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Abstract: This paper provides an overview of the new features of the finite element library
deal.II version 8.3.

1 Overview

deal.II version 8.3 was released August 1, 2015. This paper provides an overview of the new
features of this release and serves as a citable reference for the deal.II software library version
8.3. deal.II is an object-oriented finite element library used around the world in the development
of finite element solvers. It is available for free under the GNU Lesser General Public License
(LGPL) from the deal.II homepage at http://www.dealii.org/.

The major changes of this release are:

– Improved handling of parallel distributed meshes, including a better numbering of cells on
coarse meshes. For meshes with many coarse cells, the previous Cuthill-McKee numbering
would lead to very skinny partitions if the processor number was similar to the number of
Cuthill-McKee layers. Instead, a hierarchical concept inspired by the Morton numbering
has been applied to define close cells in terms of mesh connectivity, see Fig. 1. This leads
to much better volume-to-surface ratios independently of the number of processors and
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Figure 1: Comparison of old coarse-cell numbering by owner based on Cuthill-McKee (left) to the
new hierarchical concept (right) on an unstructured mesh with 1100 elements on 17 MPI ranks.

combines nicely with the partitioning of additional child cells generated by p4est [14] and
speeds up certain iterative solvers.

– New abstract C++11 interface to linear operators.

– All examples have been changed to use the new DynamicSparsityPattern.

– Improved support for periodic boundary conditions with arbitrary orientations.

– New quadrature formulas.

– Full conversion to the new manifold mechanism (manifold_id) for boundary descriptions:
deal.II previously utilized a mechanism in which one could ask “boundary” objects for
new points on the boundary, but new points inside cells were always created by just aver-
aging surrounding vertex locations. A previous version of deal.II introduced “manifold”
objects for this, and they are now used consistently throughout the library.

– Better support for complex-valued problems by doing internal arithmetic in the correct data
types, rather than defaulting to double precision. In particular, we now correctly deduce
and store the resulting type when multiplying pieces of data with different type (such as
shape functions evaluated at quadrature points – which are represented in double precision
– and the values of degrees of freedom – which are represented in ways chosen by the user,
including complex-valued data types).

– An implementation of Bernstein polynomial-based finite elements.

– Interface to the new algebraic multilevel package MueLu of the Trilinos project [22].

– More descriptive exception messages in many places for improved user productivity in
code development.

– More than 140 other features and bugfixes.

Some of these will be detailed in the following section. Information on how to cite deal.II is
provided in Section 3.
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2 Significant changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed
in the following sections. It of course also contains a vast number of smaller changes and added
functionality; the details of these can be found in the file that lists all changes for this release and
that is linked to from the web site of each release as well as the release announcement.

2.1 Abstract concepts of linear operators

deal.II now offers a versatile mechanism for storing the concept of a linear operator as well as
partially applied computations. The mechanism is inspired by the expression template optimiza-
tion strategy, where C++ templates are used to create an arithmetic expression at compile time
that can then be efficiently be evaluated at runtime. In contrast to the template approach, the im-
plementation in deal.II utilizes C++11 features1 such as lambda expressions and std::function
objects that avoid the majority of the “template overhead” that usually comes with a pure tem-
plate solution. In particular, it avoids the often very lengthy and cumbersome error messages
associated with programming expression templates.

Our implementation only requires a minimal vector and matrix interface, that all of deal.II’s
concrete vector and matrix types adhere to. For example, in essence a matrix only has to provide
a vmultmethod for matrix-vector multiplication. This makes the interface fully transparent with
respect to the concrete matrix, or vector type that is used, but naturally rules out further low-level
optimization approaches that can be used for non-distributed linear algebra (such as loop fusion).

The mechanism is centered around two classes, LinearOperator and PackagedOperation. Both
essentially consist of several std::function objects that store the knowledge of how to apply a
linear operator, or a packaged operation, as well as how to initialize vectors of range and domain
space:

C++ code
template <typename Range, typename Domain> class LinearOperator
{
public:
std::function<void(Range &v, const Domain &u)> vmult;
// ...
std::function<void(Range &v, bool fast)> reinit_range_vector;
std::function<void(Domain &v, bool fast)> reinit_domain_vector;

};

template <typename Range> class PackagedOperation
{
public:
std::function<void(Range &v)> apply;
// ...;
std::function<void(Range &v, bool fast)> reinit_vector;

};

The primary purpose of the linear operator concept is to provide syntactic sugar for complex
matrix-vector operations and free the user from having to create, set up, and handle intermediate
storage locations by hand. As an example, consider the operation (A + k B) C, where A, B and
C denote (possible different) matrices (or, in fact, other linear operators). In order to construct a
LinearOperator object op that encapsulates knowledge of this operation, deal.II now allows
one to write:

C++ code
dealii::SparseMatrix<double> A, B, C;
const double k = ...;
// Setup and assembly of matrices

1Consequently, the classes outlined here are only available in deal.II if the compiler in use supports C++11.
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.
const auto op_a = linear_operator(A);
const auto op_b = linear_operator(B);
const auto op_c = linear_operator(C);

const auto op = (op_a + k * op_b) * op_c;

Now, op can be used as a matrix object in its own right for further computation. This includes
passing it to any of deal.II’s linear solver classes as the operator for which to solve a linear
system. To make this work, deal.II appropriately overloads arithmetic operators to allow
composition of linear operators as above.

The PackagedOperation class allows lazy evaluation of expressions involving vectors and linear
operators. This is done by storing the computational expression and only performing the com-
putation when either the object is implicitly converted to a vector object, or if apply() is invoked
by hand. This avoids unnecessary temporary storage of intermediate results. As an example
consider the addition of multiple vectors:

C++ code
dealii::Vector<double> a, b, c, d;
// ..
dealii::Vector<double> result = a + b - c + d;

operator+ (with two vector arguments) is implemented to return a PackagedOperation whose
apply function is implemented the following way:

C++ code
apply = [&a, &b](Range &x) {

x = a;
x += b;

};

Similarly, addition and subtraction of mixed vector and packaged operation types are imple-
mented. If implemented in the most straightforward way, executing these additions would
require the use of multiple temporary vectors, along with the necessary memory allocation and
de-allocation. On the other hand, creating a PackagedOperation for the expression a + b - c +
d and converting it to a vector results in code equivalent to the following:

C++ code
dealii::Vector<double> a, b, c, d;
// ..
dealii::Vector<double> result = a;
result += b;
result -= c;
result += d;

Consequently, this operation avoids the use of any intermediate storage.

Further, in addition to pure vector operations, scalar multiplication (and thus all vector space oper-
ations) and application of aLinearOperator to a vector can be expressed within aPackagedOperation.
For example, a residual can be expressed as:

C++ code
dealii::Vector<double> residual = b - op_a * x;

In all of these cases, PackagedOperation only stores references to vector and linear operator
arguments. As a consequence, creating a PackagedOperation object and evaluating it multiple
times will always use the then-current values of the arguments, not the values at the time the
packaged operation was created.
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2.2 Initial support for iso-geometric analysis

Nonuniform rational B-splines (NURBS) are the basis of most modern CAD packages. Isogeo-
metric analysis is a computational technique that aims at integrating finite element analysis (FEA)
into conventional NURBS-based CAD design tools by directly using NURBS basis functions in
the FEA application [15]. The preliminary implementation of the iso-geometric analysis concept
in the deal.II library is based on two main classes: a new finite element based on Bernstein poly-
nomials called FE_Bernstein and a general mapping called MappingFEField, which generalizes
the iso-parametric model to allow the description of the geometry using arbitrary finite element
displacement or location fields.

The scalar Bernstein finite element FE_Bernstein, in analogy with FE_Q, yields the finite element
space of continuous, piecewise Bernstein polynomials of degree p in each coordinate direction [15].
This class is realized using tensor product polynomials of Bernstein basis polynomials.

The MappingFEField is a generalization of the MappingQEulerian class, for arbitrary vector finite
elements. The two main notable differences are that this class interprets the degrees of freedom
of the underlying DoFHandler as absolute positions instead of displacements; and it allows
for arbitrary finite element types. This class effectively decouples topology from geometry, by
relegating all geometrical information to the components of a FiniteElement vector field. The
underlying Triangulation class is only used to infer topological and connectivity information
between cells.

(This feature was primarily developed by Marco Tezzele.)

2.3 New quadrature formulas

Two specialized quadrature formulas have been added to the library.

2.3.1 Telles quadrature formulas Many applications require the integration of functions
which might be singular in some a-priori known point locations. A common strategy in such
cases, which was already implemented in the library, is the use of Lachat-Watson quadrature for-
mulas [27]. These formulas are fairly accurate but very expensive. A new quadrature formula for
singular integrals was introduced in deal.II that implements the quadrature formula developed
by Telles in [36].

The main idea of this quadrature formula is to create an iso-morphism of a standard Gauss
quadrature formula according to a nonlinear transformation that has both first and second order
derivatives equal to zero at the singularity point. Such a transformation removes the singularity
of the integrand and drops the approximation error from about the 10% to 0.3% for a large class of
singular integrands [36]. These quadrature formulas are particularly relevant for approximation
of Boundary Integral Equations (see, e.g., [18]).

(This feature was primarily developed by Nicola Giuliani.)

2.3.2 Gauss-Chebyshev quadrature formulas Gauss-Chebyshev quadrature formulas [1]
are used to approximate integrals of functions on the interval [−1, 1] with weight w(x) = (1−x2)−1/2.
In deal.II the reference interval is [0, 1], hence our implementation of Gauss-Chebyshev formulas
are mapped to this interval, and the weight is changed to w(x) = 1/

√
x(1 − x).

As for the other Gaussian quadrature formulas, three flavors of Gauss-Chebyshev quadrature
rules have been implemented for any order:

Gauss-Chebyshev (GC) formulas with N points that integrate exactly polynomials up to the
order 2N − 1;
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Gauss-Radau-Chebyshev (GRC) formulas with N points where one of the two endpoints of the
interval can be specified as a constrained quadrature point; these formulas are exact up to
the order 2N − 2;

Gauss-Lobatto-Chebyshev (GLC) formulas with N points where two quadrature nodes are con-
strained to lie on the boundary points of the interval; these formulas exactly integrate
polynomials up to the order 2N − 3.

One important application of the GLC quadrature formulas is in the context of Spectral Element
Methods (SEM) using Lagrangian interpolants on GLC points as basis functions (this is a good
choice for the composite interpolation of “very regular” continuous functions). This pair of
basis functions and quadrature formulas generates diagonal mass matrices, that can be efficiently
applied both in direct and in inverse form. For saddle point problems, one common choice in
SEM [29] is theQN −QN−2 (inf-sup stable) couple based on Lagrangian interpolants on N + 1 GLC
and N − 1 GC nodes respectively.

(This feature was primarily developed by Giuseppe Pitton.)

2.4 Better error messages

deal.II uses assertions extensively to validate that input arguments to functions are within their
allowed ranges, are mutually consistent, and satisfy appropriate preconditions. We also use
assertions to check for internal conditions as well as for postconditions of many functions. All
told, the sources of deal.II contain around 9,000 assertions.

Whenever an assertion is failed, deal.II aborts the program with an error message that includes
the failing condition, its location, the surrounding function’s name, the call stack, and additional
information specific to the exception class associated with this particular error. For example,
trying to read an element of a vector that does not exist would trigger the exception in the
following code:

C++ code
template <typename Number>
inline
Number Vector<Number>::operator() (const size_type i) const
{
Assert (i<vec_size, ExcIndexRange(i,0,vec_size));
return val[i];

}

The error message produced from this code would look like this:

--------------------------------------------------------
An error occurred in line <1222> of file <.../include/deal.II/lac/vector.h> in function

Number& dealii::Vector<number>::operator()(dealii::Vector<number>::size_type)
[with Number = double, dealii::Vector<number>::size_type = unsigned int]

The violated condition was:
i<vec_size

The name and call sequence of the exception was:
ExcIndexRangeType<size_type>(i,0,vec_size)

Additional Information:
Index 123456 is not in the half-open range [0,679).

Stacktrace:
-----------
#0 ./step-22: dealii::Vector<double>::operator()(unsigned int)
#1 ./step-22: Step22::StokesProblem<2>::assemble_system()
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#2 ./step-22: Step22::StokesProblem<2>::run()
#3 ./step-22: main
--------------------------------------------------------

In this case, the error message does state the index that is being accessed, as well as the size of
the vector, both under “Additional Information”. The error message may not be overly clear, but
it helps illustrate the values of variables that participated in the failed condition i<vec_size.

However, many error messages produced by deal.II either do not produce any additional
information at all, or very little that is understandable to a novice user. Observing users deal with
errors in the courses we teach has shown that poor error messages are a major obstacle to quickly
identifying the causes of problems. Ideally, error messages would attempt to explain what is
going wrong, what are typical causes for this, and what possible solutions are.

In an effort to improve this situation, we have rewritten and augmented the error messages
produced by several dozen classes of assertions. Going through the remainder of all error
messages is a longer-term project.

2.5 Incompatible changes

This version of deal.II contains a number of changes that are incompatible with previous
versions. A complete list can be found in the file that lists all changes for this release. Most
of these changes are corner cases that are not likely to affect a significant fraction of users. In
particular, many of these changes remove functions and classes that were already deprecated (and
produced a compiler warning); often these functions had been marked as depracted for several
years already.

The only change that has the potential to be of more general interest is a clarification of the
Tensor<1,dim> and Point<dim> classes. As they both represent vectors in a dim-dimensional
space, they were previously often used interchangeably. This has been changed in many places
where we semantically now associate Point<dim>with a point in space, i.e., a vector anchored at
the origin; and where we semantically associate Tensor<1,dim>with vectors anchored anywhere.

An example is that operator-(Point<dim>, Point<dim>) now returns a Tensor<1,dim>. Like-
wise, normal vectors to cells are also represented by this latter data type. Overall, there are few
resulting incompatibilities, with the exception being assigning an expression that previously was
a Point<dim> but now is a Tensor<1,dim> (such as the difference between two points) to a vari-
able of type Point<dim>. In most contexts, however, everything will continue to work because a
Point<dim> can automatically be (down-)cast to a Tensor<1,dim>.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of a particular version of
the library, reference the present document. For up to date information and bibtex snippets for
this document see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [8]. If you rely on specific
features of the library, please consider citing any of the following:

c© by the authors, 2016 Archive of Numerical Software 4(100), 2016
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– For geometric multigrid: [24, 23];

– For distributed parallel computing: [7];

– For hp adaptivity: [13];

– For matrix-free and fast assembly techniques: [26];

– For computations on lower-dimensional manifolds: [17];

– For integration with CAD files and tools: [19];

– For LinearOperator and PackagedOperation facilities: [30].

deal.II can interface with many other libraries:

– ARPACK [28]

– BLAS, LAPACK

– HDF5 [37]

– METIS [25]

– MUMPS [2, 3, 4, 31]

– muparser [32]

– NetCDF [35]

– OpenCASCADE [33]

– p4est [14]

– PETSc [5, 6]

– SLEPc [20]

– Threading Building Blocks [34]

– Trilinos [21, 22]

– UMFPACK [16]

Please consider citing the appropriate references if you use interfaces to these libraries.

Older releases of deal.II can be cited as [9, 10, 11].
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