ’wb ’)

115 for obj in [mid fc6 out , t r a i n l a b e l s o r i g i n a l] :

116 cP i ck l e . dump(obj , f , p r o to co l=cP i ck l e .HIGHEST PROTOCOL)

117 f . c l o s e ()

The process of extracting and saving features only from CORe50 128x128 rgb or also

from CORe50 128x128 depthMap heatmap, it is controlled by the flag variable heatmap.

Inference (input forwarding) is run on the network deploy.prototxt which doesn’t con-

tain any information regarding the input itself or any form of preprocessing. Thus, input

preprocessing (lines 7-15) must be performed.

The second phase regards using a SVM algorithm to classify the obtained feature

vectors. The open source Scikit-learn library provides the LinearSVC() class which is an

implementation of the SVM classifier. We can simply train our classifier by passing fea-

ture vectors and corresponding labels to the LinearSVC().fit() method. In the following

python code we show the second phase implementation.

5. Experiments and Results 75

1 # Loading f e a t u r e s

2 f = f i l e (t r a i n f e a t u r e s f i l e n ame , ’ rb ’)

3 t r a i n i n g s e t = cP i ck l e . load (f)

4 t r a i n l a b e l s = cP i ck l e . load (f)

5 f . c l o s e ()

6 f = f i l e (t e s t f e a t u r e s f i l e n ame , ’ rb ’)

7 t e s t s e t = cP i ck l e . load (f)

8 t e s t l a b e l s = cP i ck l e . load (f)

9 f . c l o s e ()

10

11 # Training

12 l i n c l f = svm . LinearSVC (C=0.01)

13 print l i n c l f . f i t (t r a i n i n g s e t , t r a i n l a b e l s)

14

15 # Test ing phase

16 p r e d i c t e d l a b e l s = l i n c l f . p r ed i c t (t e s t s e t)

17 num right = 0

18 for i in range (len (t e s t l a b e l s)) :

19 i f p r e d i c t e d l a b e l s [i] == t e s t l a b e l s [i] :

20 num right += 1

21 print ’ t o t a l accuracy : ’ , num right / f loat (len (t e s t l a b e l s)) ∗ 100

5. Experiments and Results 76

5.3 Experimental Phase

In this section we report the experimental results. In the following subsections, for

each scenario we provide information about the overall and per-class accuracy. Further-

more, we display confusion matrices in order to better understand the performance of

our classification models. A confusion matrix contains information about actual and

predicted classifications done by a classifier. Each row of the matrix represents instances

in an actual class while each column represents the instances in a predicted class.

5.3.1 BR scenario

In the BR scenario we report classification accuracy according to three approaches.

Each approach uses one of the datasets produced in the Background Removal prepro-

cessing strategy or the original CORe50 (where background is not removed):

• static: training and testing CORe50 128x128 backgroundRemoved static

• hybrid: training and testing CORe50 128x128 backgroundRemoved hybrid

• original: training and testing CORe50 128x128

Table 5.1 below reports the overall classification accuracy reached after 50.000 itera-

tions for the three approaches.

Approach Accuracy Reached

static 65.98%

hybrid 63.55%

original 66.77%

Table 5.1: Overall accuracy after 50.000 iterations for the BR scenario.

Unexpectedly, we found that no one of the BR approaches gets better accuracy than

the original approach.

Figure 5.2 displays the training loss and accuracy achieved by the original approach

during the training phase (50,000 iterations with test interval each 1,000 iterations).

5. Experiments and Results 77

Figure 5.2: Training loss (blue) and test accuracy reached by the original approach.

As we can see, the training loss decrease immediately after the first thousands itera-

tions, likewise accuracy gets stable rapidly.

In figure 5.3 we compare two confusion matrices obtained by testing respectively the

classification model of the static and original approach.

Figure 5.3: Confusion matrices obtained by the static (left) and original (right) approach

5. Experiments and Results 78

Both the confusion matrices report quite the same classification errors. In particular,

many of the relevant false positives are located along the matrix diagonal, meaning that,

as one could expect, models are easily fooled by objects of the same class (scissor, can,

ball, etc.).

In figure 5.4 we propose an histogram of the diagonal scores retrieved from three confusion

matrices, where each confusion matrix is generated from the three different approaches

(original, static, hybrid). Diagonal scores are grouped at category level in order to better

visualize which class of objects are more difficult to recognize.

Figure 5.4: BR scenario histogram of the confusion matrix diagonal scores grouped by

class.

The histogram clearly shows that there is a gap, in terms of accuracy score, between

several classes of objects. For instance, all the classification models of the tree approaches

5. Experiments and Results 79

classify more correctly balls than glasses.

While the hybrid approach never outperforms the original approach, there are classes of

objects (adapters, cans, scissors) where the static approach succeeds. This suggests that

for some class of objects of the static approach segmentation correctly divides foreground

from background, thus slightly improving accuracy.

On the contrary, on classes like glasses, the static approach achieves a significant lower

accuracy score caused by an imperfect segmentation.

Figure 5.5 shows examples of foreground occlusions for the glasses object class of the

static approach.

Figure 5.5: Examples of foreground occlusions in the glasses object class (static approach)

Hiding relevant parts of objects, foreground occlusions are responsible of the accuracy

drop in both the static and hybrid approach.

However, the static approach shows better results than the hybrid one both for the over-

all and per-class accuracy. In the hybrid approach the occlusion phenomenon seems

to be more prominent. In fact, the dynamic segmentation employed in the hybrid seg-

mentation approach picks higher threshold values increasing frequency and intensity of

occlusions.

5. Experiments and Results 80

Because of the similar accuracy results between the static and original approach, we

investigated other possible reasons able to explain why, for some object classes, the static

approach outperforms the original one and vice versa.

In figure 5.6 we show some images from CORe50 128x128 backgroundRemoved static

that were classified correctly by the original approach and not by the static approach

(top) and vice versa (bottom). We selected 8 images from each of the two comparison

on the basis of their model’s output score difference. Practically speaking, we pick those

images that the two approaches have judged more differently.

Figure 5.6: Images classified correctly by the original approach and not by the static

approach (top, black margin) and vice versa (bottom, red margin).

By looking at images in figure 5.6 it is quite hard to understand which factors lead

the static approach to outperform the original one and vice versa.

In many images of the above figure, “artificial segmentation edges ”are very irregular and

5. Experiments and Results 81

discontinuous. Suspecting that in the static approach model’s weights could significantly

respond to such segmentation edges, we used Deep Visualization Toolbox [34] to visualize

the feature maps of the CNN.

The Deep Visualization Toolbox is an open source software tool that lets you probe CNNs

by feeding them an image and watching the reaction of every neuron. This tool employs

techniques described in section 2.6 for viewing pre-rendered visualizations of what that

neuron “wants to see most”by maximizing its response or deconvolutional visualizations

that show which pixels in an image cause that neuron to activate.

However we used it with the aim of finding feature maps that activate in presence of the

segmentation edge.

Figure 5.7 displays the feature maps produced by forwarding at layer conv2 an input

image trough the static approach CNN.

Figure 5.7: Static model feature maps visualization using the Deep Visualization Toolbox

Within the 256 feature maps, the enlarged feature map (feature map 119), on the left

side of figure 5.7, clearly shows the sought activations (white pixels) in presence of the

5. Experiments and Results 82

segmentation edge respect the input image which is located on the top left of figure 5.7.

It is important to mention that for the feature map 119, we obtain almost the same

identical activations by loading the CaffeNet’s pre-trained weights. This means that the

loaded weights, which were trained on ImageNet, already respond to this kind of patterns

(segmentation edge).

Therefore, we decided to establish which of the models between the original and static

approach is more sensible, in terms of accuracy drop or gain, to activations of the feature

map shown on the left side of figure 5.7.

In details, for each of the static and original CNN models, we computed, for all the

training images in CORe50 128x128 backgroundRemoved static, the difference between

the accuracy score achieved by default from the model and the one achieved by resetting

the weights of the feature map 119. Then we averaged these differences for both the

static and original approach.

In table 5.2 we compare the reached gaps, where the higher the gap the stronger the

influence of the feature map 119 in the model classification process.

Approach Gap

static 2.9e−5

original 3.9e−3

Table 5.2: Average feature map gaps for both the static and original approach.

Gap values from table 5.2 are remarkably small, this suggests that, regarding the

model classification process, the activations’ influence of the feature map 119 is very low

and thus, not incisive. Because the original gap is clearly higher than the static one,

the static approach is less influenced by activations of the feature map 119. Thus, we

cannot assume that the CNN fine-tuned in the static approach responds significantly to

segmentation edges.

5. Experiments and Results 83

5.3.2 RGBA scenario

Also in the RGBA scenario we can identify three approaches according to the three

RGBA dataset produced by the Depth as RGBA preprocessing strategy:

• static rgba: training and testing CORe50 128x128 rgba static

• hybrid rgba: training and testing CORe50 128x128 rgba hybrid

• original rgba: training and testing CORe50 128x128 rgba original

Table 5.3 below reports the overall classification accuracy reached after 50.000 itera-

tions for each of the RGBA scenario’s approaches.

Approach Accuracy Reached

static rgba 43.30%

hybrid rgba 41.53%

original rgba 37.81%

Table 5.3: Overall accuracy after 50.000 iterations for the RGBA scenario.

Results from table 5.3 prove that by representing the depth information in the al-

pha channel, it is possible for the static and hybrid approach to achieve better accuracy

performances. On the contrary, in the BR scenario the original approach outperforms

the two depth-based approaches. Generally, when training from scratch, depth provide

useful information to ignore background noise, while the fine-tuning strategy exploits

the loaded pre-trained weights to this purpose.

Note that again the static approach outperforms the hybrid one in terms of accuracy.

This result confirms that the static approach applies a more effective segmentation strat-

egy in comparison to the hybrid approach.Figure 5.8 displays the training loss and accu-

racy achieved by the original approach during the training phase (50,000 iterations with

test interval each 1,000 iterations).

Respect the BR scenario, accuracy and training loss need more iterations before

increasing and decreasing respectively. This is a typical behavior when training from

scratch. Indeed, being randomly initialized, weights are critically more distant from the

5. Experiments and Results 84

Figure 5.8: RGBA scenario original approach training loss (blue) and test accuracy (red).

global minimum, therefore CNNs take much more time to converge.

In figure 5.9 we compare two confusion matrices obtained by testing respectively the

classification model of the static and original approach.

Figure 5.9: RGBA scenario confusion matrices obtained by the static (left) and original

(right) approach

5. Experiments and Results 85

Even though the overall accuracy gap between the static and original approach is

quite significant, both the confusion matrices appear very similar. Respect the BR sce-

nario, classification errors are spread on all the matrices, in particular they are not mostly

arranged along the diagonals.

The histogram of the confusion matrices diagonal scores, displayed in figure 5.10, high-

lights the better per-class accuracy scores achieved by the static and hybrid approach.

Again the histogram clearly shows that there is a significant gap, in terms of accuracy

score, between several classes of objects. For instance, all the classification models of

the tree approaches classify more correctly balls than glasses or adapters. Note that by

providing the depth information in the alpha channel, the occlusion phenomenon caused

by the imperfect segmentation is absent.

Figure 5.10: RGBA scenario histogram of the confusion matrices diagonals scores

grouped by class

5. Experiments and Results 86

The depth information plays a central role in improving accuracy, for instance it

critically increases the correct classification of light bulbs. Such better results suggest

that when finetuning, as in the BR scenario, the loaded pre-trained weights are already

able to discriminate foreground from the background noise.

On the contrary, when training from scratch, depth becomes an important information

exploited by the model for focusing on foreground features.

5.3.3 FE scenario

In the FE scenario we can identify two approaches. In the former we extract feature

vectors according to the feature extraction preprocessing strategy described in section

4.3 . The latter follows the former but we extract feature vectors only from the original

CORe50 128x128. Therefore we address the following approaches:

• original+heatmap: extracting (and concatenating) feature vectors from CORe50 128x128

and CORe50 128x128 depthMap heatmap, training and testing a linear classifier

(SVM).

• original: extracting feature vectors from CORe50 128x128, training and testing a

linear classifier (SVM).

Table 5.4 below reports the overall classification accuracy reached by the SVM model

for each of the FE scenario’s approaches.

Approach C Accuracy Reached

original+heatmap 1 65.44%

original 1 64.97%

Table 5.4: Overall accuracy achieved after training a SVM model with C=1.

Table 5.4 shows that the original+heatmap approach slightly increases accuracy.

When training a SVM model, different settings of C, the penalty parameter of the error

term, may lead to different accuracy scores.

Indeed, in both the approaches, we note that setting C to 1e−10 leads to higher accuracy

during the testing phase.

5. Experiments and Results 87

Approach C Accuracy Reached

original+heatmap 1e−10 66.25%

original 1e−10 65.41%

Table 5.5: Overall accuracy achieved after training a SVM model with C=1e−10.

Table 5.5 illustrates that by critically decreasing C, we have also increased the gap,

in terms of accuracy, between the two approaches.

Figure 5.11 shows the confusion matrices obtained by testing the original+heatmap

and original approach respectively. As we can see, the two matrices are almost identical

that means both models make similar classification errors.

Figure 5.11: FE scenario confusion matrices obtained by the original+heatmap (left)

and original (right) approach

In figure 5.12, the histogram of the confusion matrices diagonal scores is displayed.

The histogram clearly shows that both the approaches achieve similar per-class accu-

racy scores.The depth information provided by the original+heatmap approach doesn’t

increase particularly any class. Only in the glasses object class the original+heatmap

approach outperforms visibly the original one, conversely to the BR scenario where the

5. Experiments and Results 88

glasses class has the worst accuracy score for the depth-based approaches.Indeed without

segmenting the original depth information, the CNN model is more free to best exploit it.

Figure 5.12: RGBA scenario histogram of the confusion matrices diagonals scores

grouped by class

Indeed without segmenting the original depth information, the CNN model is more

free to best exploit it.

However, the original depth information acquired by the Kinect depth camera is not

completely accurate (unknown depth values, noise), therefore the accuracy gain is lim-

ited.

Chapter 6

Conclusions and Future Works

“The scientific man does not aim at an immediate result. He does not expect

that his advanced ideas will be readily taken up. His work is like that of the

planter for the future. His duty is to lay the foundation for those who are to

come, and point the way. He lives and labors and hopes.”

- Nikola Tesla, Radio Power Will Revolutionize the World (1934)

In this last chapter, we draw some conclusions about the whole work which has been

carried out during this dissertation. Finally, we propose some ideas and directions for

future works.

6.1 Conclusions

In this dissertation, we tackled the problem of object recognition using depth informa-

tion. The main objective of the thesis was to evaluate different strategies for integrating

the depth information on CORe50. This has been done on the shared feeling that work-

ing with RGB-D images leads to significant improvements in the context of robotic vision

applications.

After showing, in chapter 3, how to map depth frames to color frames in CORe50, three

novel preprocessing pipeline for RGB-D images, which facilitate CNN use for object

recognition, have been proposed. Even though, we always relied on a CNN, each of the

89

6. Conclusions and Future Works 90

these three pre-processing strategies led to a particular training scenario which employed

the CNN in different ways.

In each scenario we compared the RGB-D approach against the original RGB one, in

order to asses accuracy gain or loss. The analysis and results from chapter 5 allow us

conclude that:

1. In the Background Removal scenario, the RGB-D based approaches achieve

lower accuracy scores because of the imperfect segmentation masks on which the

image background removal process is based. In particular, occlusions are critically

responsible to confuse the CNN classification process. Moreover, transfer learning

from deep CNNs already provides to our model a relevant feature set for discrimi-

nating background from foreground.

2. In the Feature extraction scenario, the RGB-D based approach slightly improves

the model’s accuracy because the imperfect segmentation is not performed, instead

depth is directly represented as an RGB heatmap.

3. In the RGBA scenario the RGB-D based approaches achieve the best results,

in terms of accuracy improvements, thanks to the absence of the occlusion phe-

nomenon. Indeed, by providing depth information on the alpha channel, the model

is left free to decide which color and depth information take more in consideration.

Also, training from scratch highlights the model’s ability to rely on depth informa-

tion in order to focus inference on the image foreground. The best accuracy score

achieved in this scenario is penalized by the fact of not exploiting pre-trained mod-

els (like the BR scenario does whith ImageNet pre-trained model). However, it is

conceivable that, in the near feature, pre-trained models on large RGB-D datasets

will be available and thus, the RGBA scenario will be the winning strategy in ab-

solute terms. Finally, the solution implemented by the RGBA scenario is the most

flexible and elegant answer to the problem of exploiting RGB-D data.

In the context of object recognition, picking the best depth pre-processing pipeline

is not a straightforward task. This choice mostly depends on the quality of the original

depth information, on the strategy of segmentation and the availability of pre-trained

6.2 Future work 91

models on RGB-D images (training strategy). In our case of study, the depth information

acquired by the Kinect depth camera was not entirely accurate. This fact compromised

the correctness of segmentation, leading only to partial accuracy improvements. Fur-

thermore, accuracy improvements are limited by the fact the object was already cropped

to a 128× 128 box, where the background is a relatively small portion of the image.

6.2 Future work

In this section a number of possible improvements to the work presented during the

dissertation are outlined. They can be divided in three main parts:

• Acquired depth improvements. The depth information acquired by the Kinect

sensors is quite incomplete and inaccurate. Therefore, it would be highly desirable

to improve the quality of the depth information by using noise removal techniques

based on RGB.

• Depth segmentation improvements. The depth segmentation strategy plays

a central role for determining accuracy results. Thus, improving segmentation by

exploiting CORe50 temporal coherent sessions, may significantly increase classifi-

cation accuracy.

• Incremental learning experiments. In this thesis, we did not address incremen-

tal learning scenarios, for which CORe50 was originally designed. An interesting

future study would be training a CNN incrementally over the eleven CORe50 ses-

sions. This kind of experiments would concretely approach the robotics research,

where the input source is a continuous stream of data.

Bibliography

[1] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep

speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567,

2014.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[3] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark

for continuous object recognition. arXiv preprint arXiv:1705.03550, 2017.

[4] Wikipedia. Overfitting — wikipedia, the free encyclopedia. https://en.

wikipedia.org/w/index.php?title=Overfitting&oldid=791280712, 2017.

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International Journal of Computer

Vision, 115(3):211–252, 2015. Springer.

[6] Fei-Fei Li Andrej Karpathy, Justin Johnson. Cs231n: Convolutional neural networks

for visual recognition. http://cs231n.github.io/, 2015.

[7] Michael A. Nielsen. Neural networks and deep learning. http://

neuralnetworksanddeeplearning.com/, 2015.

92

https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=791280712
https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=791280712
http://cs231n.github.io/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

BIBLIOGRAPHY 93

[8] Wikipedia. Convolutional neural network — wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Convolutional_neural_network, 2017.

[9] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[10] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolu-

tional networks: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

[11] Evan Shelhamer Yangqing Jia. Caffe framework. http://caffe.berkeleyvision.

org/, 2014.

[12] Jose-Juan Hernandez-Lopez, Ana-Linnet Quintanilla-Olvera, José-Luis López-

Ramı́rez, Francisco-Javier Rangel-Butanda, Mario-Alberto Ibarra-Manzano, and

Dora-Luz Almanza-Ojeda. Detecting objects using color and depth segmentation

with kinect sensor. Procedia Technology, 3:196–204, 2012. Elsevier.

[13] Wei-Long Zheng, Shan-Chun Shen, and Bao-Liang Lu. Online depth image-based

object tracking with sparse representation and object detection. Neural Processing

Letters, 45(3):745–758, 2017. Springer.

[14] Max Schwarz, Hannes Schulz, and Sven Behnke. Rgb-d object recognition and pose

estimation based on pre-trained convolutional neural network features. In Robotics

and Automation (ICRA), 2015 IEEE International Conference on, pages 1329–1335.

IEEE, 2015.

[15] Phil Simon. Too big to ignore: The business case for big data, volume 72. John

Wiley & Sons, 2013.

[16] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–

877, 1997.

[17] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Inc., 1995.

https://en.wikipedia.org/wiki/Convolutional_neural_network
http://caffe.berkeleyvision. org/
http://caffe.berkeleyvision. org/

BIBLIOGRAPHY 94

[18] Angelo Cangelosi, Matthew Schlesinger, and Linda B Smith. Developmental

robotics: From babies to robots. MIT Press, 2015.

[19] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[20] Douglas M Hawkins. The problem of overfitting. Journal of chemical information

and computer sciences, 44(1):1–12, 2004. ACS Publications.

[21] Andreas Schierwagen. Vision as computation, or: Does a computer vision system

really assign meaning to images? In Integrative Systems Approaches to Natural and

Social Dynamics, pages 579–587. Springer, 2001.

[22] Dejan Markovic and Nicola Vitucci. Computer vision, geometric reasoning and

graphics. 2013.

[23] C Rafael Gonzalez and Richard Woods. Digital image processing. Pearson Educa-

tion, 2002.

[24] Bernd Jahne. Digital image processing, volume 4. Springer, 2005.

[25] Nida M Zaitoun and Musbah J Aqel. Survey on image segmentation techniques.

Procedia Computer Science, 65:797–806, 2015. Elsevier.

[26] Luis Tob́ıas, Aurélien Ducournau, François Rousseau, Grégoire Mercier, and Ronan

Fablet. Convolutional neural networks for object recognition on mobile devices: A

case study. In Pattern Recognition (ICPR), 2016 23rd International Conference on,

pages 3530–3535. IEEE, 2016.

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015. Nature Research.

[28] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989. Else-

vier.

[29] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-

works, 61:85–117, 2015. Elsevier.

BIBLIOGRAPHY 95

[30] Robert Fisher, Simon Perkins, Ashley Walker, and Erik Wolfart. Hypermedia image

processing reference. Department of Artificial Intelligence, University of Edinburgh,

1994.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[32] Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines

vinod nair. 2010. Citeseer.

[33] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[34] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Under-

standing neural networks through deep visualization. In Deep Learning Workshop,

International Conference on Machine Learning (ICML), 2015.

[35] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341:3, 2009.

[36] Vincenzo Lomonaco and Davide Maltoni. Comparing incremental learning strategies

for convolutional neural networks. In IAPR Workshop on Artificial Neural Networks

in Pattern Recognition, pages 175–184. Springer, 2016.

[37] Oliver Wasenmüller and Didier Stricker. Comparison of kinect v1 and v2 depth

images in terms of accuracy and precision. In Asian Conference on Computer Vision,

pages 34–45. Springer, 2016.

[38] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE

transactions on systems, man, and cybernetics, 9(1):62–66, 1979. IEEE.

[39] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross

Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In Proceedings of the 22nd ACM international conference

on Multimedia, pages 675–678. ACM, 2014.

http://www.deeplearningbook.org

	Sommario
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbrevations
	Introduction
	Background
	Machine Learning
	Categories and tasks
	The importance of generalization

	Computer Vision
	Image Processing
	Object Recognition
	Robotic Applications

	Artificial Neural Networks
	Feedforward Neural Network architecture
	Backpropagation algorithm

	Deep Learning

	CNN for Object Recogntion
	Digital images and convolution operations
	Convolutional Neural Network: an overview
	Layers used to build CNN
	Convolutional layer
	ReLU Layer
	Pooling layer
	Fully connected layer

	CNN architecture
	CNN training
	Gradient descent
	Training strategies

	Visualizing and understanding deep CNN
	Dataset-centric approach
	Network-centric approach

	CORe50
	Existing datasets and their limitations
	iCubWorld28
	Big Brother
	NORB dataset

	CORe50: an overview
	RGB-D dataset

	Integration of the depth information
	Script details

	Strategies for preprocessing depth in CORe50
	Background removal
	Segmentation
	Background fading

	RGB-D as RGBA
	Feature extraction

	Experiments and Results
	Caffe
	Anatomy of the Caffe computational model
	Command line and Python interfaces
	Network architecture

	Experimental Setup
	Experiment introduction and scenarios
	BR scenario implementation
	RGBA scenario implementation
	FE scenario implementation

	Experimental Phase
	BR scenario
	RGBA scenario
	FE scenario

	Conclusions and Future Works
	Conclusions
	Future work

