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Abstract. In this paper we consider nonlinear least squares fitting of the three-parameter
inverse Weibull distribution to the given data (wi, ti, yi), i = 1, . . . , n, n ≥ 3. As the main
result, we show that the least squares estimate exists provided that the data satisfy just
the following two natural conditions: (i) 0 < t1 < t2 < . . . < tn and (ii) 0 < y1 < y2 <
. . . < yn < 1. To this end, an illustrative numerical example is given.
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1. The three-parameter inverse (or reverse) Weibull distribu-
tion

Let X denote the three-parameter Weibull model with distribution function

FW (t;α, β, η) =
{

1− e−( t−α
η )β

, t > α
0, t ≤ α.

where α ≥ 0 is a location parameter, γ > 0 the scale, and β > 0 the shape parameter
(see e.g. Murthy et al. [17]). Then a random variable T defined by

T = α +
η2

X − α

has the distribution function

F (t;α, β, η) =
{

e−( η
t−α )β

, t > α
0, t ≤ α

(1)
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and the density function

f(t; α, β, η) =

{
β
η

(
η

t−α

)β+1 e−( η
t−α )β

, t > α

0, t ≤ α.
(2)

The distribution of T is known as the three-parameter inverse Weibull distribu-
tion (IWD). If α = 0, the resulting distribution is called a two-parameter IWD.
Drapella [8] calls the IWD the complementary Weibull distribution, while Mud-
holkar and Kollia [16] call it the reciprocal Weibull distribution. The IWD is also
known as a type 2 extreme value or the Fréchet distribution (Johnson et al. [10]).
For more details on the IWD, see e.g. Johnson et al. [10] and Murthy et al. [17].

The IWD plays an important role in reliability and lifetime studies (see [15, 17,
18]). The reliability function R(t) and the hazard (failure rate) function h(t) for the
IWD are given by

R(t; α, β, η) = 1− F (t; α, β, η) = 1− e−( η
t−α )β

, t > α

and

h(t;α, β, η) =
f(t;α, β, η)

1− F (t; α, β, η)
=

βηβ(t− α)−β−1 e−( η
t−α )β

1− e−( η
t−α )β , t > α.

It can be shown that the hazard function is similar to that of the log-normal and
inverse Gaussian distributions.

The IWD is very flexible and by an appropriate choice of the shape parameter β
the density curve can assume a wide variety of shapes (see Figure 1). The density
function is strictly increasing on (α, tm] and strictly decreasing on [tm,∞), where
tm = α + η(1 + 1/β)−1/β . This implies that the density function is unimodal with
the maximum value at tm. This is in contrast to the standard Weibull model where
the shape is either decreasing (for β ≤ 1) or unimodal (for β > 1). When β = 1, the
IWD becomes an inverse exponential distribution; when β = 2, it is identical to the
inverse Rayleigh distribution; when β = 0.5, it approximates the inverse Gamma
distribution. That is the reason why the IWD is one of the most widely used models
in reliability and lifetime studies.
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Figure 1. Plots of the inverse Weibull density for some values of β and by assuming
α = 0 and η = 1.2
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There is no unique way to perform density reconstruction from the observed
data and many different methods have been proposed in the literature. The max-
imum likelihood (ML) method is a traditional method since it possesses beneficial
properties such as asymptotic normality and consistency. Assuming n independent
observations t1, . . . , tn from the density p(t; θ), the likelihood function of this sample
is given by L(θ) =

∏n
i=1 p(ti; θ). The maximum likelihood estimate (MLE) of pa-

rameters θ is the value θ̂ that maximizes the likelihood function. But the MLE does
not necessarily exist, and it is not necessarily unique. For the two-parameter IWB
a standard MLE exists and it is unique (see e.g. Calabria and Pulcini [3]). Now we
are going to show that for the three-parameter IWB the likelihood function

L(α, β, η) =
n∏

i=1

f(ti;α, β, η) =
n∏

i=1

β

η

( η

ti − α

)β+1 e−( η
ti−α )β

is unbounded from above so that a standard MLE does not exist. In order to verify
this, we may assume, without loss of generality, that 0 < t1 < t2 < . . . < tn. Fix
η ∈ (0,∞). Then

L(t1−βn+1, β, η) =
n∏

i=1

β

η

( η

ti − t1 + βn+1

)β+1 e−( η

ti−t1+βn+1 )β

=
η1−n

β

( η

βn+1

)β e−( η

βn+1 )β
n∏

i=2

( η

ti− t1+ βn+1

)β+1 e−( η

ti−t1+βn+1 )β

(3)

Since
lim
β→0

( η

βn+1

)β e−( η

βn+1 )β

= e−1

and

lim
β→0

n∏

i=2

( η

ti − t1 + βn+1

)β+1 e−( η

ti−t1+βn+1 )β

=
(η

e

)n−1 n∏

i=2

1
ti − t1

,

from (3) it follows that limβ→0 L(t1 − βn+1, β, η) = ∞, and hence the MLE does
not exist. In the literature, considerable effort has been devoted to such difficul-
ties with the maximum likelihood approach (see e.g. Cheng and Iles [4], Smith and
Naylor [21]). There are several other statistical methods for estimating model pa-
rameters such as the method of moments, the method of percentile and the Bayesian
method. Unfortunately, none of these methods (excluding Bayesian) is appropriate
for small data sets (see e.g. Lawless [15], Murthy et al. [17], Nelson [18]).

A very popular method for parameter estimation is the least squares (LS) method.
The method can be described as follows: Suppose we are given the data (wi, ti, yi),
i = 1, . . . , n, n > 3, where ti denotes the values of the independent variable, yi

are the respective measured function values and wi > 0 are the data weights which
describe the assumed relative accuracy of the data. The unknown parameters α, β
and η of function (1) have to be estimated by minimizing the functional

S(α, β, η) =
n∑

i=1

wi

[
F (ti; α, β, η)− yi

]2 =
n∑

i=1
ti≤α

wiy
2
i +

n∑

i=1
ti>α

wi

[
e−( η

ti−α )β −yi

]2
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on the set P :=
{
(α, β, η) ∈ R3 : α ≥ 0; β, η > 0

}
. A point (α?, β?, η?) ∈ P such

that
S(α?, β?, η?) = inf

(α,β,η)∈P
S(α, β, η)

is called the least squares estimate (LSE), if it exists (see Björck [2], Gill et al. [9],
Ross [19], Seber and Wild [20]).

Numerical methods for solving the nonlinear LS problem are described in Dennis
and Schnabel [7] and Gill et al. [9]. Before the iterative minimization of the sum of
squares it is still necessary to ask whether the least squares estimate (LSE) exists.
In the case of nonlinear LS problems it is still extremely difficult to answer this
question (see Bates and Watts [1], Björck [2], Demidenko [5, 6], Hadeler et al [12],
Jukić et al. [11, 13, 14]).

The problem of nonlinear weighted LS fitting of the three-parameter Weibull
distribution to the given data (wi, ti, yi), i = 1, . . . , n, is considererd by Jukić et
al. [11]. They showed that the LSE exists provided that the data satisfy just the
following two conditions: (i) 0 < t1 < t2 < . . . < tn and (ii) 0 < y1 < y2 < . . . <
yn < 1. Since the Weibull random variable T is nonegative and since numbers yi

usually denote empirical CDF values, these two conditions are natural. Surprisingly,
in spite of the many papers on Weibull models, we have not managed to find any
paper dealing with the existence problem of a solution to a nonlinear LS problem for
the three-parametric inverse Weibull distribution. The structure of the paper is as
follows. In Section 2 we present our main result (Theorem 1) which guarantees the
existence of the LSE for the three-parametric inverse Weibull distribution, provided
the data satisfy conditions (i) and (ii). An illustrative numerical example is given
in Section 3.

2. The existence theorem

Before starting with the proof of Theorem 1, we need some preliminary results.

Lemma 1. Suppose we are given the data (wi, ti, yi), i = 1, . . . , n, n > 3, such that

(i) 0 < t1 < t2 < . . . < tn,

(ii) 0 < y1 < y2 < . . . < yn < 1

and wi > 0, i = 1, . . . , n. Given any two real numbers θ ≥ 0 and A ≥ 0, let

Σθ,A :=
∑

ti<θ

wiy
2
i +

∑

ti>θ

wi(yi −A)2.

Then there exists a point in P at which functional S attains a value less than Σθ,A.

The summation
∑

ti>θ

(or
∑

ti<θ

) is to be understood as follows: The sum over those

indices i ≤ n for which ti > θ (or ti < θ). If there are no such points ti, the sum is
empty; following the usual convention, we define it to be zero.
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Proof. It is easy to verify by definition of Σθ,A that Σ0,A ≥ Σt1,A for any A ≥ 0
and that Σθ,A ≥ Σθ,yn

> Σtn−1,yn
for all θ > tn−1, A ≥ 0. Thus, it will suffice to

consider the case θ ∈ [t1, tn−1].
Assume that θ ∈ [t1, tn−1]. Let k ∈ {1, . . . , n− 1} such that

θ ∈ (tk−1, tk],

where t0 = 0 by definition. Now, define

ξ0 :=
{

yk, if θ = tk
1
2 (yk−1 + yk), if θ 6= tk.

Furthermore, let a point (τ1, ξ1) be defined in the following way:

ξ1 :=

∑
ti>θ

wiyi

∑
ti>θ

wi
and τ1 :=

{
tl, if yl = ξ1

tl−1+tl

2 , if yl > ξ1,

where
l := min{i : yi ≥ ξ1}.

Since the sequences {ti}n
i=1 and {yi}n

i=1 are strictly increasing, it is easy to show
that θ < τ1 and ξ0 < ξ1.

Now, we are going to construct a class of inverse Weibull distributions whose
graph will contain points (θ, ξ0) and (τ1, ξ1). For this purpose, we first define a
function K : (0,∞) → (0,∞) by formula

K(β) :=

(
ln ξ1
ln ξ0

)1/β

1−
(

ln ξ1
ln ξ0

)1/β
.

Function K is strictly increasing on R, limβ→0 K(β) = 0 and limβ→∞K(β) = ∞.
Since τ1 > θ > 0, there exists B > 0 such that θ −K(B)(τ1 − θ) = 0, so that for all
β ∈ (0, B), θ −K(β)(τ1 − θ) > 0. Note that

(α(β), β, η(β)) :=

(
θ −K(β)(τ1 − θ), β,

(
ln

( 1
ξ1

))1/β
(
τ1 − θ + K(β)(τ1 − θ)

))
∈ P

for all β ∈ (0, B). Let us now associate with each real β ∈ (0, B) an inverse Weibull
distribution

F (t; α(β), β, η(β)) =



 e

− ln
(

1
ξ1

)(
τ1−θ+K(β)(τ1−θ)
t−θ+K(β)(τ1−θ)

)β

, t > θ −K(β)(τ1 − θ)
0, t ≤ θ −K(β)(τ1 − θ).

It is not difficult to show that

F (θ; α(β), β, η(β)) = ξ0, F (τ1; α(β), β, η(β)) = ξ1 (4)
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and
lim
β→0

F (t; α(β), β, η(β)) = ξ1, t > θ. (5)

Note that only one of the following two cases can occur: (i) θ < tn−1, or (ii)
θ = tn−1.

Case (i): θ < tn−1. Let β0 be an arbitrary but fixed point of (0, B) such that

θ −K(β)(τ1 − θ) > tk−1 ≥ 0.

Since θ > tk−1 ≥ 0 and limβ→0 K(β) = 0, such β0 exists. Then for all β ∈ (0, β0)
we have

F (ti; α(β), β, η(β)) = 0, ti < θ. (6)

The function t 7→ F (t;α(β), β, η(β)), β ∈ (0, β0), is strictly increasing on the interval
(θ − K(β)(τ1 − θ),∞). Due to this fact and (5), we may assume that β0 > 0 is
sufficiently small, so that for all β ∈ (0, β0),

yi < F (ti;α(β), β, η(β)) < ξ1, if θ < ti < τ1

yi = F (ti;α(β), β, η(β)) = ξ1, if ti = τ1 (7)
ξ1 < F (ti; α(β), β, η(β)) < yi, if ti > τ1.

Since θ < tn−1, there are at least two indices i for which ti > θ. Furthermore, since
the sequence {yi}n

i=1 is strictly increasing, the equality yi = ξ1 can hold for at most
one index i. Hence, for every β ∈ (0, β0), it follows from (6) and (7) that for every
β ∈ (0, β0),

S(α(β), β, η(β)) =
n∑

i=1

wi

[
F (ti; α(β), β, η(β))− yi

]2

≤
∑

ti<θ

wi

[
F (ti; α(β), β, η(β))− yi

]2 +
∑

ti>θ

wi

[
F (ti; α(β), β, η(β))− yi

]2

<
∑

ti<θ

wiy
2
i +

∑

ti>θ

wi(yi − ξ1)2

≤
∑

ti<θ

wiy
2
i +

∑

ti>θ

wi(yi −A)2 = Σθ,A.

The last inequality follows directly from a well-known fact that the quadratic func-
tion x 7→ ∑

ti>θ wi(yi − x)2 attains its minimum
∑

ti>θ wi(yi − ξ1)2 at point ξ1 =∑
ti>θ wiyi/

∑
ti>θ wi.

Case (ii): θ = tn−1. First note that in this case it must be τ1 = tn and ξ1 = yn.
Hence Σtn−1,A =

∑n−2
i=1 wiy

2
i .

Let β1 be a point of (0, B) such that tn−1 − K(β1)(tn − tn−1) = tn−2. Then,
since K is a strictly increasing function, for every β ∈ (β1, B) we have that

tn−1 −K(β)(tn − tn−1) < tn−2.

Thus

F (tn−2;α(β), β, η(β)) = e
− ln

(
1

yn

)(
tn−tn−1+K(β)(tn−tn−1)

tn−2−tn−1+K(β)(tn−tn−1)

)β

, β ∈ (β1, B),
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from where it follows that F (tn−2; α(β), β, η(β)) → 0 as β → β1 from the right.
Then by definition of the limit there exists a point β̂ ∈ (β1, B) such that

0 < F (tn−2; α(β̂), β, η(β̂)) < yn−2. (8)

Without loss of generality, we may suppose that β̂ is sufficiently close to β1, so that
0 ≤ tn−3 < tn−1 −K(β̂)(tn − tn−1) < tn−2. Then

F
(
ti; α(β̂), β, η(β̂)

)
= 0, i = 1, . . . , n− 3. (9)

As shown earlier (see (4)),

F
(
tn−1; α(β̂), β̂, η(β̂)

)
= yn−1 and F

(
tn; α(β̂), β̂, η(β̂)

)
= yn. (10)

From (8), (9) and (10) it follows that S(α(β̂), β̂, η(β̂)) <
∑n−1

i=1 wiy
2
i . This com-

pletes the proof of the lemma.

Now we state our main result (Theorem 1) which guarantees the existence of
the LSE for the three-parameter IWD. This theorem is also applicable in a classical
nonlinear regression problem with the model function of the form (1).

Theorem 1. Let the data (wi, ti, yi), i = 1, . . . , n, n > 3, be such that

(i) 0 < t1 < t2 < . . . < tn,

(ii) 0 < y1 < y2 < . . . < yn < 1

and wi > 0, i = 1, . . . , n. Then, there exists the LSE for the three-parametric inverse
Weibull distribution.

Proof. Since functional S is nonnegative, there exists S? := inf(α,β,η)∈P S(α, β, η).
It should be shown that there exists a point (α?, β?, η?) ∈ P such that S(α?, β?, η?)
= S?.

Let (αk, βk, ηk) be a sequence in P, such that

S? = lim
k→∞

S(αk, βk, ηk) = lim
k→∞

n∑

i=1

wi

[
F (ti;αk, βk, ηk)− yi

]2 (11)

Without loss of generality, in further consideration we may assume that sequences
(αk), (βk) and (ηk) are monotone. This is possible because the sequence (αk, βk, ηk)
has a subsequence (αlk , βlk , ηlk), such that all its component sequences are monotone;
and since limk→∞ S(αlk , βlk , ηlk) = limk→∞ S(αk, βk, ηk) = S?.

Since each monotone sequence of real numbers converges in the extended real
number system R̄, denote

α? := lim
k→∞

αk, β? := lim
k→∞

βk, η? := lim
k→∞

ηk.

Note that 0 ≤ α?, β?, η? ≤ ∞, because (αk, βk, ηk) ∈ P.
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To complete the proof it is enough to show that (α?, β?, η?) ∈ P, i.e. that
0 ≤ α? < ∞ and β?, η? ∈ (0,∞). The continuity of the functional S will then imply
that S? = limk→∞ S(αk, βk, ηk) = S(α?, β?, η?).

It remains to show that (α?, β?, η?) ∈ P. The proof will be done in five steps.
In step 1 we will show that α? 6= ∞. In step 2 we will show that η? 6= 0. The proof
that η? 6= ∞ will be done in step 3. In step 4 we prove that β? 6= ∞. Finally, in
step 5 we show that β? 6= 0.

Step 1. If α? = ∞, then F (ti; αk, βk, ηk) = 0 for every sufficiently great k ∈
N, and therefore from (11) it follows that S? =

∑n
i=1 wiy

2
i . Since

∑n
i=1 wiy

2
i >

Σtn−1,yn
and since according to Lemma 1 there exists a point in P at which functional

S attains a value smaller than Σtn−1,yn , this means that in this way (α? = ∞)
functional S cannot attain its infimum. Thus, we have proved that α? 6= ∞.

Step 2. Let us show that η? 6= 0. We prove this by contradiction. Suppose on
the contrary that η? = 0. Then only one of the following two cases can occur: (i)
η? = 0 and β? = 0 or (ii) η? = 0 and β? > 0. Now, we are going to show that
functional S cannot attain its infimum in either of these two cases, which will prove
that η? 6= 0.

Case (i): η? = 0 and β? = 0. Since ηk → 0, for every sufficiently great k ∈ N,
0 < ηβk

k < 1. This means that sequence (ηβk

k ) is bounded. We may assume that it
is convergent. Let ηβk

k → L ∈ [0, 1]. Since

lim
k→∞

( ηk

t− αk

)βk = lim
k→∞

ηβk

k (t− αk)βk = L, t > α?,

in this case we would have

lim
k→∞

F (t; αk, βk, ηk) =
{

0, if t < α?

e−L, if t > α? (12)

and hence from (11) it would follow that

S? ≥
∑

ti<α?

wiy
2
i +

∑
ti>α

wi(e−L−yi)2 = Σα?,e−L .

According to Lemma 1, there exists a point in P at which functional S attains a
value smaller than Σα?,e−L . This means that in this case functional S cannot attain
its infimum.

Case (ii): η? = 0 and β? > 0. In this case we would have

lim
k→∞

( ηk

t− αk

)βk = 0, t ≥ α?

and therefore
lim

k→∞
F (t;αk, βk, ηk) = 1, t ≥ α?.

Arguing now as in case (i), it can be shown that S? ≥ Σα?,1. Again, according to
Lemma 1, we conclude that in this case functional S cannot attain its infimum.

Thus, we have proved that η? 6= 0.
Step 3. Now, we are going to show that η? 6= ∞. We prove this by contradiction.

Suppose η? = ∞. Then, without loss of generality, we may assume that ηk > 1 for
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all k ∈ N. Since in that case ηβk

k ≥ 1, only one of the following can occur: (i) η? = ∞
and ηβk

k →∞ or (ii) η? = ∞ and ηβk

k → L ∈ [1,∞). Let us show that functional S
cannot attain its infimum in either of these two cases, which will prove that η? 6= 0.

Case (i): η? = ∞ and ηβk

k →∞. In this case we have

lim
k→∞

( ηk

t− αk

)βk = ∞, t > α?

and therefore

lim
k→∞

F (t;αk, βk, ηk) = lim
k→∞

e−(
ηk

t−αk
)βk

= 0, t > α?.

Indeed, if t > α? and β? = 0, then

lim
k→∞

( ηk

t− αk

)βk = lim
k→∞

ηβk

k (t− αk)βk = ∞ · 1 = ∞.

If t > α? and β? > 0, then obviously limk→∞
(

ηk

t−αk

)βk = ∞.
Case (ii): η? = ∞ and ηβk

k → L ∈ [1,∞). In this case, sequence (βk) must
converge to 0, because by assumption ηk →∞. Therefore,

lim
k→∞

F (t;αk, βk, ηk) =
{

0, if t < α?

e−L, if t > α?.

Arguing now similarly to case (i) from step 2, in both cases it can be shown that
in this way (η? = 0) functional T cannot attain its infimum.

So far, we have shown that 0 ≤ α? < ∞ and 0 < η? < ∞. By using this, in the
next two steps we will show that 0 < β? < ∞.

Step 4. Let us show that β? 6= ∞. To see this, suppose on the contrary that
β? = ∞. Then

lim
k→∞

( ηk

t− αk

)βk =
{∞, if α? < t < α? + η?

0, if t > α? + η?

and therefore

lim
k→∞

F (t;αk, βk, ηk) =
{

0, if α? < t < α? + η?

1, if t > α? + η?.

Arguing now similarly to case (i) from step 2, it can be shown that S? ≥ Σα?+η?,1.
By Lemma 1, there exists a point in P at which functional S attains a value smaller
than Σα?+η?,1. Therefore, in this way (β? = ∞) functional S cannot attain its
infimum. Thus, we proved that β? < ∞.

Step 5. It remains to be shown that β? 6= 0. If βk → 0, then

lim
k→∞

( ηk

t− αk

)βk = 1, t > α?

and therefore

lim
k→∞

F (t; αk, βk, ηk) =
{

0, if t < α?

e−1, if t > α?.

Arguing similarly to case (i) from step 2, it can be shown that S? ≥ Σα?,1−e−1 .
According to Lemma 1, in this way functional S cannot attain its infimum. Thus,
we proved that β? > 0 and herewith we completed the proof.
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Remark 1. Given 1 ≤ p < ∞, let

Sp(α, β, η) =
n∑

i=1

wi

∣∣F (ti; α, β, η)− yi

∣∣p.

Arguing in a similar way as in proofs of Lemma 1 and Theorem 1, it can be eas-
ily shown that there exists a point (α?

p, β
?
p , η?

p) ∈ P such that Sp(α?
p, β

?
p , η?

p) =
inf(α,β,η)∈P Sp(α, β, η).

3. Numerical illustration

The three-parameter IWB has been extensively used in modelling failure times. For
example, consider a real data set from Murthy et al. [17, p. 291] concerning failure of
the photocopier cleaning web. The observed 14 failure times (in days) are displayed
in Table 1, where ti denotes the ith failure time. Suppose that the failure time T is
a random variable following an inverse Weibull distribution (1).

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ti 99 269 166 159 194 100 95 245 56 36 66 69 26 31

t(i) 26 31 36 56 66 69 95 99 100 159 166 194 245 269

Table 1. Failure times ti and the order statistics t(i)

There are many different ways of computing the empirical cumulative distribution
function F̂ corresponding to the sample data t1, . . . , tn. They all involve arranging
the data in an ascending order so that t(1) < t(2) < . . . < t(n), which is also shown
in Table 1. Most commonly used estimators can be expressed in the following form
(see Lawless [15] and Nelson [18]):

F̂ (t(i)) =
i− c

n + 1− 2c
=: yi, 0 ≤ c < 1. (13)

Some alternatives are as follows: yi = i
n+1 (mean rank estimator, c = 0), yi = i−0.5

n

(median rank estimator, c = 0.5), yi = i−0.3
n+0.4 (Benard’s median rank estimator,

c = 0.3).
Our data for least squares estimation are

(
wi, t(i), yi)

)
, i = 1, . . . , 14, where

wi > 0 are data weights, t(i) are the values from Table 1 and yi are calculated by
using (13). It is easy to verify that these data satisfy the conditions of Theorem 1,
therefore an LSE exists.

Numerical methods for minimizing the sum of squares require an initial approx-
imation (α0, β0, η0) ∈ P , which needs to be as good as possible. We suggest to
do this in the following way: For α0 take t(1)/2, and then calculate β0 and η0 by
transforming Weibull distribution F (t;α0, β, η) to the form

y = − ln
[− ln F (t; α0, β, η)

]
= β ln(t− α0)− β ln η

and then fit a straight line y on x = ln(t − α0) using least squares. The above
transformation was first proposed by Drapella [8]. A plot of y versus x is called the
inverse Weibull probability paper (IWPP) plot.
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In this numerical illustration we are going to use mean rank, median rank and
Benard’s approach. For all weights wi we took 1. Our results obtained by using the
Levenberg-Marquart method (see e.g. Dennis and Schnabel [7]) are given in Table 2.

Approach Parameter estimates Sum of squares (SS)
mean rank α? = 0, β? = 1.11430, η? = 68.7775 SS = 0.0223877
median rank α? = 0, β? = 1.22757, η? = 71.0390 SS = 0.0249334
Benard α? = 0, β? = 1.17909, η? = 70.1115 SS = 0.0238659

Table 2. Least squares parameter estimates based on failure times

Murthy et al. [17] used a mean rank estimator and fitted a two-parameter IWD
to the data and obtained the following estimate of unknown parameters: β̂ = 1.23,
η̂ = 61.8. The corresponding sum of squares SS = 0.0528198 is greater than the one
we obtained. The reason for this is that they used the so-called Weibull probability
paper (WPP) plot.

In Figure 2 we show the data
(
t(i), F̂ (t(i))

)
, i = 1, . . . , 14, calculated by using a

mean rank estimator, the graph of function F (t; α?, β?, η?) and the graph of function
F (t; 0, β̂, η̂).

50 100 150 200 250 300
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Figure 2. The data, F (t;α?, β?, η?), - - - F (t; 0, β̂, η̂)
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