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Abstract. We present a coset realization of the vertex operator algebra V +
L with central

charge 1. We investigate the vertex operator algebra V +

Z
√

2n
(resp. V +

2Z
√

2n+1
) as a vertex

subalgebra of L
D

(1)
n

(Λ0) ⊗ L
D

(1)
n

(Λ0) (resp. L
B

(1)
n

(Λ0) ⊗ L
B

(1)
n

(Λ0)). Our construction is

based on the boson-fermion correspondence and certain conformal embeddings.
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1. Introduction

The construction and classification of rational vertex operator algebras (which cor-
respond to rational conformal field theories) are one of the most important problems
in the theory of vertex operator algebras. Representation-categories of rational ver-
tex operator algebras are finite tensor categories (cf. [12, 23]), and characters of
irreducible modules span a representation of a modular group (cf. [34]). One way
of constructing new vertex operator algebras is the coset construction (cf. [22]).
Let us recall the coset construction in the case of affine vertex algebras. Let g be
a simple Lie algebra, ĝ the associated (untwisted) affine Lie algebra, and L(kΛ0)
the simple vertex algebra associated to ĝ of level k ∈ C. For k ∈ Z>0, L(kΛ0) is a
rational vertex operator algebra. For k, m ∈ Z>0, L((k + m)Λ0) is a subalgebra of
L(kΛ0)⊗L(mΛ0), and one has the associated coset (or commutant) vertex operator
algebra

{v ∈ L(kΛ0)⊗ L(mΛ0) | unv = 0 for all u ∈ L((k + m)Λ0), n ≥ 0},
of central charge

k dim g

k + h∨
+

mdim g

m + h∨
− (k + m) dim g

k + m + h∨
,

with h∨ being the dual Coxeter number of ĝ. In physics literature, this coset vertex
algebra is denoted by

gk × gm

gk+m
.

∗Corresponding author. Email addresses: adamovic@math.hr (D.Adamović), perse@math.hr
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It is an important problem to describe generators of these vertex algebras and study
their representation theory. There are no precise general results (to the best of our
knowledge) about the structure of these cosets.

It is believed that these vertex algebras are finitely-generated, and that in the
case m = 1, they are related to the W -algebras obtained from the Drinfeld-Sokolov
reduction (cf. [13]). It is also expected that W -algebras constructed in this way are
rational. So we believe that it is important to present some evidence for rationality
of coset vertex algebras in special cases. We shall demonstrate that coset vertex
algebras in some cases are isomorphic to certain rational vertex algebras constructed
earlier by using completely different methods.

In this paper we shall consider the simplest case is when k = m = 1, i.e., the
commutant of L(2Λ0) in L(Λ0) ⊗ L(Λ0). We consider this commutant, in the case
when g is a simple orthogonal Lie algebra (i.e., a simple Lie algebra of type Dn or
Bn). These cases are interesting because the central charges of corresponding coset
vertex operator algebras are equal to 1. These cosets have been extensively studied
in physics literature. In [5], the authors calculated the characters of this coset and
expressed it as a sum of irreducible Virasoro characters. Their result implies that
the character of the coset coincides with the character of the vertex operator algebra
V +

L , where VL is a vertex operator algebra associated to certain even rank one lattice
L, and V +

L its Z2-orbifold. The rationality of these vertex operator algebras has been
established in [2].

In this paper we propose an alternative approach for studying these cosets. We
give an explicit realization of V +

L as a subalgebra of L(Λ0)⊗L(Λ0) which commutes
with L(2Λ0). Using a version of the boson-fermion correspondence, we embed these
vertex operator algebras into a vertex superalgebra VZN , where N = 2n in the D-case
and N = 2n+1 in the B-case. We introduce a certain order two automorphism θ of
VZN such that L(Λ0) ⊗ L(Λ0) is an even part of the subalgebra of θ-invariants. By
using these concepts, we present a new vertex algebraic proof of the isomorphism:

Com(L
D

(1)
n

(2Λ0), LD
(1)
n

(Λ0)⊗ L
D

(1)
n

(Λ0)) ∼= V +

Z
√

2n
.

Another interesting feature of this case is an isomorphism of fusion algebras for vertex
operator algebras L(2Λ0) in the Dn-case and V +

Z
√

2n
(cf. [1, 6]). The isomorphism

between these fusion algebras was observed in physics literature (cf. [5, 31]). An
explicit proof for this isomorphism was given in [6]. In our construction, we consider
L(2Λ0) and V +

Z
√

2n
as Z2-orbifolds of vertex operator algebras VA2n−1 and VZ

√
2n

respectively, with respect to the same automorphism θ, where A2n−1 denotes the
corresponding root lattice (for details see Section 3). Using the fusion rules for lattice
vertex operator algebras (cf. [8]), one sees that vertex operator algebras VA2n−1 and
VZ
√

2n have isomorphic fusion algebras. We believe that this could help to explain
the isomorphism of fusion algebras for L(2Λ0) and V +

Z
√

2n
.

In this paper we also investigate the relation between the vertex operator su-
peralgebra V +

Z
√

2n+1
and the vertex operator algebra L(2Λ0) associated to the affine

Lie algebra B
(1)
n . These algebras are also realized as Z2-orbifolds of vertex operator

algebras VA2n and VZ
√

2n+1, with respect to the same automorphism θ (cf. Section
4). In Section 5, we consider the case n = 1 when the coset algebra is isomorphic to
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the simple Neveu-Schwarz vertex operator superalgebra with central charge 1.

2. Preliminaries

Let V = V even ⊕ V odd be a vertex superalgebra (cf. [13, 25, 27, 29]). If V odd = 0,
V is a vertex algebra (see [4, 18, 20, 28]). For a subalgebra U of V , denote by

Com(U, V ) = {v ∈ V | unv = 0 for all u ∈ U, n ≥ 0} (1)

the commutant of U in V (cf. [21, 22, 28]). Then Com(U, V ) is a subalgebra of V
(also called coset vertex superalgebra).

Let L be an integral lattice with Z–bilinear form 〈·, ·〉. Let h = L ⊗Z C and
extend the Z–bilinear form to a C–bilinear form on h. Let ĥ = h⊗C[t, t−1]⊕CK be
its affinization with the center K. Then the Fock space M(1) = S(h⊗ t−1C[t−1]) is
a simple vertex operator algebra.

Denote by VL the associated vertex superalgebra (cf. [8, 13, 25]). As a vector
space

VL
∼= M(1)⊗ C[L], (2)

where C[L] is a group algebra of L, with basis {eα | α ∈ L}. Denote by L0 the dual
lattice of L. Then VL+γ , for γ ∈ L0/L are all irreducible modules for VL (cf. [8]).

Vertex (super)algebra VL has an order 2 automorphism which is lifted from the
−1 isometry of the lattice L. Denote by V +

L the subalgebra of invariants of that
automorphism (cf. [10, 20]). If L is an even lattice, VL and V +

L are vertex algebras
(cf. [7, 20, 28]).

Assume that L is a rank one lattice with a Z–bilinear form defined by 〈α, α〉 = 2`
for a positive integer `. Then h is 1-dimensional, and VL and V +

L are vertex operator
algebras with central charge 1.

For an affine Lie algebra ĝ of type X
(1)
n , denote by L

X
(1)
n

(Λ) the irreducible
highest weight ĝ-module, for any weight Λ of ĝ. Denote by Λi, i = 0, . . . , n the
fundamental weights of ĝ (cf. [24]). Then, L

X
(1)
n

(kΛ0) is a vertex algebra, for any
k ∈ C (cf. [13, 21, 25, 29, 28]).

Let Xn be the root lattice of rank n and type X = A, D or E. Let Pn be the
associated weight lattice. Then VXn

∼= L
X

(1)
n

(Λ0) as vertex algebras and Vλ+Xn , for
λ ∈ Pn/Xn are all irreducible modules for VXn (cf. [8, 19, 20, 25, 32]).

3. Fermionic vertex superalgebras, the boson-fermion corre-

spondence and affine Lie algebra D
(1)
n

In this section we shall apply the fermionic construction of the affine Lie algebra D
(1)
n

and the boson fermion correspondence to the study of the coset vertex operator
algebra Com(L

D
(1)
n

(2Λ0), LD
(1)
n

(Λ0) ⊗ L
D

(1)
n

(Λ0)). Then we shall present a (new)
vertex-algebraic proof of the fact that this coset is isomorphic to the vertex operator
algebra V +

L .
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We shall first recall the basic fact on infinite-dimensional Clifford algebras and the
associated vertex operator superalgebras. The Clifford algebra CL2n is a complex
associative algebra generated by

Ψ±i (r), Φ±i (r), r ∈ 1
2 + Z, 1 ≤ i ≤ n

and non-trivial relations

{Ψ±i (r), Ψ∓j (s)} = {Φ±i (r), Φ∓j (s)} = δr+s,0δi,j

where r, s ∈ 1
2 + Z, i, j ∈ {1, . . . , n}.

Let F2n be the irreducible CL2n–module generated by the cyclic vector 1 such
that

Ψ±i (r)1 = Φ±i (r)1 = 0, for r > 0, 1 ≤ i ≤ n.

Define the following fields on F2n

Ψ±i (z) =
∑

n∈Z
Ψ±i (n + 1

2 )z−n−1, Φ±i (z) =
∑

n∈Z
Φ±i (n + 1

2 )z−n−1.

The fields Ψ±i (z), Φ±i (z), i = 1, . . . , n generate on F2n the unique structure of a
simple vertex superalgebra (cf. [16, 25, 27, 29]).

Let FΨ
n (resp. FΦ

n ) be the subalgebra of F2n generated by the fields Ψ±i (z) (resp.
Φ±i (z) ), i = 1, . . . , n.

The following result is well-known.

Theorem 1 (see [15]). We have

(FΨ
n )even ∼= (FΦ

n )even ∼= L
D

(1)
n

(Λ0).

Define the following lattice

R2n = Zx1 + · · ·+ Zxn + Zy1 + · · ·+ Zyn,

〈xi, xj〉 = 〈yi, yj〉 = δi,j 〈xi, yj〉 = 0,

where i, j ∈ {1, . . . , n}. We set z2k−1 = xk, z2k = yk, where k ∈ {1, . . . , n}.
Let VR2n be the associated lattice vertex superalgebra (cf. [25]). Here we choose

the 2–cocycle ε : R2n×R2n → {±1} from the definition of lattice vertex superalgebra
VR2n such that

ε(zi, zj) =
{

1, if i ≤ j
−1, if i > j

(3)

We shall use the following (non-standard) version of the boson-fermion corre-
spondence (see [14, 17, 25]):
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Theorem 2. There exists the vertex superalgebra isomorphism ϕ2n : F2n → VR2n

such that

Ψ+
k (− 1

2 )1 7→ 1√
2

(
exk + e−yk

)
,

Ψ−k (− 1
2 )1 7→ 1√

2

(
e−xk + eyk

)
,

Φ+
k (− 1

2 )1 7→ i√
2

(
exk − e−yk

)
,

Φ−k (− 1
2 )1 7→ −i√

2

(
e−xk − eyk

)
,

for k = 1, . . . , n.

In what follows we shall identify v ∈ F2n with image ϕ2n(v) ∈ VR2n
. Now we

consider two commuting subalgebras of VR2n :

Theorem 3. It holds:

(i) The subalgebra of VR2n
generated by

eγ and e−γ (4)

where

γ = x1 + · · ·+ xn + y1 + · · ·+ yn (5)

is isomorphic to the rank-one lattice vertex operator algebra VL such that
L = Zγ, 〈γ, γ〉 = 2n.

(ii) The subalgebra of VR2n generated by elements

exk−yl + exl−yk , exk−xl + eyl−yk , e−xk+yl + e−xl+yk , (6)
for k, l ∈ {1, . . . , n}, k 6= l

is isomorphic to L
D

(1)
n

(2Λ0).

(iii) The vertex operator algebra VL ⊗ L
D

(1)
n

(2Λ0) is isomorphic to a subalgebra of
VR2n generated by elements (4) and (6).

Proof. Assertion (i) is obvious. Next we notice that elements

Ψ±k (− 1
2 )Ψ±l (− 1

2 )1 + Φ±k (− 1
2 )Φ±l (− 1

2 )1, (7)

Ψ±k (− 1
2 )Ψ∓l (− 1

2 )1 + Φ±k (− 1
2 )Φ∓l (− 1

2 )1, (8)

generate the subalgebra of F2n isomorphic to L
D

(1)
n

(2Λ0). Assertion (ii) follows from
the fact that the boson-fermion correspondence ϕ2n : F2n → VR2n from Theorem 2
maps generators (7)-(8) to elements proportional to generators (6). Assertion (iii)
easily follows from (i), (ii) and the fact that

〈γ, xk − xl〉 = 〈γ, yk − yl〉 = 〈γ, xk − yl〉 = 0,

for k 6= l.
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Next we notice that the root lattice of the Lie algebra sl(2n,C) can be realized
as a sublattice of R2n:

A2n−1 = Z(x1−x2)+· · ·+Z(xn−1−xn)+Z(xn−yn)+Z(yn−yn−1)+· · ·+Z(y2−y1).

It is clear that
A2n−1 = L⊥.

Let λ0 = 0 and for 1 ≤ i ≤ n we define

λi = x1 + · · ·+ xi,

λn+i = x1 + · · ·+ xn + yn + · · ·+ yn−i+1.

For 0 ≤ i ≤ 2n − 1 we have that Vλi+A2n−1 is isomorphic to the level one A
(1)
2n−1–

module L
A

(1)
2n−1

(Λi).
Then we have the following decomposition:

VR2n =
2n−1⊕

i=0

Vλi+L+A2n−1

∼=
2n−1⊕

i=0

V
L+

i
2n γ

⊗ Vλi+A2n−1

∼=
2n−1⊕

i=0

V
L+

i
2n γ

⊗ L
A

(1)
2n−1

(Λi). (9)

Remark 1. Theorem 3 shows that the vertex operators Y (v, z) where v ∈ VL com-
mute with the level two action of the affine Lie algebra D

(1)
n on VR2n . In particular,

L
D

(1)
n

(2Λ0) ⊂ VA2n−1 . In other words, we present a lattice realization of conformal
embedding of the vertex operator algebra L

D
(1)
n

(2Λ0) into L
A

(1)
2n−1

(Λ0).

The following proposition was proved by M. Wakimoto by using characters of
integrable representations of affine Lie algebras.

Proposition 1 (see [33]). We have:

VA2n−1
∼= L

D
(1)
n

(2Λ0)⊕ L
D

(1)
n

(2Λ1),

Vλ1+A2n−1
∼= L

D
(1)
n

(Λ0 + Λ1),

Vλi+A2n−1
∼= L

D
(1)
n

(Λi) (2 ≤ i ≤ n− 2),

Vλn−1+A2n−1
∼= L

D
(1)
n

(Λn−1 + Λn),

Vλn+A2n−1
∼= L

D
(1)
n

(2Λn−1)⊕ L
D

(1)
n

(2Λn),

Vλn+1+A2n−1
∼= L

D
(1)
n

(Λn−1 + Λn),

Vλn+i+A2n−1
∼= L

D
(1)
n

(Λn−i) (2 ≤ i ≤ n− 2),

Vλ2n−1+A2n−1
∼= L

D
(1)
n

(Λ0 + Λ1).
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Remark 2. Proposition 1 shows that VA2n−1 is an extension of the vertex opera-
tor algebra L

D
(1)
n

(2Λ0) by its simple-current module L
D

(1)
n

(2Λ1). This fact can be
also directly proved by using theory of simple-current extensions of vertex opera-
tor algebras from [9] and [30]. This theory can be applied to relate the category of
L

D
(1)
n

(2Λ0)–modules to the category of VA2n−1–modules.

Let θ : VR2n
→ VR2n

be the automorphism of the vertex superalgebra VR2n
which

is lifted from the lattice automorphism

xi 7→ −yi, yi 7→ −xi (1 ≤ i ≤ n).

Then θ is an automorphism of order two. If we have a subalgebra U ⊂ VR2n
which

is θ-invariant, we define

U0 = {u ∈ U | θ(u) = u}, U1 = {u ∈ U | θ(u) = −u},

We have:

Proposition 2. It holds:

(i) (VR2n)0 = FΨ
n ⊗ (FΦ

n )even.

(ii) (VL)0 = V +
L , (VL)1 = V −

L .

(iii) (VA2n−1)
0 = L

D
(1)
n

(2Λ0), (VA2n−1)
1 = L

D
(1)
n

(2Λ1).

Proof. Assertion (i) follows from formulas

θ(Ψ±k (− 1
2 )1) = Ψ±k (− 1

2 )1, θ(Φ±k (− 1
2 )1) = −Φ±k (− 1

2 )1,

for k = 1, . . . , n.
Assertion (ii) follows from the fact that

θ(α) = −α, for α ∈ L.

Finally, Proposition 1 implies (iii).

Now we shall consider a subalgebra of VR2n which is isomorphic to the tensor
product L

D
(1)
n

(Λ0) ⊗ L
D

(1)
n

(Λ0). Clearly, L
D

(1)
n

(2Λ0) is a subalgebra of L
D

(1)
n

(Λ0) ⊗
L

D
(1)
n

(Λ0).

Lemma 1. We have

(eγ + e−γ) ∈ L
D

(1)
n

(Λ0)⊗ L
D

(1)
n

(Λ0) ∼= (FΨ
n )even ⊗ (FΦ

n )even.

Proof. The assertion follows from the fact that

(eγ + e−γ) ∈ (V 0
R2n

)even ∼= (FΨ
n )even ⊗ (FΦ

n )even.
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Since (eγ + e−γ) generates the subalgebra of VL isomorphic to V +
L (see [10]),

Lemma 1 and Theorem 3 imply the following:

Theorem 4. The vertex operator algebra L
D

(1)
n

(Λ0) ⊗ L
D

(1)
n

(Λ0) contains a subal-
gebra isomorphic to

V +
L ⊗ L

D
(1)
n

(2Λ0).

The decompositions from relation (9), Proposition 1 and the fact that

(V 0
R2n

)even ∼= L
D

(1)
n

(Λ0)⊗ L
D

(1)
n

(Λ0)

imply the following:

Corollary 1. Com(L
D

(1)
n

(2Λ0), LD
(1)
n

(Λ0)⊗ L
D

(1)
n

(Λ0)) ∼= V +
L .

Remark 3. For a rational vertex operator algebra V , let E(V ) denote its fusion
algebra (or Verlinde algebra). Note that

E(VL) ∼= E(L
A

(1)
2n−1

(Λ0)), E(V +
L ) ∼= E(L

D
(1)
n

(2Λ0)).

The second isomorphism was proved rigorously in [6]. We believe that the reason
for the second isomorphism is in the fact that V +

L and L
D

(1)
n

(2Λ0) are Z2-orbifolds
of vertex operator algebras which have identical fusion algebras.

4. Level two B
(1)
n –modules and vertex superalgebra V +

Z
√

2n+1

In this section we study coset vertex algebras associated to the affine Lie alge-
bra of type B

(1)
n . We will identify the coset algebra Com(L

B
(1)
n

(2Λ0), LB
(1)
n

(Λ0) ⊗
L

B
(1)
n

(Λ0)). The construction and proofs are similar to those in Section 3.
We consider the Clifford algebra CL2n+1 generated by

Ψ±i (r),Φ±i (r),Ψ2n+1(r), Φ2n+1(r) r ∈ 1
2 + Z, 1 ≤ i ≤ n

and non-trivial relations

{Ψ±i (r),Ψ∓j (s)} = {Φ±i (r), Φ∓j (s)} = δr+s,0δi,j ,

{Ψ2n+1(r), Ψ2n+1(s)} = {Φ2n+1(r), Φ2n+1(s)} = δr+s,0

where r, s ∈ 1
2 + Z, i, j ∈ {1, . . . , n}.

Let F2n+1 be the irreducible CL2n+1–module generated by the cyclic vector 1
such that

Ψ±i (r)1 = Φ±i (r)1 = Ψ2n+1(r)1 = Φ2n+1(r)1 = 0 for r > 0, 1 ≤ i ≤ n.

Define the following fields on F2n+1

Ψ±i (z) =
∑

n∈Z
Ψ±i (n + 1

2 )z−n−1, Φ±i (z) =
∑

n∈Z
Φ±i (n + 1

2 )z−n−1,

Ψ2n+1(z) =
∑

m∈Z
Ψ2n+1(m + 1

2 )z−m−1, Φ2n+1(z) =
∑

m∈Z
Φ2n+1(m + 1

2 )z−m−1.



On coset vertex algebras with central charge 1 151

The fields Ψ±i (z), Φ±i (z), i = 1, . . . , n, Ψ2n+1(z), Φ2n+1(z) generate on F2n+1 the
unique structure of a simple vertex superalgebra (cf. [16], [25], [27], [29]).

Let FΨ
n+1/2 (resp. FΦ

n+1/2) be the subalgebra of F2n+1 generated by the fields
Ψ±i (z), Ψ2n+1(z) (resp. Φ±i (z), Φ2n+1(z) ), i = 1, . . . , n.

Then, we have:

Theorem 5 (see [15]). We have:

(FΨ
n+1/2)

even ∼= (FΦ
n+1/2)

even ∼= L
B

(1)
n

(Λ0).

Define the following lattice

R2n+1 = Zx1 + · · ·+ Zxn + Zy1 + · · ·+ Zyn + Zx,

〈xi, xj〉 = 〈yi, yj〉 = δi,j 〈xi, yj〉 = 0,

〈x, xi〉 = 〈x, yi〉 = 0, 〈x, x〉 = 1 (10)

where i, j ∈ {1, . . . , n}. We set z2k−1 = xk, z2k = yk, z2n+1 = x, where 1 ≤ k ≤ n.
Let VR2n+1 be the associated lattice vertex superalgebra (cf. [25]). As before,

we can choose the 2–cocycle ε : R2n+1 × R2n+1 → {±1} in the definition of lattice
vertex superalgebra VR2n+1 such that relation (3) holds.

As in Theorem 2, we have the following version of the boson-fermion correspon-
dence:

Theorem 6. There exists the vertex superalgebra isomorphism ϕ2n+1 : F2n+1 →
VR2n+1 such that

Ψ+
k (− 1

2 )1 7→ 1√
2

(
exk + e−yk

)
,

Ψ−k (− 1
2 )1 7→ 1√

2

(
e−xk + eyk

)
,

Φ+
k (− 1

2 )1 7→ i√
2

(
exk − e−yk

)
,

Φ−k (− 1
2 )1 7→ −i√

2

(
e−xk − eyk

)
,

Ψ2n+1(− 1
2 )1 7→ 1√

2

(
ex + e−x

)
,

Φ2n+1(− 1
2 )1 7→ i√

2

(
ex − e−x

)
,

for k = 1, . . . , n.

In what follows we shall identify v ∈ F2n+1 with image ϕ2n+1(v) ∈ VR2n+1 . As
in Theorem 3, we consider two commuting subalgebras of VR2n+1 :

Theorem 7. It holds:
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(i) The subalgebra of VR2n+1 generated by

eγ and e−γ (11)

where

γ = x1 + · · ·+ xn + y1 + · · ·+ yn + x (12)

is isomorphic to the rank-one lattice vertex operator superalgebra VL′ such that
L′ = Zγ, 〈γ, γ〉 = 2n + 1.

(ii) The subalgebra of VR2n+1 generated by elements

exk−yl + exl−yk , exk−xl + eyl−yk , e−xk+yl + e−xl+yk ,

ex−yk + exk−x, ex−xk + eyk−x, (13)

for k, l ∈ {1, . . . , n}, k 6= l, is isomorphic to L
B

(1)
n

(2Λ0).

(iii) The vertex operator superalgebra VL′⊗L
B

(1)
n

(2Λ0) is isomorphic to a subalgebra
of VR2n+1 generated by elements (11) and (13).

Proof. Assertion (i) is obvious. Next we notice that elements

Ψ±k (− 1
2 )Ψ±l (− 1

2 )1 + Φ±k (− 1
2 )Φ±l (− 1

2 )1, (14)

Ψ±k (− 1
2 )Ψ∓l (− 1

2 )1 + Φ±k (− 1
2 )Φ∓l (− 1

2 )1, (15)

Ψ±k (− 1
2 )Ψ2n+1(− 1

2 )1 + Φ±k (− 1
2 )Φ2n+1(− 1

2 )1, (16)

generate the subalgebra of F2n+1 isomorphic to L
B

(1)
n

(2Λ0). Assertion (ii) follows
from the fact that the boson-fermion correspondence ϕ2n+1 : F2n+1 → VR2n+1 maps
generators (14)-(16) to elements proportional to generators (13). Assertion (iii)
easily follows from (i), (ii) and the fact that

〈γ, xk − xl〉 = 〈γ, yk − yl〉 = 〈γ, xk − yl〉 = 〈γ, x− yk〉 = 〈γ, xk − x〉 = 0,

for k 6= l.

Next we notice that the root lattice of the Lie algebra sl(2n+1,C) can be realized
as a sublattice of R2n+1:

A2n = Z(x1 − x2) + · · ·+ Z(xn−1 − xn) + Z(xn − x) + Z(x− yn) + Z(yn − yn−1)
+ · · ·+ Z(y2 − y1).

It is clear that
A2n = L′⊥.

Let λ0 = 0 and for 1 ≤ i ≤ n, we define

λi = x1 + · · ·+ xi,

λn+i = x1 + · · ·+ xn + x + yn + · · ·+ yn−i+2.
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For 0 ≤ i ≤ 2n we have that Vλi+A2n
is isomorphic to the level one A

(1)
2n –module

L
A

(1)
2n

(Λi).
Then we have the following decomposition

VR2n+1 =
2n⊕

i=0

Vλi+L′+A2n

∼=
2n⊕

i=0

V
L′+ i

2n+1γ
⊗ Vλi+A2n

∼=
2n⊕

i=0

V
L′+ i

2n+1γ
⊗ L

A
(1)
2n

(Λi). (17)

Remark 4. Theorem 7 provides a lattice realization of the conformal embedding of
the vertex operator algebra L

B
(1)
n

(2Λ0) into L
A

(1)
2n

(Λ0).

Proposition 3 (see [33]). We have:

VA2n
∼= L

B
(1)
n

(2Λ0)⊕ L
B

(1)
n

(2Λ1),

Vλ1+A2n
∼= L

B
(1)
n

(Λ0 + Λ1),

Vλi+A2n
∼= L

B
(1)
n

(Λi) (2 ≤ i ≤ n− 1),

Vλn+A2n
∼= L

B
(1)
n

(2Λn),

Vλn+1+A2n
∼= L

B
(1)
n

(2Λn),

Vλn+i+A2n
∼= L

B
(1)
n

(Λn+1−i) (2 ≤ i ≤ n− 1),

Vλ2n+A2n
∼= L

B
(1)
n

(Λ0 + Λ1).

Remark 5. As in the case of affine Lie algebra D
(1)
n , the previous proposition was

proved by M. Wakimoto by using characters. On the other hand, this result can
be also proved by using the theory of simple current extension of vertex operator
algebras. Since VA2n is a simple current extension of L

B
(1)
n

(2Λ0), we have that every

integrable B
(1)
n –module of level two can be constructed from twisted or untwisted

VA2n–modules.

Let θ : VR2n+1 → VR2n+1 be the automorphism of the vertex superalgebra VR2n+1

which is lifted from the lattice automorphism

xi 7→ −yi, yi 7→ −xi (1 ≤ i ≤ n), x 7→ −x.

Then θ is an automorphism of order two. If we have a subalgebra U ⊂ VR2n+1

which is θ-invariant, we define

U0 = {u ∈ U | θ(u) = u}, U1 = {u ∈ U | θ(u) = −u},

We have:
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Proposition 4. It holds:

(i) (VR2n+1)
0 = FΨ

n+1/2 ⊗ (FΦ
n+1/2)

even.

(ii) (VL′)0 = V +
L′ , (VL′)1 = V −

L′ .

(iii) (VA2n
)0 = L

B
(1)
n

(2Λ0), (VA2n
)1 = L

B
(1)
n

(2Λ1).

Proof. Assertion (i) follows from formulas

θ(Ψ±k (− 1
2 )1) = Ψ±k (− 1

2 )1, θ(Φ±k (− 1
2 )1) = −Φ±k (− 1

2 )1,

for k = 1, . . . , n and

θ(Ψ2n+1(− 1
2 )1) = Ψ2n+1(− 1

2 )1, θ(Φ2n+1(− 1
2 )1) = −Φ2n+1(− 1

2 )1.

Assertion (ii) follows from the fact that

θ(α) = −α, for α ∈ L′.

Finally, Proposition 3 implies (iii).

Now we shall consider a subalgebra of VR2n+1 which is isomorphic to the tensor
product L

B
(1)
n

(Λ0) ⊗ L
B

(1)
n

(Λ0). Clearly, L
B

(1)
n

(2Λ0) is a subalgebra of L
B

(1)
n

(Λ0) ⊗
L

B
(1)
n

(Λ0).

Lemma 2. We have:

(i) (eγ + e−γ) ∈ V 0
R2n+1

.

(ii) (e2γ + e−2γ) ∈ L
B

(1)
n

(Λ0)⊗ L
B

(1)
n

(Λ0) ∼= (FΨ
n+1/2)

even ⊗ (FΦ
n+1/2)

even.

Proof. Assertion (i) follows from the fact that (eγ + e−γ) is θ-invariant. Since
(V 0

R2n+1
)even ∼= L

B
(1)
n

(Λ0) ⊗ L
B

(1)
n

(Λ0) and e2γ + e−2γ is an even vector, we get
assertion (ii).

Since (eγ + e−γ) generates the subalgebra of VL′ isomorphic to V +
L′ , Lemma 2

and Theorem 3 imply the following:

Theorem 8. It holds:

(i) The vertex operator superalgebra V 0
R2n+1

contains a subalgebra isomorphic to

V +
L′ ⊗ L

B
(1)
n

(2Λ0).

(ii) The vertex operator algebra L
B

(1)
n

(Λ0) ⊗ L
B

(1)
n

(Λ0) contains a subalgebra iso-
morphic to

V +
2L′ ⊗ L

B
(1)
n

(2Λ0).



On coset vertex algebras with central charge 1 155

The decomposition from relation (17), Proposition 3 and the fact that

(V 0
R2n+1

)even ∼= L
B

(1)
n

(Λ0)⊗ L
B

(1)
n

(Λ0)

imply the following:

Corollary 2. We have:

(i) Com(L
B

(1)
n

(2Λ0), V 0
R2n+1

) ∼= V +
L′ .

(ii) Com(L
B

(1)
n

(2Λ0), LB
(1)
n

(Λ0)⊗ L
B

(1)
n

(Λ0)) ∼= V +
2L′ .

Remark 6. It is natural to investigate fusion algebras E(L
B

(1)
n

(2Λ0)) and E(V +
L′ ).

It this case, fusion algebras are not isomorphic.

5. Level four A
(1)
1 –modules and vertex superalgebra Lns(1, 0)

In this section we shall extend the results from Section 4 to the case n = 1. Let
Lns(c, h) denote the irreducible highest weight module for the Neveu-Schwarz algebra
with central charge c and highest weight h (cf. [3]). When n = 1, the coset vertex
superalgebra from Section 4 is in fact a minimal Neveu-Schwarz vertex superalgebra
Lns(1, 0).

The following tensor product can be decomposed as a module for Lns(1, 0) ⊗
L

A
(1)
1

(4Λ0) (cf. [3, 26]):

L
A

(1)
1

(2Λ0)⊗ (L
A

(1)
1

(2Λ0)⊕ L
A

(1)
1

(2Λ1)) = Lns(1, 0)⊗ L
A

(1)
1

(4Λ0)⊕ Lns(1, 1/6)

⊗L
A

(1)
1

(2Λ0 + 2Λ1)⊕ Lns(1, 1) (18)

⊗L
A

(1)
1

(4Λ1).

Proposition 5. It holds:

(1)
FΨ

3/2
∼= FΦ

3/2 = L
A

(1)
1

(2Λ0)⊕ L
A

(1)
1

(2Λ1).

(2)

(FΨ
3/2)

even ∼= (FΦ
3/2)

even ∼= L
A

(1)
1

(2Λ0); (FΨ
3/2)

odd ∼= (FΦ
3/2)

odd ∼= L
A

(1)
1

(2Λ1).

(3)

V 0
R3
∼= L

A
(1)
1

(2Λ0)⊗ (L
A

(1)
1

(2Λ0)⊕ L
A

(1)
1

(2Λ1)). (19)

Proof. Assertions (1) and (2) are well-known (cf. [22, 27, 3]). Applying the same
construction as in Section 4, we get (3).

By using decomposition (17) in the case n = 1, the conformal embedding of
L

A
(1)
1

(4Λ0) into VA2
∼= L

A
(1)
2

(Λ0) (cf. [11, 33]) we get:
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Proposition 6. It holds:

(1) V 0
A2
∼= L

A
(1)
1

(4Λ0), V 1
A2
∼= L

A
(1)
1

(4Λ1),

(2) Vλ1+A2
∼= Vλ2+A2

∼= L
A

(1)
1

(2Λ0 + 2Λ1).

By combining Propositions 5 and 6, and decomposition (19) we obtain:

Corollary 3. We have:

(i) Com(L
A

(1)
1

(4Λ0), V 0
R3

) ∼= V +
L′
∼= Lns(1, 0).

(ii) Com(L
A

(1)
1

(4Λ0), LA
(1)
1

(2Λ0)⊗ L
A

(1)
1

(2Λ0)) ∼= V +
2L′

∼= Lns(1, 0)even.
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[3] D.Adamović, Rationality of Neveu-Schwarz vertex operator superalgebras, Inter-

nat. Math. Res. Notices 17(1997), 865–874.
[4] R.E.Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc.

Natl. Acad. Sci. 83(1986), 3068–3071.
[5] J. Bockenhauer, J. Fuchs, Higher level WZW sectors from free fermions, J.

Math. Phys. 38(1997), 1227–1256.
[6] M.Cuntz, C.Goff, An isomorphism between fusion algebras of V +

L and D(1) of
level 2, preprint.

[7] C.Dong, Vertex algebras associated with even lattices, J. Algebra 160(1993),
245–265.

[8] C.Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Opera-
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