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Abstract. In this paper non-tangential quadrilaterals in the isotropic plane are studied.
A quadrilateral is called standard if a parabola with the equation x = y2 is inscribed in
it. The properties of the standard quadrilateral related to the focus and the median of the
quadrilateral are presented. Furthermore, the orthic of the quadrilateral is introduced.
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A projective plane with the absolute (in the sense of Cayley-Klein) consisting
of a line ω and a point Ω on ω is called an isotropic plane. Usually such an affine
coordinate system is chosen that in homogeneous coordinates ω : z = 0, i.e., ω is
the line at infinity, and Ω = (0, 1, 0). The line ω is said to be the absolute line and
the point Ω the absolute point. A line incident with the absolute point is called an
isotropic line, and a conic touching ω at the absolute point Ω is an isotropic circle
(sometimes ”isotropic” will be omitted). All the notions related to the geometry of
the isotropic plane can be found in [7] and [8].

Let A,B, C,D be any four lines in the isotropic plane where any two of them are
not parallel and any three of them do not pass through the same point. The figure
consisting of these four lines and their six points of intersection is called a complete
quadrilateral and will be denoted by ABCD. The lines A,B, C,D are the sides of
the quadrilateral, and A∩B,A∩C,A∩D, B ∩C,B ∩D, C ∩D are its vertices. Pairs
of vertices A ∩ B, C ∩ D; A ∩ C,B ∩ D and A ∩ D,B ∩ C are called opposite. There
is exactly one conic touching the lines A,B, C,D and the absolute line ω. If this
conic touches ω at the point Ω, then it is an isotropic circle inscribed in ABCD.
Otherwise, if the contact point Φ is different from Ω, then the conic is a parabola
inscribed in ABCD. In this case the quadrilateral ABCD is non-tangential. Let us
denote this parabola by P. Except for the tangent ω, the parabola P has another
tangent T , from the point Ω, being an isotropic line. This line is called the directrix
of the parabola P and its point T of contact with the parabola is called the focus of
the parabola P. The joint line of the focus T and the point at infinity Φ is called the
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axis of the parabola and all lines parallel to the axis are diameters of the parabola
P. The definitions of the center, the axis, the foci and the directrices of the conic in
the isotropic plane can be found in [7] and [2].

Without loss of generality, the affine coordinate system can be chosen in such
a way that the point T coincides with the origin of the coordinate system, and
the lines TΦ and T are the x-axis and the y-axis, respectively. In the euclidean
model of the isotropic plane this coordinate system will be drawn as a rectangular
coordinate system, although a right angle does not have any geometrical meaning
in the isotropic plane. Let us prove the following lemma:

Lemma 1. The parabola with the focus at the origin touching the ordinate axis,
with the x-axis as its axis, has the equation of the form

ny2 + ox = 0, n, o ∈ R, n, o 6= 0. (1)

Proof. Any conic in the isotropic plane has the equation of the form

lx2 + mxy + ny2 + ox + py + q = 0. (2)

Its points of intersection with the y-axis have ordinates that are solutions of the
equation ny2 + py + q = 0. Since the y-axis touches the conic (2) at the origin,
the previous equation has double solution y = 0, which is obtained by the condition
p = q = 0. Hence, the conic expressed in homogeneous coordinates has the equation
of the form

lx2 + mxy + ny2 + oxz = 0. (3)

Without loss of generality, we can choose the x-axis as the axis of our parabola.
Since the point at infinity of the x-axis has the coordinates Φ = (1, 0, 0), the point
Φ has to be the point of contact of the line at infinity ω with the equation z = 0 and
the conic (3), i.e. the equation lx2 + mxy + ny2 = 0 has a double solution y = 0,
which is achieved iff l = m = 0. Therefore the conic (3) has the final form (1),
otherwise, if n = 0 or o = 0 we get a conic degenerated into two lines.

By substitution x → −n

o
x, equation (1) turns into the form

P . . . x = y2. (4)

Let A,B, C, D be the points of contact of the lines A,B, C,D with the inscribed
parabola P of the quadrilateral ABCD with equation (4). Let the coordinates of
these points be:

A = (a2, a), B = (b2, b), C = (c2, c), D = (d2, d), (5)

where a, b, c, d are different real numbers. We prove two further lemmas.

Lemma 2. The parabola P given by equation (4) has the tangents A,B, C,D with
the equations

A . . . 2ay = x + a2,
B . . . 2by = x + b2,
C . . . 2cy = x + c2,
D . . . 2dy = x + d2

(6)
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at the points A,B, C, D in (5), respectively.

Proof. If we insert, e.g. x = 2ay−a2 from the first equation of (6) into equation (4),
we get the equation y2 − 2ay + a2 = 0 having a double solution y = a. This means
that the line A in (6) touches P at the point having a as its ordinate. Therefore this
contact point is A.

Lemma 3. The points of intersection of the lines A,B, C,D given in (6) are

A ∩ B = (ab,
a + b

2
), C ∩ D = (cd,

c + d

2
),

A ∩ C = (ac,
a + c

2
), B ∩ D = (bd,

b + d

2
),

A ∩D = (ad,
a + d

2
), B ∩ C = (bc,

b + c

2
).

(7)

Proof. Since
2a · 1

2
(a + b) = ab + a2,

we have that the point (ab,
a + b

2
) lies on the line A from (6). Similarly, this holds

for the line B as well.

Combining Lemmas 1-3 the following theorem is achieved:

Theorem 1. For any non-tangential quadrilateral ABCD there exist four distinct
real numbers a, b, c, d such that, in the defined canonical affine coordinate system,
the sides are given by (6), the vertices have the form (7) and the inscribed parabola
has the equation (4).

For the quadrilateral ABCD from Theorem 1 it is said to be in a standard po-
sition or it is a standard quadrilateral. Due to Theorem 1 every non-tangential
quadrilateral can be represented in the standard position. In order to prove the
properties of any non-tangential quadrilateral, it is sufficient to prove the properties
for the standard quadrilateral.

For a further study of non-tangential quadrilaterals the following symmetric func-
tions of the numbers a, b, c, d will be useful:

s = a + b + c + d,
q = ab + ac + ad + bc + bd + cd,
r = abc + abd + acd + bcd,
p = abcd.

(8)

Theorem 2. The midpoints of the line segments connecting the pairs of opposite
vertices of the non-tangential quadrilateral lie on the line M, with equation

M . . . y =
s

4
, (9)

related to the standard quadrilateral ABCD.
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Proof. As the midpoint of the line segment connecting the points A∩B and C ∩D
from (7) has coordinates (ab+cd

2 , a+b+c+d
4 ), this point is incident with the line (9).

By analogy with the euclidean case the line M from Theorem 2 will be called the
median of the quadrilateral ABCD. Let us point out that this is an affine notion.

Corollary 1. The standard quadrilateral ABCD has the median with the equation
(9).

Theorem 3. The circumscribed circles of the four triangles formed by the three
sides of the non-tangential quadrilateral are incident with the same point O, which
coincides with the focus of the parabola inscribed in this quadrilateral.

Proof. Let us observe the circle Kd with the equation

Kd . . . 2abcy = −x2 + (ab + ac + bc)x. (10)

It passes through the points A∩B, A∩C and B ∩ C from (7), because, for example,
the first one satisfies the equality

2abc · 1
2
(a + b) = −a2b2 + (ab + ac + bc)ab.

Besides, Kd clearly passes through the point O = (0, 0) as well.

The point O from Theorem 3 will be called the focus of the quadrilateral ABCD.

Corollary 2. The focus of the quadrilateral is the focus of its inscribed parabola.
The standard quadrilateral ABCD has the focus O = (0, 0).

Before the next theorem we need the following definition: if sides of the triangle
are polars of their opposite vertices with respect to the circle, such a circle, if it
exists, is the polar circle of the triangle.

Theorem 4. The polar circles of the trilaterals BCD, ACD, ABD, ABC belong to
the same pencil of circles, and the radical axis (the potential line) of this pencil is
the median of the quadrilateral ABCD.

Proof. Let us show for example that the circle Pd with the equation

4abcy = x2 + abc(a + b + c) (11)

is the polar circle of the trilateral ABC. It is sufficient to prove that the point B ∩C
has the line A as its polar with respect to the circle Pd. The equation of the polar
of any point (x0, y0) with respect to the circle (11) is

2abc(y + y0) = x0x + abc(a + b + c). (12)

For the point B ∩ C = (bc,
1
2
(b + c)) we get

abc(2y + b + c) = bc · x + abc(a + b + c),
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that is, factoring bc out, the equation of the line A. Analogously, the polar circle Pc

of the trilateral ABD has the equation

4abdy = x2 + abd(a + b + d). (13)

Subtracting (13) from (11), there follows the equation

4ab(c− d)y = ab[(a + b)(c− d) + c2 − d2].

Leaving the factor ab(c−d) out of the equation, 4y = a+b+c+d is obtained, which
is equation (9) of the median.

Summing (10) and (11) up we get the equation

6abcy = (ab + ac + bc)x + abc(a + b + c)

of the line HD that is the orthic of the trilateral ABC. Namely, the corresponding
sides of the triangle and its orthic triangle intersect in three points which lie on the
same line called the orthic. (The feet of altitudes of the triangle form its orthic
triangle.) In [6] it is shown that the equation of the orthic is the arithmetic mean of
equations of sides of the triangle. The equations of the orthics HA,HB ,HC of the
trilaterals BCD, ACD, ABD look similar. As a matter of fact:

Theorem 5. The orthics HA,HB ,HC ,HD of the trilaterals BCD, ACD, ABD, ABC
of the standard quadrilateral ABCD have the equations

HA . . . y =
bc + bd + cd

6bcd
x +

1
6
(b + c + d),

HB . . . y =
ac + ad + cd

6acd
x +

1
6
(a + c + d),

(14)

HC . . . y =
ab + ad + bd

6abd
x +

1
6
(a + b + d),

HD . . . y =
ab + ac + bc

6abc
x +

1
6
(a + b + c).

If the lines A,B, C,D are written in an explicit form, that is

A . . . y =
1
2a

x +
a

2
,

B . . . y =
1
2b

x +
b

2
,

C . . . y =
1
2c

x +
c

2
,

D . . . y =
1
2d

x +
d

2
,

(15)

then the equations (14) are the arithmetic means of the equations of the three
corresponding sides in (15). This agrees with the results given in [6].
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Theorem 6. If the lines HA,HB ,HC ,HD are the orthics of the trilaterals BCD,
ACD, ABD, ABC of the quadrilateral ABCD, then points of intersection A ∩ HA,
B ∩HB, C ∩ HC , D ∩HD lie on the same line H.

Proof. Combining A+ 3HA we get the equation

4y = (
1
2a

+
1
2b

+
1
2c

+
1
2d

)x +
1
2
(a + b + c + d),

i. e. the equation of the line H:

H . . . y =
r

8p
x +

s

8
. (16)

Clearly the point A∩HA lies on H. Likewise, the claim is valid for the other three
points of intersection.

The line H from Theorem 6 will be called the orthic of the quadrilateral ABCD.

Corollary 3. The standard quadrilateral ABCD has the orthic with equation (16).
This equation is the arithmetic mean of the equations (15) of the sides A,B, C,D.

Theorem 7. The points of intersection SAB ∩SCD; SAC ∩SBD; SAD ∩SBC of the
bisectors SAB ,SCD,SAC , SBD,SAD,SBC of the pairs of lines A,B and C,D; A, C
and B,D; A,D and B, C through the pairs of the opposite vertices of the quadrilateral
ABCD are incident with the orthic of the quadrilateral.

Proof. The equations of the bisectors SAB and SCD are the arithmetic means of
the first two and the last two equations in (15), while (16) can be obtained as the
arithmetic mean of these two equations. Hence, the point SAB ∩ SCD is incident
with the line H.

Theorem 8. Let ABCD be a non-tangential quadrilateral and A′,B′, C′,D′ the cir-
cles touching the bisectors of the angles of the trilaterals BCD, ACD, ABD and ABC,
respectively. These circles touch a line O.

Proof. By summing up the first two equations in (6), we get the equation of the
bisector of the lines A and B:

2(a + b)y = 2x + a2 + b2. (17)

Let us observe the circle D′ with equation

8(a + b)(a + c)(b + c)y = 4x2 + 4(a2 + b2 + c2 + ab + ac + bc)x
+(a2 + b2 + c2 + ab + ac + bc)2. (18)

Out of (18) and (17) multiplied by 4(a + c)(b + c) the next equation

4x2 + 4[a2 + b2 + (a + c)(b + c)]x + [a2 + b2 + (a + c)(b + c)]2

= 8(a + c)(b + c)x + 4(a2 + b2)(a + c)(b + c),
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is obtained. The latter equation can be rewritten as follows

4x2 + 4[a2 + b2 − (a + c)(b + c)]x + [a2 + b2 − (a + c)(b + c)]2 = 0.

This equation has a double solution x =
1
2
[(a + c)(b + c)− a2 − b2]. Therefore, the

circle D′ touches the bisector of the lines A and B at the point

(
1
2
[(a + c)(b + c)− a2 − b2],

(a + c)(b + c)
2(a + b)

).

Analogously, the bisectors of the pairs of lines A, C and B, C touch D′ as well. Fur-
thermore, the line O with equation y = 0 touches the circle D′. Namely, out of (18)

under y = 0, an equation with a double solution x = −1
2
(a2 + b2 + c2 + ab+ ac+ bc)

is obtained. The line O is tangent to the circles A′,B′, C′, too.

Due to the notion of the Euler’s center of a quadrangle, the line O from Theorem
8 will be called Euler’s axis of the quadrilateral ABCD.

Corollary 4. The Euler axis of the quadrilateral is parallel to its median and passes
through its focus.

Theorem 9. The lines connecting the focus of a quadrilateral and two opposite
vertices have the same bisector, hence in the case of a standard quadrilateral it has
the equation

y =
r

4p
x.

Proof. As the joint lines of O and A ∩ B and O and C ∩ D have slopes
a + b

2ab
and

c + d

2cd
, the slope of their bisector is

1
2
(
a + b

2ab
+

c + d

2cd
) =

1
4p

[cd(a + b) + ab(c + d)] =
r

4p
.

Theorem 10. Let the lines parallel to the side D of the quadrilateral ABCD be
drawn through the vertices B ∩ C, A∩C, A∩B of the trilateral ABC intersecting its
circumscribed circle Kd residually in the points Ad, Bd, Cd. The lines determined by
pairs of points Ad, A ∩ D; Bd, B ∩ D; Cd, C ∩ D are incident with the focus of the
quadrilateral ABCD.

Proof. Let
Ad = (

a

d
(bd + cd− bc),

a + d

2d2
(bd + cd− bc)). (19)

The joint line of Ad and B ∩ C is parallel to the line D since its slope is of the form

a+d
2d2 (bd + cd− bc)− b+c

2
a
d (bd + cd− bc)− bc

=
1
2d

.
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The point Ad lies on the circle Kd represented by (10). Leaving the factor
a

d2
(bd +

cd− bc) out, the following equality

bc(a + d) = −a(bd + cd− bc) + d(ab + ac + bc)

is obtained. The points A ∩ D and Ad from (7) and (19) lie on the line having the
equation

y =
a + d

2ad
x.

This line passes through the focus O.

Two pairs of lines are called antiparallel if they have the same bisector.

Theorem 11. The lines passing through the vertices of the quadrilateral, antiparallel
to the median of the quadrilateral with respect to the sides passing through the same
vertices, are incident with the focus of the quadrilateral.

For the Euclidean version of this theorem see [3].

Proof. Due to antiparallel lines, e.g. taking sides A and B, the equality

0 + k =
1
2a

+
1
2b

must be valid, where k stands for the slope of the line we are looking for. Hence,

k =
a + b

2ab
, and the equation of the line is y =

a + b

2ab
x.

Repeating the same as above for each vertex one gets that all the lines are incident
with the origin, i. e. the focus of the quadrilateral.

Theorem 12. Let us consider the following four points: the intersection point of
the line D and a tangent of the circle Kd at A∩B, the intersection point of the line
C and a tangent of the circle Kc at A ∩ B, the intersection point of the line A and
a tangent of the circle Ka at C ∩ D, and the intersection point of the line B and a
tangent of the circle Kb at C∩D . Points A∩B and C∩D together with the described
four points are concyclic. Analogously, for the pairs of vertices A ∩ C, B ∩ D and
A∩D, B ∩ C two more circles are achieved. These three circles intersect each other
in the focus of the quadrilateral.

For the Euclidean version of this theorem see [4].

Proof. The tangent TA∩B to the circle Kd at the point A ∩ B has the equation

2abcy = (ac + bc− ab)x + a2b2, (20)

(for the equation of Kd see (10), and for the coordinates of A ∩ B see (7)). Indeed,

putting the coordinates x0 = ab, y0 =
a + b

2
of the point A ∩ B into equation

2abc(y + y0) = −2xx0 + (ab + ac + bc)(x + x0)
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the upper equation of the tangent is obtained. The point of intersection of the tan-
gent TA∩B and the line D having equations (20) and (6) is the point with coordinates

D′ = (
abd(ab− cd)

ab(c + d)− cd(a + b)
,
a2b2 + abd2 − acd2 − bcd2

2(ab(c + d)− cd(a + b))
). (21)

The points A ∩ B and D′ given by (7) and (21) are lying on the circle with the
equation

2abcd(ab− cd)y = [cd(a + b)− ab(c + d)]x2 + [a2b2(c + d)− c2d2(a + b)]x.

Namely, leaving out the factors ab and
abd(ab− cd)

ab(c + d)− cd(a + b)
the following equalities

cd(ab− cd)(a + b) = [cd(a + b)− ab(c + d)]ab + a2b2(c + d)− c2d2(a + b),

c[a2b2 + abd2 − acd2 − bcd2] = −abd(ab− cd) + a2b2(c + d)− c2d2(a + b)

are valid. For the points C∩D and O = (0, 0) the same statement is valid as well.

Theorem 13. The joint lines of any point T to the points B∩C, A∩C, A∩B meet
the circumscribed circles of the trilaterals BCD, ACD, ABD residually in the points
AD, BD, CD which lie on a circle D′ passing through the focus O of the quadrilateral
ABCD and through the point T .

For the Euclidean version of this theorem see [9].

Proof. The equation of the circle Ka circumscribed to the trilateral BCD is

Ka . . . 2bcdy = −x2 + (bc + bd + cd)x,

see (10). Let T = (x0, y0).
Then the line joining the points T and B ∩ C has the equation

2y(x0 − bc) = x(2y0 − b− c) + x0(b + c)− 2bcy0.

The points B ∩ C and T lie on it since

(b + c)(x0 − bc) = bc(2y0 − b− c) + x0(b + c)− 2bcy0,

2y0(x0 − bc) = x0(2y0 − b− c) + x0(b + c)− 2bcy0,

respectively. This line meets Ka in two points, the point B ∩ C and the point AD

having the coordinates

AD = (d
(b + c)x0 − 2bcy0

x0 − bc
,
[(b + c)x0 − 2bcy0](x0 + 2dy0 − bc− bd− cd)

2(x0 − bc)2
).

Since

[(b + c)x0 − 2bcy0](x0 + 2dy0 − bc− bd− cd)
= d[(b + c)x0 − 2bcy0](2y0 − b− c) + (x0 − bc)[(b + c)x0 − 2bcy0],
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it follows that AD lies on the line joining T and B ∩ C. That AD lies on the circle
Ka follows from the equality

bcd[(b + c)x0 − 2bcy0](x0 + 2dy0 − bc− bd− cd)
= −d2[(b + c)x0 − 2bcy0]2 + d(bc + bd + cd)[(b + c)x0 − 2bcy0](x0 − bc).

Points AD, T and the focus O are incident with the circle D′ having equation

D′ . . . 2dx0y = −x2 + (x0 + 2dy0)x.

Obviously, the coordinates of the points O and T satisfy the equation of the circle
D′. By the equality

x0(x0 + 2dy0 − bc− bd− cd) = −d[(b + c)x0 − 2bcy0] + (x0 − bc)(x0 + 2dy0),

we show that the point AD fulfils it as well. The same statement can be proved for
the points BD and CD .

As the circles A′,B′, C′ and D′ are incident with the points O and T , the joint
line OT having equation y = y0x/x0 is the radical axis of these circles. Before the
following theorem, we need the definition: two lines are reciprocal with respect to
the triangle if they intersect each side of the triangle in two points whose midpoint
coincides with the midpoint of this side.

Theorem 14. Let ABCD be a standard quadrilateral. The median of the quadrilat-
eral is parallel to the lines A′,B′, C′,D′, where A′ represents a line reciprocal to the
line A with respect to the trilateral BCD (by analogy for B′, C′,D′).

For the Euclidean version of this theorem see [5].

Proof. The line A′ having the equation

A′ . . . y =
b + c + d− a

2
is reciprocal to the line A with respect to the trilateral BCD. Indeed, the point
Ba = (b(c + d − a), (b + c + d − a)/2) obviously lies on the line A′ and on the line
B; for the equations of A and B see (6). Furthermore, the points A∩B, Ba and the
points B ∩ C, B ∩ D have the same midpoint because of

ab + b(c + d− a) = bc + bd.

It is analogously valid for the points of intersection of the lines A, A′ with the line
C and with the line D. The line A′ is obviously parallel to the median (9).

Out of symmetry, the equations of the lines B′, C′,D′ are

B′ . . . y =
a + c + d− b

2
C′ . . . y =

a + b + d− c

2
D′ . . . y =

a + b + c− d

2
.

Corollary 5. The median of the quadrilateral ABCD is the orthic of the quadrilat-
eral A′B′C′D′.
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