Fordham Law Review

Volume 77 | Issue 5 Article 4

2009

Commercial Free and Open Source Software: Knowledge
Production, Hybrid Appropriability, and Patents

Greg R. Vetter

Follow this and additional works at: https://ir.lawnet.fordham.edu/flr

6‘ Part of the Law Commons

Recommended Citation

Greg R. Vetter, Commercial Free and Open Source Software: Knowledge Production, Hybrid
Appropriability, and Patents, 77 Fordham L. Rev. 2087 (2009).

Available at: https://ir.lawnet.fordham.edu/flr/vol77/iss5/4

This Article is brought to you for free and open access by FLASH: The Fordham Law Archive of Scholarship and
History. It has been accepted for inclusion in Fordham Law Review by an authorized editor of FLASH: The Fordham
Law Archive of Scholarship and History. For more information, please contact tmelnick@law.fordham.edu.

https://ir.lawnet.fordham.edu/flr
https://ir.lawnet.fordham.edu/flr/vol77
https://ir.lawnet.fordham.edu/flr/vol77/iss5
https://ir.lawnet.fordham.edu/flr/vol77/iss5/4
https://ir.lawnet.fordham.edu/flr?utm_source=ir.lawnet.fordham.edu%2Fflr%2Fvol77%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/578?utm_source=ir.lawnet.fordham.edu%2Fflr%2Fvol77%2Fiss5%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tmelnick@law.fordham.edu

Commercial Free and Open Source Software: Knowledge Production, Hybrid
Appropriability, and Patents

Cover Page Footnote

Associate Professor of Law, University of Houston Law Center; Co-Director, Institute for Intellectual
Property and Information Law; biography available at: http://www.law.uh.edu/ faculty/gvetter. My
background includes a Master’s degree in Computer Science and nine years full-time work experience in
the software industry. My thanks to Law Center students Justin Bronn, Domingo Llagostera, and Bo Tang
for excellent research assistance. For helpful comments and discussion, | thank Paul Janicke, Lee Ann
Lockridge, Shubha Ghosh, Mike Madison, Brett Frischmann, Sarah Rajec, participants at the George
Washington University Law School Spring 2009 Intellectual Property Workshop Series by the Dean
Dinwoodie Center for Intellectual Property Studies, participants at the Drake University Law School 2009
Intellectual Property Scholars Roundtable by the Drake Intellectual Property Law Center, and participants
at the Fordham Law Review’s Fall 2008 Symposium: When Worlds Collide: Intellectual Property Laws at
the Interface Between Systems of Knowledge Creation, held October 31 and November 1, 2008, at the
Fordham University School of Law.

This article is available in Fordham Law Review: https://ir.lawnet.fordham.edu/flr/vol77/iss5/4

https://ir.lawnet.fordham.edu/flr/vol77/iss5/4

COMMERCIAL FREE AND OPEN SOURCE
SOFTWARE: KNOWLEDGE PRODUCTION,
HYBRID APPROPRIABILITY, AND PATENTS

Greg R. Vetter*

INTRODUCTION

Robert Jacobsen might seem like a party with the equities and the law in
his favor. After all, he provided his software to the world under a
royalty-free license allowing broad public use.! The license even allowed
companies to use the software in proprietary products with minimal
nonpecuniary conditions.2 He led a group of hobbyists who used the
software to enjoy creating model railroads.3> A company* competed with
these volunteers who freely shared their work. The company used some of
Jacobsen’s software in its commercial, royalty-bearing product, but it did
not follow the articulated license conditions. Under dominant notions of
copyright licensing, the company faced a risk of infringement of the

* Associate Professor of Law, University of Houston Law Center; Co-Director, Institute for
Intellectual Property and Information Law; biography available at: http://www.law.uh.edw/
faculty/gvetter. My background includes a Master’s degree in Computer Science and nine
years full-time work experience in the software industry. My thanks to Law Center students
Justin Bronn, Domingo Llagostera, and Bo Tang for excellent research assistance. For
helpful comments and discussion, I thank Paul Janicke, Lee Ann Lockridge, Shubha Ghosh,
Mike Madison, Brett Frischmann, Sarah Rajec, participants at the George Washington
University Law School Spring 2009 Intellectual Property Workshop Series by the Dean
Dinwoodie Center for Intellectual Property Studies, participants at the Drake University Law
School 2009 Intellectual Property Scholars Roundtable by the Drake Intellectual Property
Law Center, and participants at the Fordham Law Review’s Fall 2008 Symposium: When
Worlds Collide: Intellectual Property Laws at the Interface Between Systems of Knowledge
Creation, held October 31 and November 1, 2008, at the Fordham University School of
Law.

1. Jacobsen v. Katzer (Jacobsen IT), 535 F.3d 1373, 137677 (Fed. Cir. 2008).

2. Jacobsen v. Katzer (Jacobsen I), No. C 06-01905, 2007 WL 2358628, at *6 (N.D.
Cal. Aug. 17, 2007); see also Open Source Initiative, Artistic License 2.0, §§ 3-5, available
at http://www.opensource.org/licenses/artistic-license-2.0.php. Robert Jacobsen’s group
originally issued its software under the Artistic License. The Artistic License is one of many
dozens (or, perhaps, hundreds) of licenses that would fall into the broad category of licenses
for free and open source software (FOSS).

3. See Jacobsen I, 2007 WL 2358628, at *1 (“Plaintiff, Robert Jacobsen . . . is a
professor of physics . . . as well as a model train hobbyist and a leading member of the [Java
Model Railroad Interface (JMRI)] Project.”); see also JMRI: A Java Model Railroad
Interface, http://www.decoderpro.com (last visited Mar. 23, 2009).

4. See KAM Industries, About KAM, originally available at http://www.train
priority.com/Aboutus/AboutKam.aspx (last visited Oct. 10, 2008) (on file with author).

2087

2088 FORDHAM LAW REVIEW [Vol. 77

reproduction right, especially since any fair use arguments in relation to
Jacobsen and his group would by no means eliminate the company’s
infringement risk.

The U.S. District Court for the Northern District of California
surprisingly did not find in favor of Jacobsen. The result was reversed in
Jacobsen’s favor at the appellate level at the U.S. Court of Appeals for the
Federal Circuit. After recetving a letter from the company threatening him
with patent infringement, Jacobsen filed suit seeking declaratory judgment
that the patent was invalid, unenforceable, and noninfringed. In the suit he
also brought copyright claims. The appeal involved only the copyright
issue of whether the company’s noncompliance with the public license
conditions raised a copyright claim. The appellate court held that it did, and
that copyright remedies, including the possibility of a preliminary
injunction, applied.3 In its analysis, the appellate court spoke approvingly
of the beneficial nature of software development under public licenses.®

Compare Robert Jacobsen to MetaCarta, a company involved in both
proprietary software development and related services for its users, and
involved with certain niche open source communities relating to software
* for displaying geographic information.” I choose MetaCarta as a stylized
example because it is not involved in any litigation of which I am aware.?
But it has a noteworthy approach to its role in the greater world of free and
open source software (FOSS) development. MetaCarta contributes some of

5. On remand from the U.S. Court of Appeals for the Federal Circuit, the U.S. District
Court for the Northern District of California denied Jacobsen the preliminary injunction.
Jacobsen v. Katzer (Jacobsen IIl), No. C 06-01905, 2009 WL 29881, at *7-10 (N.D. Cal.
Jan. 5, 2009) (denying preliminary injunction to Jacobsen on his copyright-based claims
under the reasoning that his harms were too speculative on the record before the court).

6. Jacobsen II, 535 F.3d at 1378-79 (“Open source licensing has become a widely used
method of creative collaboration that serves to advance the arts and sciences in a manner and
at a pace that few could have imagined just a few decades ago.”); see also Wallace v. IBM
Corp., 467 F.3d 1104, 1105 (7th Cir. 2006) (“Copyright law, usually the basis of limiting
reproduction in order to collect a fee, ensures that open-source software remains free: any
attempt to sell a derivative work will violate the copyright laws, even if the improver has not
accepted the GPL. The Free Software Foundation calls the result ‘copyleft.””). To be
entirely clear about the essence of the case, whether the General Public License (GPL) was
price fixing, in Wallace v. IBM, Judge Frank Easterbrook concludes as follows: “The GPL
and open-source software have nothing to fear from the antitrust laws.” Id. at 1108.

7. See MetaCarta, About Us: Company Overview, http://www.metacarta.com/about-
us-overview.htm (last visited Mar. 23, 2009) (noting that its “products make data and
unstructured content ‘location-aware’ and geographically relevant”).

The open source communities supported by MetaCarta each have their own web site.
See, e.g., FeatureServer—RESTful Geographic Feature Storage, http://featureserver.org (last
visited Mar. 23, 2009); OpenLayers: Free Maps for the Web, http://openlayers.org (last
visited Mar. 23, 2009) (“MetaCarta developed the initial version of OpenLayers and gave it
to the public to further the use of geographic information of all kinds. OpenLayers is
completely free, Open Source JavaScript, released under a BSD-style License.”);
TileCache—Web Map Tile Caching, http://tilecache.org (last visited Mar. 23, 2009)
(“TileCache is . . . made available under the BSD license by MetaCarta.”).

8. 1 did not know of MetaCarta before this essay. I came across the company in my
research seeking examples of unusual juxtapositions of open source development and use of
patents.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2089

its software to the FOSS community by acting as the organizing hub for
three FOSS projects. This is not unheard-of. More uniquely, however, it
also actively seeks a small portfolio of patents in related areas of software
technology. Following a trend, MetaCarta is backed by venture capital
investors while explicitly embracing the FOSS movement. Compared to a
for-profit entity such as MetaCarta, Robert Jacobsen is a sympathetic figure
for a court. He was a volunteer developing FOSS with public benefit
spillovers.® His motivations likely fit within some of the typically offered
explanations for FOSS volunteerism: to scratch a technological itch; to
have fun; to participate in a community; to learn; or to enhance career
prospects. MetaCarta’s motivations are those of a for-profit firm with
investors hoping for return and market share. While software patenting has
become common among information technology companies, much of the
FOSS movement would see it as nonbeneficial. MetaCarta, however,
represents a trend: “commercial FOSS”10 that hybridizes proprietary
software appropriation techniques with conventional FOSS volunteerism-
centric development.

Jacobsen and MetaCarta illustrate a dualism in FOSS that channels the
knowledge production and distribution influences of the movement and
could impact the perspective of future courts as they engage other licensing
law issues likely to arise. Court interpretation of FOSS licenses on their
merits and against the backdrop of intellectual property and information
licensing law can enhance or diminish the efficacy of the FOSS licensing
movement.!! If the district court’s analysis in Jacobsen v. Katzer'? had

9. Jurgen Bitzer & Philipp J. H. Schroder, The Impact of Entry and Competition by
Open Source Software on Innovation Activity, in THE ECONOMICS OF OPEN SOURCE
SOFTWARE DEVELOPMENT 219, 228 (Jiirgen Bitzer & Philipp J. H. Schréder eds., 2006)
(differentiating the greater degree of knowledge spillover resulting from open source
software in comparison to proprietary licensed software); Brett M. Frischmann & Mark A.
Lemley, Spillovers, 107 CoLum. L. Rev. 257, 274-79 (2007) (discussing innovation
spillovers and reasons why such may not need full internalization to the innovator yet remain
beneficial for her); see also Eric von Hippel & Georg von Krogh, Open Source Software and
the “Private-Collective” Innovation Model: Issues for Organization Science, 14 ORG. SCI.
209, 213-15 (2003) (arguing that FOSS represents an effective hybridization of two
disparate innovation models, “private investment” and “collective action,” describing that
FOSS incentive structures lead toward free revealing of software developed for private
purposes because even after such free revealing the private benefits remain, regardless of
whether free riders use the code; moreover, free riders do not take the same value as the
originator who gained skills and problem-solving satisfaction in writing the code, and free
riders may enhance the revealers’ private value by increasing the user base for the code).

10. In using the term “commercial FOSS,” I specifically mean to juxtapose the divergent
concepts behind free software as compared to the aims of intellectual-property-enabled
commercial technology companies.

11. A distinguishing feature of the FOSS movement in the last decade, its time of
greatest prominence, is the paucity of court cases in comparison to the movement’s
increasing importance in information technology. In spite of this, the FOSS movement has
spawned a variety of scholarship in the legal academy. See generally Yochai Benkler,
Coase’s Penguin, or, Linux and The Nature of the Firm, 112 YALE L.J. 369 (2002); David
McGowan, Legal Implications of Open-Source Software, 2001 U. ILL. L. REv. 241, 268, 274
(noting the volunteerism underlying open source software development); Greg R. Vetter,

2090 FORDHAM LAW REVIEW [Vol. 77

remained, it would have undermined a foundational premise of FOSS
licenses. By determining that copyright remedies were not available to
Jacobsen under the FOSS license at issue,!3 the district court diminished
FOSS licensing’s clever use of copyright to promote, among other things,
transparent source code. One of the knowledge production benefits of the
FOSS movement has been to inspire open approaches in other areas,
including its inspiration for the Creative Commons. The district court
decision also detracted from the design of the Creative Commons licenses,
showing that court determinations enhancing or diminishing FOSS
licensing can also have second-order effects given the reach and influence
of the FOSS movement. !4

On one side of the dualism is the free software strand within the FOSS
movement, while on the other is the open source strand. Each correlates to
different licensing models and to different practices to gather satisfaction
from writing and supplying software. The free software strand would
typically use licenses with a mechanism known as copyleft to ensure that
the original license conditions (often requiring source code availability and
sometimes prohibiting ongoing royalties) remain in place for downstream
versions of the software. With this, appropriating value from the software
is biased toward services and other economic complements whenever the
FOSS developer needs value to accrue to her in a pecuniary fashion.

The Collaborative Integrity of Open-Source Software, 2004 UTAH L. REV. 563; Jonathan
Zittrain, Normative Principles for Evaluating Free and Proprietary Software, 71 U. CHI. L.
REV. 265, 268, 274-75 (2004) (discussing FOSS as a social movement: “the legal system
must have a framework with which to judge the social value of free software’s open
development model”). FOSS scholarship also includes an increasing number of books. For
an early classic, see OPEN SOURCES: VOICES FROM THE OPEN SOURCE REVOLUTION (Chris
DiBona et al. eds, 1999) [hereinafter OPEN SOURCES], available at
http://oreilly.com/catalog/opensources/book/toc.html; see also CHRISTOPHER M. KELTY, TWO
Bits: THE CULTURAL SIGNIFICANCE OF FREE SOFTWARE (2008), available at
http://twobits.net/read; OPEN SOURCES 2.0: THE CONTINUING EVOLUTION (Chris DiBona et
al. eds., 2006) [hereinafter OPEN SOURCES 2.0]; PERSPECTIVES ON FREE AND OPEN SOURCE
SOFTWARE (Joseph Feller et al. eds., 2005), available at
http://mitpress.mit.edu/books/chapters/0262562278.pdf; STEVEN WEBER, THE SUCCESS OF
OPEN SOURCE (2004). A number of practicing lawyers have authored books on FOSS
licensing, and these provide helpful background as well. See, e.g., RON GOLDMAN &
RICHARD P. GABRIEL, INNOVATION HAPPENS ELSEWHERE: OPEN SOURCE AS BUSINESS
STRATEGY (2005); VAN LINDBERG, INTELLECTUAL PROPERTY AND OPEN SOURCE: A
PRACTICAL GUIDE TO PROTECTING CODE (2008); HEATHER J. MEEKER, THE OPEN SOURCE
ALTERNATIVE: UNDERSTANDING RISKS AND LEVERAGING OPPORTUNITIES (2008); LAWRENCE
ROSEN, OPEN SOURCE LICENSING: SOFTWARE FREEDOM AND INTELLECTUAL PROPERTY LAW
10306, 126-28, 133~36 (2005) (discussing the way in which FOSS licensing developed and
how it works), available at http://www.rosenlaw.com/oslbook.htm; ANDREW M. ST.
LAURENT, UNDERSTANDING OPEN SOURCE AND FREE SOFTWARE LICENSING (2004), available
at http://oreilly.com/catalog/osfreesoft/book.

12. Jacobsen I, No. C 06-01905, 2007 WL 2358628 (N.D. Cal. Aug. 17, 2007).

13. Id. at *6-7.

14. ERIC VvON HIPPEL, DEMOCRATIZING INNOVATION 99 (2005), available at
http://web.mit.edu/evhippel/www/democ].htm (“Open source software has emerged as a
major cultural and economic phenomenon.”).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2091

Jacobsen’s story is the narrative of the stylized FOSS developer who
codes and shares for nonpecuniary satisfactions. Jacobsen’s group did not
use a copyleft license, but many similarly situated groups do so. For
historical reasons developers often choose the Free Software Foundation’s
(FSF) General Public License (GPL),!> which is a strong copyleft license
locking the software under its scope into a development mode characterized
by source code availability and a prohibition against ongoing royalties to
run the software.

MetaCarta’s narrative is that of open source software development within
a for-profit company. It applies an attribution-only license to the projects it
stewards, meaning that others can deploy or use the software however they
wish so long as such later deployment gives attribution to the software’s
originators.!® Open source developers sometimes start projects under an
attribution-only license to allow for the future involvement of a company
under a proprietary or hybridized model.!” The attribution-only license
allows for the possibility to later release the software under either the GPL
or as proprietary software, or perhaps as both in a dual-licensing strategy.
MetaCarta has the twist of involving itself with patents. Other commercial
FOSS entities, however, use kindred mechanisms, such as dual licensing, to
rig an appropriability mix that allows some benefits of FOSS development
to contribute to the prospects of the entity. Hopefully, as a result, the entity
is therefore also a better (more financially viable) steward for the FOSS
projects.

FOSS’s influences on knowledge production and distribution, the theme
for this Symposium, must be considered in light of the free software/open
source dualism, but also in light of appropriability.!® The weight of the

15. References to the GPL will be general in many instances. It is, however, important
to note that GPL version 3 (GPLv3), released in 2007, substantially revised version 2 of the
license (GPLv2), which was released in 1991. Among the changes most relevant to this
article are the provisions handling patent licensing. GPLv2 did not explicitly handle
granting and terminating permissions to practice software patent rights. This, along with the
need for various other changes, resulted in GPLv3. See Free Software Found., GPLv3 First
Discussion Draft Rationale (Jan. 16, 2006) [hereinafter GPLv3 First Discussion Draft
Rationale], available at http://gplv3.fsf.org/gpl-rationale-2006-01-16.html (discussing the
decision to create version 3 of the GPL); GNU General Public License, Version 3, § 11 (June
29, 2007) [hereinafter GPLv3], available at http://www.gnu.org/licenses/gpl-3.0.html; GNU
General Public License, Version 2 (June 1991) [hereinafter GPLv2], available at
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

16. Given that attribution-only licenses do not require that the software be free of
royalties, or that source code be available, there is some question as to whether attribution-
only licenses are properly called FOSS. They are often categorized this way, however,
because the programmers manage these projects using freely available source code and
Internet-based collaborative development.

17. Michal Tsur & Shay David, A License to Kill (Innovation)? Open Source Licenses
and Their Implications for Innovation 22-23 (Apr. 30, 2005), available at
http://ssrn.com/abstract=858104.

18. As used in this essay, the term “appropriability” refers to mechanisms to obtain
economic value from some effort or investment. See generally Joel West, Does
Appropriability Enable or Retard Open Innovation?, in OPEN INNOVATION: RESEARCHING A
NEw PARADIGM 109, 109 (Henry Chesbrough et al. eds.,, 2006), available at

2092 FORDHAM LAW REVIEW [Vol. 77

literature to date treats FOSS as a nonmarket, peer-production method of
developing and distributing new knowledge. FOSS has generated new
knowledge in the sense of new collaboration models for software
development and market deployment; inspired other movements, such as
Creative Commons or free culture generally; and it provides or supports
numerous technology platforms, including important elements of the
Internet’s past and future development.

This impressive scorecard of knowledge production is bronzed by FOSS
benefits in knowledge distribution. Simply put, FOSS created a sea change
in the availability of source code to study and learn coding and software
technology at every level of complexity and in an incredibly diverse array
of languages and information technology environments. In other ways,
however, the benefits of FOSS are less clear. Superior code quality, in
terms of lower defects and greater resistance to problems, is often argued to
be a FOSS benefit for structural reasons. Empirical evidence on the point,
however, is mixed, although many high-profile FOSS projects are clearly of
very high quality. A reframed question is more to the point: is the quality
of software developed with the methods of the FOSS movement of higher
quality compared to traditional proprietary software development? If so,
this is a part of FOSS’s contribution to knowledge creation for the
information technology ecosystem.

Software is of greater benefit not only if its quality is high, but also if it
provides superior functionality. Often superior functionality means new
functionality; that is, technology innovation from some programmatic
processing, presentation, or interfacing that is novel and heretofore not in
existence within information technology. The creation of new nonplatform
software functionality may not yet be a primary strength of FOSS
development. Assuming this is true, it raises a knowledge production
question for FOSS: can the movement gain momentum in generating new
nonplatform functionality as opposed to primarily moving functionality
from one platform to another, or commoditizing existing software products?
Is the mechanism to gain this momentum in the nonpecuniary satisfaction
of volunteer developers coupled with the leveraging of economic
complements under the free software approach? Or, is the path in open
source appropriability with commercial FOSS experiments such as
MetaCarta?

These questions are not in a vacuum because other new appropriability
mechanisms for software have mainstreamed in the last decade. Thus, the
traditional models, such as the proprietary software product vendor model
and the custom software developer model, now compete with advertising-
supported software and web-delivered software as a service.

http://www.openinnovation.net/Book/NewParadigm/index.html (noting that “[flormal
appropriability by and large depends on intellectual property (IP) laws, and certain types of
Open Innovation are only possible through such IP protection”).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2093

To consider the potential issues that may come to courts with commercial
FOSS that hybridizes proprietary and open source appropriability
mechanisms, these other changes in software delivery must be considered.
In this essay, it is not possible to consider every imaginable issue that may
alter appropriability, so I focus on example issues related to patent law for
several reasons.! First, for all forms of software, patent law is becoming
both a more important appropriability mechanism as well as a greater threat
to freedom to operate for developers and users.2® Second, more FOSS
licenses are including or adding provisions to deal with patents held by
persons or entities involved with the software. Finally, patent law may be
particularly threatening to FOSS due to asymmetries compared to other
software development models. These include the low likelihood that FOSS
projects will themselves be able to acquire patents defensively, and that
source code availability of FOSS allows a proprietary software plaintiff to
evaluate infringement easily while a reverse evaluation would be more
difficult.2! Patent law has already influenced FOSS licenses that have
provisions that try to clear patent rights in a project. It can support
hybridized structures like the MetaCarta example. Thus, it is a likely future
influencer of organizational structure, resource flows, and entanglement

19. Besides the reasons given in the main text to focus on patent law, two additional
reasons are (1) there has been some treatment of copyright-related FOSS issues in the legal
literature; and (2) patent law is structurally in opposition to FOSS. To elaborate on the
second point, when a change occurs in copyright law that heightens the power of a copyright
holder, that change also cedes more potential to the FOSS movement to govern communities
through licenses. The opposite dynamic occurs with patent law. The greater the patent
power, the greater potential for a third-party patent holder to disrupt a FOSS community.

20. With respect to patent rights, the phrase “freedom to operate” means the process of
clearing patents out of the way for a new technology, to the extent possible. This often
means licensing known patent rights held by others and sometimes means searching issued
patents for those that might need to be licensed. The process is inherently imperfect for
several reasons. First, many issued patents might not be valid if challenged in litigation, but
it may be costly to invalidate a patent. Second, the searching process cannot be guaranteed
as complete, both due to the number of issued patents and the pliability of patent claim
language. Additionally, there may be third-party patent applications in queue at the U.S.
Patent and Trademark Office (USPTO) but not yet made public. See generally Kenneth W.
Dam, The Economic Underpinnings of Patent Law, 23 J. LEGAL STUD. 247, 247 (1994)
(describing that the patent system is designed to solve the “appropriability problem”—that a
firm could not recover the costs of invention if the resulting information were available to
all, in which case we could expect a much lower and perhaps suboptimal level of
innovation).

21. See Stephen M. Mclohn, The Paradoxes of Free Software, 9 GEO. MASON L. REv.
25, 50-52 (2000) (arguing that systemically, and over the long run, FOSS may inhibit patent
infringement suits because open and available source code increases the chance that litigants
will discover patent-invalidating prior art); see also MEEKER, supra note 11, at 93-98
(describing considerations for and against the proposition that FOSS is particularly
susceptible to patent litigation, noting issues such as the fact that often volunteer-centric
FOSS projects cannot fund a defense, but that often the best “defense” available to the FOSS
community is public outcry against a company that wields patents against FOSS; the mere
possibility of such outcry is acknowledged to have an effect on decisions taken by
companies in these affairs).

2094 FORDHAM LAW REVIEW [Vol. 77

within and between FOSS communities and commercial entities that seek to
leverage FOSS.

To proceed with these themes, Part I describes the FOSS licensing
system. Part II elaborates on the scorecard for FOSS in knowledge
production and distribution. Against this background and for transition to
the next part, Part III discusses the new appropriability mechanisms shaping
information technology. Next, after describing the evolving interface
between proprietary information technology companies and FOSS, which
includes bidirectional benefits and influences, Part IV argues that even
when deployed commercially with appropriation strategies akin to those of
proprietary software, FOSS should be recognized by courts and
policymakers2? for its unique public benefit spillovers. This recognition
should inform any analysis by courts of the provisions in FOSS licenses, in
particular patent provisions that might undermine the efficacy of beneficial
FOSS licensing practices within the FOSS movement or within commercial
use of FOSS. The essay concludes by emphasizing the implications for
knowledge production and distribution at the interface of commercial
information technology and FOSS.

I. FOSS LICENSING AS A FOUNDATION FOR KNOWLEDGE PRODUCTION

In Yochai Benkler’s treatment in the Wealth of Networks, FOSS is a
“quintessential instance of commons-based peer production.”> As an
organizing influence for knowledge production of new software, Benkler’s
approach focuses on the GPL license and its copyleft characteristics,
particularly ones channeling the software into a development and
distribution mode foreclosing proprietary appropriation.?# His insight and
model show how nonmarket motivations, such as social connectedness via
cooperative creative activity, allow information production without
commercial value-appropriation techniques.2> The phenomena Benkler
models, however, sometimes operates effectively on software using
non-GPL licenses, such as attribution-only licenses, that are permissive

22. An example of a nonjudicial setting where FOSS policy considerations might be
important is a federal agency. For example, the Federal Communications Commission
(FCC) had to consider issues related to FOSS in wireless devices that use the spectrum that
the FCC regulates. See SOFTWARE FREEDOM Law CTr., FCC RULES ON FOSS AND
SOFTWARE-DEFINED RADIO 1 (2007), available at http://www.softwarefreedom.org/
resources/2007/fcc-sdr-whitepaper.pdf (arguing that, “[w]hile the FCC’s position on FOSS is
more conservative than is necessary, the FCC has given a qualified endorsement to the use of
FOSS by [Software Defined Radio] manufacturers by recognizing the benefits of using
FOSS in wireless products™).

23. YocHAl BENKLER, THE WEALTH OF NETWORKS: HOw SoOCIAL PRODUCTION
TRANSFORMS MARKETS AND FREEDOM 63 (2006), available at http://www . benkler.org/
Benkler_Wealth_Of_Networks.pdf. See generally Benkler, supra note 11, at 59-69
(postulating formal model describing collaborative peer production for information products,
and conditions under which the model will tend toward such peer production, including the
necessity of organizing communications among peers, typically through the Internet).

24. See BENKLER, supra note 23, at 63—68.

25. Seeid. at4-7.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2095

with respect to future uses of the software. Thus, the licensing lock-in
prohibiting privatizing the software is not always a necessary predicate to a
successful FOSS project. Sometimes the FOSS community holds together
buoyed by the various other factors underlying the peer-production
phenomena.

In these instances, a threat to the peer-production ethos of the community
is the sense of outrage that may ensue if someone appropriates the project
for private gain.26 The outrage is more likely if that someone is an outsider
who has given nothing to the project in the past. The dualism of free
software/open source within FOSS helps signal when projects pose that risk
for prospective contributing developers. GPL-style free software projects
minimize the risk, whereas attribution-only projects admit the problem up
front. Given the common, ongoing use of attribution-only licenses, 27 this
suggests that some FOSS communities are willing to contribute effort to
projects even when others do, can, or might take private value with or
without contributing originally or giving back to the community later. This
observation helps illuminate the plausibility of hybrid structures, such as
for-profit commercial software companies entangled with free software or
open source projects.

Among the many indicators of growth and success with the FOSS
movement is the proliferation of FOSS licenses. Oftentimes companies or
development communities scour the many dozens, if not hundreds, of
publicly posted FOSS licenses only to conclude that no license exists that
satisfies their preferences. A common next move is to write a new license.
Such proliferation may have negative effects on the FOSS movement, to the
extent proliferation dissuades standardization and its benefits, or simply
makes license selection overly difficult.28

26. In commenting on this work at the Symposium, Jonathan Zittrain cleverly labeled
this effect “the chump factor”—expressing the notion that people disfavor unjust enrichment
when they are enriching someone else who is supposed to share, use, or be involved with the
FOSS. See generally Vetter, supra note 11, at 609-14 (discussing the Apache project as an
example of open source development under an attribution-only license).

27. MEEKER, supra note 11, at 22-26, 43-46 (using the term “permissive license” in the
same sense at this essay’s use of the term “attribution-only license,” noting that permissive
licenses are in common use).

28. The license proliferation problem posits that too many FOSS licenses have been
authored and made available. Disadvantages resulting from this situation would include
difficulty for programmers in selecting from the increasing number of licenses, redundant
licenses, “vanity” licenses, and dilution of the energy of a group associated with the open
source camp that operates a certification mark for FOSS licenses. See Open Source
Initiative, Report of License Proliferation Committee and Draft FAQ,
http://opensource.org/proliferation-report (last visited Mar. 23, 2009). In the Open Source
Initiative’s (OSI) efforts to reduce the number of FOSS licenses in circulation, its license
proliferation committee characterized some licenses as “specific to their authors and cannot
be reused by others” where “[m]any, but not all, of these licenses fall into the category of
vanity licenses.” Id.

Arti Rai briefly posits a theoretical basis from which one might understand the
problems with FOSS license proliferation—an anticommons-type effect. See Arti K. Rai,
“Open Source” and Private Ordering: A Commentary on Dusollier, 82 CHI.-KENT L. REV.

2096 FORDHAM LAW REVIEW [Vol. 77

Even with proliferation, the historical success and lineage of, on the one
hand, the GPL, and on the other hand, well-known attribution-only licenses
such as the Berkeley Software Distribution (BSD) license,?® allows a rough
sorting of FOSS license types. With this understanding of the free
software/open source dualism, this part further explains the licensing
approaches related to each side.

A. Copyleft and Foreclosing Appropriation by Privatization

" The free software strand of the FOSS movement prefers licenses that
ensure nonprivatization of the software, namely requiring generally
available public source code disclosure and prohibiting use royalties.
Linked to these goals is the term “copyleft,” a pun of copyright and its
institutional values, but also a label for a mechanism of reciprocity or
extension of FOSS licensing terms, such as source code availability and the
antiroyalty provision, to intermixed or further-developed software.30
Embodied in the GPL license, these terms are means to implement a
philosophy of functional self-determination and freedom with one’s
computer.3! The original implementation was version two of the FSF’s
GNU General Public License (GPLv2), arriving in 1991.32 The FSF’s
progenitor, Richard Stallman, implemented these novel licensing concepts

1439, 1441-42 (2007). Rai notes the possibility of a license anticommons arising from “the
possibility of conflicting obligations under multiple licenses. This objection may be more
theoretical than real, however. In particular areas, there tends to be an informal standard.”
Id.

29. Open Source Initiative, The BSD License: Licensing, http://www.opensource.org/
licenses/bsd-license.php (2006) (last visited Mar. 23, 2009) [hereinafter The BSD License].
Several popular FOSS licenses, such as the Apache license, derive from what is known as
the Berkeley Software Distribution (BSD) license, used to release the source code of a flavor
of the Unix operating system developed at Berkeley. See Ruben van Wendel de Joode et al.,
Protecting the Virtual Commons: Self-Organizing Open Source Communities and
Innovative Intellectual Property Regimes 55-56 (Draft Version 1.1, Sept. 2002)
(unpublished manuscript), available at http://opensource.mit.edu/papers/joode.pdf
(discussing pros and cons of practically unrestricted BSD licenses, in particular criticisms
from the open source community that it makes no sense because companies “can use, modify
and sell the software[,] and the license does not require them to contribute anything back to
the community that originally developed the software”).

30. In one sense, “copyleft” expresses the FOSS goal of protecting the general
availability of a software work, which is opposite copyright’s typical use for software—
generally protecting and prohibiting use of the work by others, while perhaps licensing some
narrow use for some number of users. In another sense, copyleft refers to a reciprocity rule
given in a FOSS license. See ROSEN, supra note 11, at 105-06. The Free Software
Foundation (FSF), involved in the origination of the label “copyleft,” relates it to license-
term reciprocity with the purpose of software freedom. See GNU Project, What Is Copyleft?,
http://www.gnu.org/copyleft/ (last visited Mar. 23, 2009) (“Copyleft is a general method for
making a program or other work free, and requiring all modified and extended versions of
the program to be free as well.”); see also Greg R. Vetter, “Infectious” Open Source
Software: Spreading Incentives or Promoting Resistance?, 36 RUTGERS L.J. 53, 129-30
(2004) (discussing GPLv2 copyleft).

31. Free Software Foundation, The Free Software Definition, http://www.fsf.org/
licensing/essays/free-sw.html (last visited Mar. 23, 2009).

32. GPLv2, supra note 15.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2097

in GPLv2 toward his greater ends of software freedom.33 An ingenious yet
incomplete document,3* GPLv2 became the license for important programs
generated by Stallman and others through FSF-affiliated software
development projects. By its own language, GPLv2 also suggested itself
for use on other software.

A variety of industry developments in the decades following the
GPLv2’s arrival combined with the license’s potent ideological force and
clever use of copyright to propel FOSS licensing into a prominent and
pathbreaking place within information technology worldwide. Its force and
presence, and lightning rod character, has grown over time, with the GPL33
remaining the dominant license among its many imitations in mind-share, if
not code-share. Even with its success, the GPL paradigm leaves open the
debate about how appropriability fits into the motivational mix of software
developers. This is due to not only the continuing existence of proprietary
software, but also to open source approaches permitting a variety of
downstream relicensing models.36

B. Awribution-Only Licenses and Nonforeclosure of Appropriation

Before GPLv2 in 1991, certain software development communities
issued freely redistributable software without strictures dissuading
privatization. Among the most famous was a flavor of the Unix operating
system from Berkeley under the BSD license.3’ The licensing law theory is
straightforward: a short statement claims copyright in the code, but then
allows any use on minimal conditions, one of which is that there be
attribution to the original code. In other words, the attribution-only license

33. See GLYN MoobY, REBEL CODE: THE INSIDE STORY OF LINUX AND THE OPEN SOURCE
REVOLUTION 19, 2629 (2001).

34. The primary incompleteness of GPLv2 was as much due to the evolution of U.S.
patent law as it was due to the license text. GPLv2 mentioned the possibility of patent
protection for software covered by the copyright conditions of the license. However, GPLv2
did not explicitly handle granting and terminating permissions to practice software patent
rights. This changed in GPLv3. See GPLv3, supra note 15; GPLv3 First Discussion Draft
Rationale, supra note 15, at 34 (discussing the decision to explicitly license patents). See
generally Greg R. Vetter, Open Source Licensing and Scattering Opportunism in Software
Standards, 48 B.C. L. REv. 225, 239 n.42 (2007) (analogizing the GPLv3 revision process to
a private standard-setting initiative).

35. Occasionally, there may be a need to refer to the GPL without identifying a specific
version.

36. See MEEKER, supra note 11, at 206-07.

37. Marshall Kirk McKusick, Twenty Years of Berkeley Unix: From AT&T-Owned to
Freely Redistributable, in OPEN SOURCES, supra note 11, at 31, 42-46 (describing the initial
decision to offer the entire BSD Unix flavor under the BSD license, due to the popularity of
a networking component earlier offered under the license, and discussing a later, related
lawsuit that pitted the other major flavor of Unix, from AT&T, against the free BSD Unix
distribution, the dispute being whether a small number of copyrighted AT&T components
were present in the kernel of BSD Unix); see also KELTY, supra note 11, at 13641
(describing how free redistribution of BSD Unix allowed its TCP/IP protocol
implementation to become ubiquitous, contributing to the de facto standardization of those
protocols for the worldwide Internet).

2098 FORDHAM LAW REVIEW [Vol. 77

has a permission set that is easy to satisfy.3¥ One need only preserve the
notices.

The attribution-only license does not have the features to help ensure that
the software remains transparent and shareable, although it often does so
under institutional and practical influences. These licenses allow others to
do practically anything with the software, including incorporation into
proprietary software, as long as there is notice that the software originated
from the original project. These licenses do not even require that the source
code be available—a key norm of the FOSS movement. Thus,
attribution-only licenses are the least restrictive type of licenses used for
FOSS projects.3® Some of these licenses, despite their straightforward,
noncopyleft approach under copyright law, have language to handle patent
rights.

Both GPL-style licenses and attribution-only licenses raise a variety of
other interesting copyright and contract law issues.*® However, these issues
are put aside in this essay except for the treatment in the next two
subsections: clearance of inbound intellectual property rights by
contributors and patent provisions.

C. Inbound Assignments or Licenses by Contributors

Within active software development communities using the GPLv2
license, an interlocking web of reciprocal copyright license rights ensures
that the project remains locked into a nonproprietary development mode.
The more dispersed the code contributions, the stronger the lock.#! On the
other hand, if just one developer contributed a dominant or severable major
portion of the code, that developer will have greater leverage over the
project.

38. See MEEKER, supra note 11, at 43-46, 137 (noting that permissive licenses do not
restrain competitors from using the software). The original BSD license was more
complicated, but was later simplified. See The BSD License, supra note 29 (describing that
the original BSD license had four clauses).

39. Given that attribution-only licenses do not require that the software be free of
royalties, or that source code be available, there is some question as to whether
attribution-only licenses are properly called FOSS. They are often categorized this way,
however, because the programmers manage these projects using freely available source code
and Internet-based collaborative development.

40. See generally Vetter, supra note 11, at 644—49.

41. See id. at 599-605. The GPL lock-in effect has parallels with the original
anticommons theory applied to intellectual property rights, whereby more owners of
increasingly small fragments of a resource protected by a system of property rights will lead
to underuse of the resource. See generally Michael A. Heller & Rebecca S. Eisenberg, Can
Patents Deter Innovation? The Anticommons in Biomedical Research, 280 SCIENCE 698,
698 (1998) (describing how revisions to patent doctrine may create too many fragmented
rights and result in too few innovations). In the GPL-type license case, the interlocking
rights of many programmers does not lead to underuse within the license conditions, but
does preclude use under the proprietary software model where source code is kept secret and
users must pay royalties to use.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2099

Some projects seek to eliminate this possibility by requiring the
contributors to assign or license their rights to a central organization.*2
David McGowan analyzes the possibility of assignments from the
perspective of opportunism:

One way to combat opportunism is to ask authors of open-source code to
assign their rights to an organization controlled by a representative
portion of the community. The organization would then decide whether
to terminate rights or take code pnivate and, if properly constituted, its
decisions might reasonably reflect community sentiment.43

With respect to the intellectual property right at issue, typically copyright
in the FOSS setting, an assignment will convey all of the copyright interest
to the grantee. For an effective assignment regime as part of a FOSS
project, contributing developers must trust the grantee organization. A
commonly cited example of a trusted organization is the FSF. Due to its
focus on enforcement of its FOSS licenses, the FSF prefers assignments
over inbound licenses.** However, assignments leave no rights in the hands
of the contributing programmer. A license, however, allows the
programmer to keep some rights.

MetaCarta, the company discussed in the Introduction, uses inbound
licenses rather than assignments. Before MetaCarta will accept the
contribution to a FOSS project it stewards, the programmer must sign a
document licensing copyright interests and patent interests.#> The
copyright license is nonexclusive,6 thus allowing the programmer to

42. Free Software Foundation, Frequently Asked Questions About the GNU Licenses,
http://www.fsf.org/licensing/licenses/gpl-faq.html#AssignCopyright (last visited Mar. 23,
2009). The FSF ties its policy of requiring assignments to the possible later need to enforce
its FOSS licenses:
Our lawyers have told us that to be in the best position to enforce the GPL in court
against violators, we should keep the copyright status of the program as simple as
possible. We do this by asking each contributor to either assign the copyright on
his contribution to the FSF, or disclaim copyright on it and thus put it in the public
domain.

Id.

43, McGowan, supra note 11, at 300. David McGowan further notes that the Free
Software Foundation advocates the assignment approach. Id. In discussing the implications
of a “complete absence of property in the software domain” for open source software,
Yochai Benkler notes that “copyright permits free software projects to use licensing to
defend themselves from defection.” Benkler, supra note 11, at 446. He then makes a point
similar to McGowan’s about the possible value of public mechanisms for preserving open
source software: “The same protection from defection might be provided by other means as
well, such as creating simple public mechanisms for contributing one’s work in a way that
makes it unsusceptible to downstream appropriation—a conservancy of sorts.” /d.

44. MEEKER, supra note 11, at 180-81.

45. MetaCarta, The Clear BSD: Introduction, http://labs.metacarta.com/license-
explanation.html (last visited Mar. 23, 2009) (describing the terms of the Contributor
License Agreement).

46. Specifically, here is the copyright license grant from a contributor to MetaCarta:

You hereby grant to the Maintainer and to recipients of software distributed by the
Maintainer a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare derivative works of, publicly

2100 FORDHAM LAW REVIEW [Vol. 77

engage in other licensing activity not conflicting with the grant to
MetaCarta, assuming that the code contributed has some potential value
apart from the project.

The point of either approach, assignment, or license, is to clear copyright
and patent rights in the project. FOSS licenses began to consider provisions
to deal with clearing patent rights later in the evolution of the movement.
The issues with clearing patent rights are different in degree for various
reasons, but the most prominent is that U.S. patent rights allow the holder to
exclude anyone in the United States that has issued the patent, regardless of
independent development by the alleged infringer.#” The next section
discusses the typical patent provisions in FOSS licenses.

D. Patent Provisions

FOSS licenses often employ a standard patent licensing mechanism to
specify indirectly the patent(s) covered. Direct specification is often the
approach in a traditional patent license. The direct approach lists patent
numbers, and perhaps specific claim numbers. The indirect approach refers
to the technology with some degree of specificity without mentioning
specific patents. The resulting patent license is for patent claims that are
embodied by the technology. The indirect technique can vary in a great
number of ways. ,

For example, the indirect approach to licensing a patent claim covering a
process of sorting information in a computer might partition the technology
by operating system, specifying one set of terms for GNU/Linux,*® and
another set of terms for all other operating systems. If the licensee is active
in the market selling its own proprietary software implementing the claimed
sorting algorithm, it will want licensor’s patent grant to cover at least:
(1) relevant specific patents or patent applications held by the licensor;
(2) any such future instruments; (3) any such instruments acquired in the
future that are embodied by the licensee’s current technology; and (4) any

display, publicly perform, sublicense, and distribute Your Contributions and such
derivative works.
Id.

47. See Sara Boettinger & Dan L. Burk, Open Source Patenting, 1 J. INT’L BIOTECH. L.
221, 226 (2004). On some doctrinal implications of increased patenting for software, see
generally Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the Software
Industry, 89 CAL. L. REV. 1, 4-8 (2001).

48. The GNU/Linux operating system is sometimes referred to as Linux. An operating
system, however, is not a single large software work, but is rather an aggregation of many
software components. The central component is the kernel, which is properly called Linux.
Distributions of a Linux kernel-based operating system include other critical components.
Most distributions include a set of essential software tools from the GNU project, which is a
separate open source software effort. See Richard Stallman, Linux and the GNU Project,
http://www.gnu.org/gnu/linux-and-gnu.htmi (last visited Mar. 23, 2009). Thus, some use the
name “GNU/Linux” for such a distribution. Id. The GNU acronym is a self-referential label
meaning “GNU’s Not UNIX,” with Unix being a predecessor computer operating system.
See GNU Operating System, http://www.gnu.org (last visited Mar. 23, 2009).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2101

such instruments currently owned or acquired in the future that are
embodied by the licensee’s foreseeable future technology.

Three of these four points deal with future developments, showing one
purpose of the traditional patent license as a mechanism to clear a path for
present and future commercialization coordinated between the licensor and
licensee. This approach can bring some, but not perfect, certainty to patent
rights bearing on the technology. To the extent certainty occurs, it is
because the licensee is in the best position to foresee the technology
trajectory at the time of entering into the license.

Contrast the patent licensee just sketched with a FOSS development
team: foreseeability is diminished; perhaps it is gone. Moreover, the
licensor is unidentified at the beginning of the project: any future
contributor holding patent rights is a potential licensor. These distinctions
make a substantial difference. The texture and effects of FOSS patent
licensing provisions seem more like the patent issues associated with
clearing rights in a standard than many traditional patent-licensing
technology agreements.*?

1. The Patent Grant; Permission to Practice What the Patent Claims as
Measured by the FOSS Program

In a typical FOSS patent grant, the provision refers indirectly to the
FOSS to which the license document is applied. The FOSS license
document, we may recall, also handles copyright in the program. Thus,
using version three of the GPL (GPLv3) as an example, one of its
conditions is that upon distribution of the software the distributor grants a
permission to users of the software to practice patents held by the
distributor. “Each contributor grants you a non-exclusive, worldwide,
royalty-free patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.”30

49. See Vetter, supra note 34, at 228-29, 238-42.

50. GPLv3, supra note 15, § 11. A contributor is “a copyright holder who authorizes
use under this License of the Program or a work on which the Program is based. The work
thus licensed is called the contributor’s ‘contributor version.”” Id. A “Program” is “any
copyrightable work licensed under this License.” Id. § 0. Essential patent claims have the
following definition:

A contributor’s “essential patent claims” are all patent claims owned or controlled

by the contributor, whether already acquired or hereafter acquired, that would be

infringed by some manner, permitted by this License, of making, using, or selling

its contributor version, but do not iniclude claims that would be infringed only as a

consequence of further modification of the contributor version. For purposes of

this definition, “control” includes the right to grant patent sublicenses in a manner

consistent with the requirements of this License.
Id. § 11. While distribution in a traditional copyright sense would qualify, the GPLv3
specifies layered definitions that encompass secondary liability concepts in copyright. Id.
§§2,8,11.

A number of authors have analyzed some of the major revisions in GPLv3, including

the new patent provisions. See generally Stephen J. Davidson & Nathan S. Kumagai,

2102 FORDHAM LAW REVIEW [Vol. 77

Thus, there is an important interaction between the copyright-based
foundation of the FOSS license, particularly if it seeks to implement
“copyleft” for the software, and the patent rights hopefully cleared by the
license. In one sense, there is a web of permissions that is reciprocal within
copyright and patent, and which crosses between them. But in another
sense, because most conditions trigger upon a copyright distribution, the
copyright-based conditions are the foundational rights for the FOSS license,
particularly because they are always likely to be present. Many FOSS
programs will embody no patent claims. But all FOSS programs are
concerned with copyright in the code.

Many persons and entities involved with FOSS are both users and
distributors. But, often, one status dominates. Thus, a patent-owning
technology company that distributes GPLv3-licensed software must account
for the possibility that some of its patents will be unavailable for
enforcement against users of the FOSS program. On the other hand, a large
corporate user of the FOSS program, such as a retailer, that does not
principally involve itself with obtaining patents, does not have the same
worry. The retailer may use the FOSS as a mission-critical component of
its information technology infrastructure. Assume further, however, that
the retailer has a subsidiary that develops and licenses proprietary software
and also regularly obtains patents on the software. The subsidiary must act
prudently in wielding these patents to avoid “retaliation” or “patent peace”
provisions in FOSS licenses.

2. The “Patent Peace” Provision: Loss of Patent and Copyright
Permissions upon Wielding a Patent

The “retaliation” or “patent peace” provision terminates both
copyright rights to use the software, and patent rights in the program in the
event of patent litigation of some sort. Thus, using the example above, if
the retailer’s subsidiary sues a competitor claiming that the competitor’s use

Developments in the Open Source Community and the Impact of the Release of GPLv3, 938
PrRAC. L. INST., PATS., COPYRIGHTS, TRADEMARKS & LITERARY PROP. COURSE HANDBOOK
SERIES 537 (2008) (describing industry reactions to GPLv3 along with a short summary of
the parent provisions); Robert W. Gomulkiewicz, 4 First Look at General Public License
3.0, 24 COMPUTER & INTERNET LAaw. 15, 15, 17-20 (2007) (describing the drafting process
for version 3.0 and the structure of the new patent provisions); Robert W. Gomulkiewicz,
General Public License 3.0: Hacking the Free Software Movements Constitution, 42 HOUS.
L. REv. 1015, 1032, 1035-36 (2005) (explaining the way in which the FOSS community
interprets the GPL, and arguing generally for a clarification of the language used in newer
versions); Sapna Kumar & Olaf Koglin, GPL Version 3’s DRM and Patent Clauses Under
German and U.S. Law, 2 CoMp. L. REv. INT’L 33 (2008); Douglas E. Phillips, Version 3 of
the GNU General Public License: Is the Latest Really the Greatest?, 938 PRAC. L. INST.,
PATS., COPYRIGHTS, TRADEMARKS & LITERARY PROP. COURSE HANDBOOK SERIES 503 (2008)
(discussing the increased complexity of GPLv3 and then providing an in-depth treatment of
its DRM, “Tivoization,” and patent provisions).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2103

of the FOSS program infringes the subsidiary’s patent(s), the subsidiary
puts its parent’s use of the mission-critical FOSS at risk.3!

In GPLv3, the retaliation or patent peace provision is as follows: “[Y]ou
may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion of it.”52

Among other influences, the potency of the patent peace provision
increases in response to a larger installed user base, increased functionality,
and heightened business criticality of the FOSS program. The more
important the software is to a user or distributor, the greater is the
anti-patent-wielding preventive effect of the retaliation provision.

The range of effects from these two patent provisions working in tandem
depends on the scope of each. Such scope can be expressed in a variety of
ways, which is the subject of the next subsection.

3. Interactions and Potential Effects of Patent Grant and Patent Peace
Clauses

Two common scope-influencing factors for the patent grant are
prominent among the items creating a range of possibilities for its
interaction with the FOSS program. One is the time frame for qualifying
patent ownership, and the other is the version(s) of the FOSS licensed.
Similarly, these same factors influence the scope of the patent peace
provision that, when triggered, may limit copyright and patent permissions
to use the FOSS program. Moreover, the antipatent emphasis of the FOSS
movement hints at greater scope for the retaliation or patent peace
provision.

The emphasis in the discussion below is functional and effects-based for
patent claim scope and license scope. To describe and demonstrate the
effects, it is necessary to put aside challenges that one might imagine to the
legal potency of the FOSS licensing approach. The approach has potency
generally, but that does not mean that every enumeration below would be
effective or valid in whole or in part. Understanding the range of
possibilities, I hope, helps the process of analyzing any specific situations
that fit within these.

51. Another scenario distasteful to the hypothetical retailer is what I call FOSS
“tunneling,” where the code flows through an organization without corporate understanding.
FOSS is attractive to technologists trying to solve problems and operate the information
technology infrastructure of a company. An attraction factor is ease of access: the developer
finds the code on the Internet, ready for the taking without the trouble of corporate
procurement procedures. Among other potential troubles, undocumented and
nonenumerated FOSS inflow creates increased risk of inadvertent outflow. The effects of
the outflow might change depending on whether or not there were modifications. The issue
also raises questions of agency, particularly apparent agency, and corporate action.

52. See GPLv3, supra note 15, § 10; see also id. §§0,2,8,10 (propagating or
modifying the conveyed “covered work” must be in compliance with the license, which
prohibits “further restrictions™ and characterizes certain patent assertions as such).

2104 FORDHAM LAW REVIEW [Vol. 77

a. Increasing Scope of Patents Licensed

A prototypical FOSS patent grant will license any patents owned by the
distributor of the software at the time of the distribution, assuming that such
distribution obligates the distributor to license its patents. The actual
patents licensed are specified indirectly as those with claims embodied by
the software distributed. This means that the patent claims might be
embodied by the whole program or merely a part of it. The proposition
facing the distributing entity seems straightforward: estimate whatever
benefit flows from distributing the software against any detriment arising
from the loss of the patent enforcement power against users of the FOSS
program. Some FOSS licenses, however, open the ownership window to
include after-acquired patents, which may change the calculus.

i. After-Acquired Patents

One example of language licensing after-acquired patents can be found in
GPLv3, which requires contributors to the FOSS program to license what
are defined as “essential patent claims,” given as “all patent claims owned
or controlled by the contributor, whether already acquired or hereafter
acquired.”>3 Thus, estimating the balance of benefits and detriments is
harder given the future uncertainty of patent ownership. The effect is
significant, but not catastrophic, to estimating the detriment side because
companies involved with the patent system have procedures that regulate
selection of technologies for patent applications. The capacity to foresee
future patenting is greatest with the distributor, assuming that the distributor
undertakes some due diligence and self-evaluation around the FOSS
distribution decision.

On the other hand, acquisition of companies or technologies can lead to
increased patent ownership. Thus, at some level, the after-acquired addition
to the scope of the patent grant represents an opportunity foregone.

It is possible that a FOSS license patent grant would be arranged such
that as long as the distributing entity continues to distribute modified
software, newly owned patents would be covered under the patent grant
even without the after-acquired patents term. This would occur if the mere
act of distribution triggered the patent grant. The after-acquired clause thus
has the greatest impact when the entity ceases being a distributor. Then,
measured in reference to the FOSS program for either the last version
distributed, or for future versions as well, future-owned patent claims are
also licensed. More precisely, to reorient to the unique structure of FOSS
licensing, if the distributing entity wants to remain in compliance with the
copyright-rendered conditions linked to its distribution, it will comply with
the condition that says it shall license (by not asserting them) patents owned
then and owned later.

53. Seeid. § 11.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2105

The approach of GPLv3 is limited to the last version of the FOSS
program that the distributor authorized for distribution and use where the
distributor was obligated under the patent grant.’* It does “not include
claims that would be infringed only as a consequence of further
modification of the contributor version.”>>

ii. Future Versions of the FOSS Program

Although it did not do so, the GPLv3 could have expanded the scope of
its patent grant by including future versions of the FOSS program.

A patent grant specifying any future versions of the FOSS program ties
the distributing licensor to the trajectory of the FOSS program. The
licensor may exert no control, or some influence, over that community, but
its ability to cabin or channel the scope of FOSS functionality is less than
with proprietary technology. When the patent grant includes future
versions, the scope of the permission follows the increasing future
functionality, assuming an active, accretive project. Unlike the
after-acquired patents term, where the distributor is itself increasing the
scope of permission it gave, the future-versions term delegates to the
third-party FOSS community involved with the project the indirect
specification of patents licensed in the future. The community adds more
code, improves the software, and thus increases the chance that it embodies
an increasing number of the licensor’s patent claims.5¢

When companies involve themselves in FOSS projects, other strategic
factors add to the motivational mix. These factors include an entities’
estimation of its strategy in light of the patent permission license grant, and
whether the grant includes after-acquired patents and/or future versions.
These same two factors are the first influencers of scope for the
patent peace provision, which also concerns technology companies
involved with the patent system and with FOSS.

b. Increasing Scope of Wielding Patents

While perspectives on patent protection for software are not favorable
within the FOSS movement, the free software camp finds the system
particularly venomous. In the United States, the system operates, from a
legal perspective, generally without exception from industry to industry, but

54. The definitional taxonomy specifies a contributor to the FOSS program under
GPLv3 as follows: “A ‘contributor’ is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The work thus licensed is
called the contributor’s ‘contributor version.”” /d.

55. Id

56. This simplified account ignores complications such as whether a fork in the program
results in two programs that each must continue to carry the patent license grant. A different
perspective on that problem is the question of when a program changes so substantially that
it is not the same program even if it carries the same name. The reverse question is also
intriguing: What if the program is mostly the same code, but is distributed under a new
name?

2106 FORDHAM LAW REVIEW [Vol. 77

it impacts each differently from a practical perspective. Information
technology companies tend to need portfolios of patents for effective
defensive purposes and to buttress competitive advantage both through
litigation and licensing for royalties. Interaction with standard-setting is
also important because information technology is “layered” both at the
hardware level and the software level: protocols and interoperability
criteria influence market shares and perceptions. Thus, among many factors
that might tempt a patent holder to wield the patent through litigation,
involvement with a FOSS program finds a place in the order of strategic
concerns.

An interesting issue concerns the pros and cons, particularly with respect
to market reputation, of asserting patents against a FOSS community with
which one is involved; however, that topic must be put aside to focus on the
mechanism(s) that would bring increasing scope to loss of rights to use the
FOSS program upon such wielding. Finally, before proceeding to those
mechanisms, this discussion intentionally ignores uninvolved patent holders
who wield against the FOSS program.>” This is likely the most common
threat to FOSS that has gained commercial prominence, especially given
the increase over the last decade in nonpracticing patent holders and
contingency fee patent litigation.

i. The FOSS Program Licensed Under the License at Issue

The baseline idea for a patent peace provision is that assertion of one’s
patents against users of the version one distributed results in a loss of the
copyright and patent rights granted by others in that version. How this
interacts with the patent grant depends on that clause’s scope. If it is only
for patents currently owned, then a patent-wielder who stopped distributing
but still uses may primarily worry about the patent peace provision as an
inhibition to suing FOSS users on newly acquired patents.58

When the potential patent-wielder continues to distribute new versions as
they come along, the patent peace provision might seem unnecessary
because the distributor may be granting the patent license upon each
distribution. Even in that situation, however, the patent peace provision
helpfully buttresses the license potency due to the often indeterminate mode
of enforcement that might accompany use of the FOSS license against the
patent-wielder. This refers to a question that needs evaluation in the
context of the particular transaction at issue, but is generally the question
whether the FOSS license is enforced only under copyright, or also under
contract. If nothing else, a specific recitation that the distributor-as-user

57. See, e.g., Complaint at 2-3, IP Innovation LLC v. Red Hat Inc., No. 2:07-cv-447
(ED. Tex. Oct. 9, 2007), available at http://docs. justia.com/cases/federal/district-
courts/texas/txedce/2:2007cv00447/105833/1/0.pdf (alleging infringement of three patents
by the GNU/Linux operating system as distributed by Red Hat and Novell).

58. As another theoretical wrinkle in the scope of the patent peace provision, consider
decoupling it from a distribution and tying it to internal, private use, considering separately
modified code versus unmodified operation of the FOSS received.

20091 COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2107

loses rights to use based on assertion of a patent clarifies the intent of the
license drafters.

Thus, the potency and necessity of the patent peace provision will depend
on the scope of the patent grant and other factors. This leaves the question
of what types of assertions trigger the loss of right to use. That scope does
not necessarily have to be tied to the FOSS version distributed by the
potential patent-wielder. As with the patent grant, it might be linked to any
future version as well. Or, it might go further.

ii. Any FOSS?

The next hypothetical step for a patent peace provision is to extend the
peace to all FOSS. For example, envision a provision implementing the
following: any assertion of any patent against any FOSS results in a loss of
right to use the FOSS supplied under this license.

By omission, this covers currently owned and future-acquired patents. It
does not specify whether the condition (written as an obligation) applies
only upon distribution, or upon mere internal use, which further shows the
range of possibilities. Functionally, the patent-holder must forego assertion
of patents against all FOSS programs that embody the asserted patent
claims. FOSS is a minority of the worldwide installed base of software, but
it is a nontrivial minority in some markets, and a majority in certain niches.
Thus, this is a substantial increase in scope for the patent peace provision.

In addition, the example provision above underspecifies FOSS. Does it
include FOSS licensed under attribution-only licenses? Should qualifying
FOSS be specified by reference to some external standard, such as that
provided by the open source camp’s certification organization called the
Open Source Initiative (OSI)? This is a group operating a certification
mark for the movement, called the Open Source Definition (OSD). The
OSD defines criteria against which the OSI evaluates and certifies
licenses.5? Alternatively, perhaps the FOSS license should define in its text
what is meant by the FOSS to which the patent peace provision attaches.

iii. Any Software?

Beyond the difficulty of specifying what is meant by FOSS, a
patent peace provision could theoretically aim itself at assertion of any
patent against any software. Some of the early drafts of GPLv3 contained
notions of this sort under a mechanism that allowed the person applying
GPLv3 to her software to add specialized terms.6 A heightened scope for

59. Open Source Initiative, http://www.opensource.org (last visited Mar. 23, 2009)
(“The Open Source Initiative (OSI) is a non-profit corporation formed to educate about and
advocate for the benefits of open source and to build bridges among different constituencies
in the open-source community.”).

60. GNU General Public License Discussion Draft 1 of Version 3, § 7(e) (Jan. 16, 2006),
available at http://gplv3.fsf.org/comments/gplv3-draft-1.html (allowing modifications to the

2108 FORDHAM LAW REVIEW [Vol. 77

the patent peace provision, however, did not survive to the final draft of
GPLv3, although the general mechanism of allowing users of the license to
customize it, within a menu of allowed options, did survive.b! Including a
greater scope for the patent peace provision on that menu had other
disadvantages for GPLv3 not relevant to the present discussion. What is
important is the relationship between greater scope in the patent peace
clause and clearing patent rights in the FOSS program.

If more patent-holding companies, foundations, or individuals participate
in a FOSS development project, this presents a greater potential for clearing
a greater number of patent rights in the software. How high this reaches
depends on scope provisions for the patent grant, such as after-acquired
patents and the future-versions term. But if patent-holders who would like
to be involved with the FOSS shy away due to an overly broad patent peace
provision, this would be counterproductive. These dynamics practically
limit the scope of such clauses, putting aside any potential legal doctrines
that also might diminish their efficacy.

The next logical step in the progression of this subsection is assertion of
any patent covering anything as a trigger to loss of one’s right to use the
FOSS. I am not aware of any FOSS license that attempts this. The free
software camp of the FOSS movement finds the patent system unjust as
applied to software, and perhaps unjust generally, but practical concerns
make this last step seem implausible.

One result of patent provisions in FOSS licenses is increasing
complexity. For example, GPLv3 substantially increased its complexity
compared to GPLv2.92 While the core ideas of free software are relatively
straightforward, the use of intellectual property law to implement those
“freedoms™®3 is circuitous, particularly with the addition of patent law in
the licensing structure. An empirical question that will be impossible to
ever answer 1s whether GPLv2 achieved some of its success because it did
not have patent law provisions until many years after some other FOSS
licenses, and thus had reduced complexity. Whatever the answer to that
inquiry, some perspectives are clear as to the success of the FOSS
movement generally. This is the topic of the next part.

II. SUCCESSES AND ASPIRATIONS FOR FOSS KNOWLEDGE PRODUCTION

Stepping away from the gory details of FOSS licensing terms, this part
catalogs the observed successes and aspirations of FOSS as a knowledge
production paradigm. While this scorecard process is itself interesting, a

license to impose conditions triggered by the assertion of a software patent lawsuit); GPLv3
First Discussion Draft Rationale, supra note 15, § 2.12.11.

61. GPLv3, supranote 15, § 7.

62. See Phillips, supra note 50, at 507-12.

63. GNU Project, The Free Software Definition, http://www.gnu.org/ philosophy/free-
sw.html (last visited Mar. 23, 2009).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2109

proper introduction suggests acknowledging that something fundamental is
going on. As Christopher M. Kelty puts i,

Free Software exemplifies [a cultural] reorientation [of knowledge and
power]; it is not simply a technical pursuit but also the creation of a
“public,” a collective that asserts itself as a check on other constituted
forms of power—Ilike states, the church, and corporations—but which
remains independent of these domains of power. . . . Free Software is a
public of a particular kind: a recursive public. Recursive publics are
publics concerned with the ability to build, control, modify, and maintain
the infrastructure that allows them to come into being in the first place
and which, in turn, constitutes their everyday practical commitments and
“the identities of the participants as creative and autonomous individuals.64

Except for the first item in the list, the topics below focus on knowledge
production as the creation of new platform and nonplatform software. My
focus is at once both more narrow and more broad than Kelty’s conception
of free software as a recursive public. It is more narrow because the list
gives some of the important knowledge outputs from FOSS,% but does not
tie them to the greater cultural significance of Kelty’s free software
conception. It is more broad because I am interested in nonpublic (often
nonplatform) software production apart from the platform/public software
that constitutes supporting layers for the recursive public that is free
software.66

A. Inspiring New Ecologies for Collaboration and Information Sharing

In its rise as a major influence on the information technology ecology,
FOSS attracted notice from other domains. Some within these domains
have imported FOSS techniques and adapted them to other modes of
collaborative sharing and infrastructure development.67

Undoubtedly the most prominent example of this phenomenon is the
Creative Commons project.®®8 What FOSS licenses are to the proprietary

64. KELTY, supra note 11, at 7 (footnote omitted).

65. In addition to the direct benefits of each of the items on the FOSS scorecard in this
part, there may be second-order effects of greater productivity or heightened leamning about
computing from any of these items.

66. See KELTY, supra note 11, at 3—-6 (introducing the concept of a recursive public and
its relating effect among itself, free software, and the Internet).

67. Christopher M. Kelty describes this process as “modulating” the practices
underlying free software into other domains. See id. at 245-47 (describing two collaborative
projects, Connexions and Creative Commons, as modulations of free software practices); see
also Connexions, http://cnx.org/aboutus/ (last visited Mar. 23, 2009) (“Connexions is an
environment for collaboratively developing, freely sharing, and rapidly publishing scholarly
content on the Web.”).

68. See Creative Commons, http://creativecommons.org/ (last visited Mar. 23, 2009)
(“Creative Commons provides free tools that let authors, scientists, artists, and educators
easily mark their creative work with the freedoms they want it to carry.”); see also Lydia
Pallas Loren, Building a Reliable Semicommons of Creative Works: Enforcement of
Creative Commons Licenses and Limited Abandonment of Copyright, 14 GEO. MASON L.
REv. 271, 278 (2007) (arguing that courts should “draw on the copyright doctrine of

2110 FORDHAM LAW REVIEW [Vol. 77

software world, the Creative Commons licenses are to the commercial
world of music, movies, publications, and other media.®® The Creative
Commons approach is more centralized than the FOSS movement in that a
central organization coordinates a standardized menu of licenses.’0 The
licenses allow an author or creator to select the type of sharing allowed for
her work. With the benefit of the FOSS experience before it, the Creative
Commons movement has grown rapidly. Internationalization of the
licenses along with establishment of affiliate organizations in many other
countries follow FOSS’s forerunner success.’!

Modulating FOSS practices into other domains includes the domains of
biotechnology’? and scientific publishing.” In addition, Benkler catalogs
various other collective activities, including the prominent example of
Wikipedia, that fit within his peer-production model and arose
contemporaneously with the emergence of FOSS in the public
consciousness.”* That FOSS inspires new ecologies underscores its
far-reaching nature and influence. Within the information technology
ecology, a part of that influence has been to establish platforms.

abandonment to create a new doctrinal category of limited abandonment” for general use and
to support the Creative Commons licenses).

69. See Severine Dusollier, Open Source and Copyleft: Authorship Reconsidered?, 26
CoLuM. J.L. & ARTs 281, 282-87 (2003); Niva Elkin-Koren, What Contracts Cannot Do:
The Limits of Private Ordering in Facilitating a Creative Commons, 74 FORDHAM L. REV.
375, 387-88 (2005).

70. See Creative Commons, About: Licenses, http://creativecommons.org/about/
licenses (last visited Mar. 23, 2009). In FOSS, the license-generation process is somewhat
ad hoc, with certain important licenses such as GPLv2 garnering imitators, but without a
centralized authority to design and promulgate the only licenses in use within the movement.
On the other hand, the influence of the OSI with its certification mark process, and the
influence of the FSF in orchestrating a deliberative procedure for GPL revision in version 3,
shows that FOSS license generation is not completely ad hoc.

71. See Creative Commons, International, http://creativecommons.org/international/ (last
visited Mar. 23, 2009) (“Creative Commons International (CCi) works to ‘port’ the core
Creative Commons Licenses to different copyright legislations around the world. The
porting process involves both linguistically translating the licenses and legally adapting them
to particular jurisdictions.”); see also Severine Dusollier, Sharing Access to Intellectual
Property Through Private Ordering, 82 CHL-KENT L. REv. 1391, 1394-96, 1400-02 (2007).

72. See Robin Feldman, The Open Source Biotechnology Movement: Is It Patent
Misuse?, 6 MINN. J. L. Sci. & TECH. 117, 118 (2004) (“Building on the software notion of
‘copyleft,” some open source biotechnology projects use the power of the patent system to
ensure that the core technology of the project and any innovations remain openly
available.”); Sapna Kumar & Arti Rai, Synthetic Biology: The Intellectual Property Puzzle,
85 Tex. L. REv. 1745, 1763 (2007) (“The idea of a synthetic biology commons draws
inspiration, in part, from the prominence of the open-source software model as an alternative
to proprietary software.”).

73. See Dusollier, supra note 71, at 1405-07.

74. BENKLER, supra note 23, at 68-81.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2111

B. New Information Technology Platforms

Information technology platforms are synonymous with FOSS.7> This
includes specific projects, such as the Linux kernel,’® but also includes
FOSS influence over de facto standards such as the TCP/IP protocols that
underlie the Internet.7”7 A variety of considerations influence whether a
specific FOSS project has platform potential, beginning with whether it is
aimed at a platform market.”® An important consideration among these,
however, is the freely redistributable nature of FOSS.” Besides the
obvious attractiveness of a subsidized production input, the no-royalty
nature of GPL-style FOSS reduces transaction costs on the front end of
software acquisition.

Success with platform applications is clearly part of the story of FOSS’s
success.80 Beyond the Linux kernel, examples include the Apache web
server software,8! and the Firefox browser.82 The success in platform
applications is consistent with both Benkler’s conception of free software as
peer production8? and Kelty’s conception of it as a recursive public.34 In
both cases, the platform success of a particular application amplifies its role
in the production of more or other FOSS, and in the production of a more
egalitarian information technology infrastructure.83

75. See Douglas Lichtman, Property Rights in Emerging Platform Technologies, 29 1.
LEGAL STUD. 615, 615 & n.1 (2000) (describing a “platform” as something a consumer can
purchase “to enhance the value of some number of independently purchased goods,” and
offering operating systems as an example of a platform technology, while describing
application software that runs on the platform operating system as “peripherals” to that
platform).

76. Linux Online!, http://www.linux.org/ (last visited Mar. 23, 2009).

77. KELTY, supra note 11, at 139-41.

78. Vetter, supra note 30, at 126 n.186.

79. See Nicholas Economides & Evangelos Katsamakas, Linux vs. Windows: A
Comparison of Application and Platform Innovation Incentives for Open Source and
Proprietary Software Platforms, in THE ECONOMICS OF OPEN SOURCE SOFTWARE
DEVELOPMENT, supra note 9, at 207, 207-09; Joel West, How Open is Open Enough?
Melding Proprietary and Open Source Platform Strategies, 32 RES. PoL’Y 1259, 1259-66
(2003) (discussing how the emergence of standardized platforms which allow for
substitution of “complementary assets” has been a driving force for the evolution of the
computer industry).

80. Greg R. Vetter, Exit and Voice in Free and Open Source Software Licensing:
Moderating the Rein over Software Users, 85 OR. L. REv. 183, 256-63 (2006).

81. Apache HTTP Server Project, http://httpd.apache.org/ (last visited Mar. 23, 2009)
(“Apache has been the most popular web server on the Internet since April 1996.”).

82. Mozilla, Firefox Web Browser, http://www.mozilla.com/en-US/firefox/ (last visited
Mar. 23, 2009).

83. BENKLER, supra note 23, at 320-23, 394-96.

84. KELTY, supra note 11, at 13—18 (summarizing the five practices by which the book
Two Bits characterizes free software development as a recursive public).

85. Another factor channeling FOSS to platform applications is that many FOSS
licenses desire to comply with the Open Source Definition, a certification mark with
requirements that licenses do not discriminate in particular ways, allowing FOSS under those
licenses a wide applicability. See Open Source Initiative, The Open Source Definition §§ 5-
6, 10, available at http://opensource.org/docs/osd (last visited Mar. 23, 2009) (prohibiting

2112 FORDHAM LAW REVIEW [Vol. 77

C. New Collaboration Modes for Software Development

FOSS created a new paradigm for distributed, Internet-enabled
collaboration to develop software. As the preceding section shows, the
paradigm was so successful it found its way into other domains. Benkler’s
theoretical work links these areas with a descriptive account as to when peer
production, such as FOSS, might take hold.8¢ The peer-production model
depends in part on easy communications among contributors. The Internet
typically meets this need, but each domain will need collaboration tools
adapted to its work.

For software, these tools are a new generation of source code control
systems. This is software to track the changes to the software, but also to
transparently show who did what to which piece of code when, and with
what authority.87 The source code control tools evolved to handle social
interaction and technical argumentation with respect to the code, making
them a portal for tacit knowledge and upending conventional wisdom that
developers needed to be in the same physical location for effective sharing
of tacit knowledge.38

Besides the evolving tools to manage a particular FOSS project, the
ecology developed repositories. The most well-known is SourceForge.8?

discrimination against persons or groups, or against fields of endeavor, and requiring
technology neutrality, if license is to meet OSD certification).

86. See Benkler, supra note 11, at 434-36.

87. Vetter, supra note 11, at 626-30 & n.184.

88. Sverre Helge Bolstad, Learning and Knowledge in FLOSS: Situated Learning and
Organizational Knowledge-Conversion in Community-Based Free/Libre Open Source
Software Development 8 (2006) (unpublished Master’s thesis, University of Bergen,
Norway), available at http://opensource.mit.edu/papers/Learning-and-knowledge-in-
FLOSS.pdf (arguing “that FLOSS, as an online community of practice, . . . overcome[s] the
problem of tacit knowledge-transformation through dense interaction, collective reflection
and accumulation of knowledge™); Andrea Hemetsberger & Christian Reinhardt, Sharing
and Creating Knowledge in Open-Source Communities: The Case of KDE 4 (2004)
(unpublished manuscript), available at http://opensource.mit.edu/papers/hemreinh.pdf.
Andrea Hemetsberger & Christian Reinhardt describe their research into the workings of a
FOSS development community as geared toward answering three questions: ‘“how
community members organize content with regard to their daily routines that potentially
transforms into knowledge for other members”; “how new members are enabled to
accumulate the knowledge necessary for becoming a valued member”; and “how members
co-create and conceptualize new ideas—create new knowledge-—in absence of physical
proximity.”

Examples of two popular and complementary FOSS development tools are Trac and
Subversion. See Trac, Welcome to the Trac Open Source Project, http://trac.edgewall.org/
(last visited Mar. 23, 2009) (“Trac is an enhanced wiki and issue tracking system for
software development projects. . . . It provides an interface to Subversion”); Tigris.org,
Subversion, http://subversion.tigris.org/ (last visited Mar. 23, 2009) (“Subversion is an open
source version control system.”). Between the two tools, a FOSS project can seamlessly
integrate the details of: code development; finding, tracking, and fixing defects; tracing all
such activity through the source code with full information about which developers/users did
what; using Wiki-type and instant messaging communications among developers; and other
capabilities.

89. See SourceForge.net, http:/sourceforge.net (last visited Mar. 23, 2009); see also
SourceForge.net, What Is SourceForge.net?, http://apps.sourceforge.net/trac/sitedocs/wiki/

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2113

The repositories are an important part of the new collaboration modes for
FOSS because they enable software searching and discovery of projects as a
user or as a potential developer. They also enable developers to easily
establish projects with contributing developers worldwide.?® The number
of projects and users registered at SourceForge is impressive, indicating
vitality in the FOSS movement even if most of the projects are small and
inactive.?!

Consensus maintains that the first three items in this part’s scorecard of
FOSS are successes of the movement. The remaining two items, however,
are the subject of some debate.

D. Higher-Quality Code

Higher-quality software is an often-cited advantage of the FOSS
movement.?? There are important structural reasons suggesting why FOSS
might on average produce higher-quality code than proprietary software.
These structural reasons relate to the availability of source code and the
transparency of design this engenders, coupled with assumptions about the
behaviors of an active developer group and user community.”> There are

What%20is%20SourceForge.net? (last visited Mar. 23, 2009) [hereinafter What Is
SourceForge.net?] (“SourceForge.net is the world’s largest open source software
development web site. We provide free services that help people build cool stuff and share it
with a global audience.”).

90. SourceForge.net is also a unique research asset for studying various aspects of the
FOSS phenomenon. See J.-M. Dalle et al., Advancing Economic Research on the Free and
Open Source Software Mode of Production 9-11 (Dec. 3, 2004) (unpublished manuscript),
available at http://opensource.mit.eduw/papers/davidetal.pdf.

91. What Is SourceForge.net?, supra note 89 (“As of February, 2009, more than 230,000
software projects have been registered to use our services by more than 2 million registered
users").

92. Jean-Michel Dalle & Paul M. David, The Allocation of Software Development
Resources in ‘Open Source’ Production Mode 2 (Stanford Inst. for Econ. Policy Research
(SIEPR) Discussion Paper No. 02-27, 2003), available at http://129.3.20.41/eps/io/
papers/0502/0502011.pdf. A predicate question is the definition of quality for software, but
for purposes of this article I proceed based on a common sense of the word, although formal
definitions exist. See Martin Michlmayr, Quality Improvement in Volunteer Free and Open
Source Software Projects: Exploring the Impact of Release Management 9-13 (Mar. 2007)
(unpublished Ph.D. dissertation, University of Cambridge), available at
http://opensource.mit.edu/papers/michlmayr-phd.pdf.

93. The first word on this topic belongs to Eric Raymond. He has characterized factors,
including issues of reliability, that might drive one to choose FOSS development over
proprietary development. ERIC S. RAYMOND, The Magic Cauldron, in THE CATHEDRAL &
THE BAZAAR: MUSINGS ON LINUX AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY
143 (rev. ed. 2001) (arguing that criteria to choose between open source or traditional
approach includes that one “can expect that open source has a high payoff where (a)
reliability/stability/scalability are critical, and (b) correctness of design and implementation
is not readily verified by means other than independent peer review,” and noting that “[t]he
second criterion is met in practice by most non-trivial programs™). Raymond also coined the
famous phrase supporting the argument that massive peer review of source-code-transparent
FOSS projects would facilitate quality: “Given enough eyeballs, all bugs are shallow.” ERIC
S. RAYMOND, The Cathedral and the Bazaar, in THE CATHEDRAL & THE BAZAAR: MUSINGS
ON LINUX AND OPEN SOURCE BY AN ACCIDENTAL REVOLUTIONARY, supra, at 19, 30.

2114 FORDHAM LAW REVIEW [Vol. 77

structural counterarguments, which include the possibility of free riding by
one user or developer waiting for another to fix bugs, although a
counterpoint can be made that such free riding will not manifest when user
needs are heterogeneous and this is known among users.?* These and other
aspects of the debate are hard to test empirically in a conclusive fashion,
particularly since there are both high-quality and low-quality software
products in both the FOSS and proprietary worlds.?s

Certain FOSS products are recognized to be of very high quality, such as
the Linux kernel or the Apache web server.?® The ultimate question, which
cannot be answered here, and in some sense can never be answered, is
whether the FOSS approach scales to high quality all around, or greater
quality on average than proprietary software.?” If this question engenders
debate, then the last section in this part will further the discussion because
its metric, innovativeness, is an even more expansive and diffuse concept
than quality.

94. Michlmayr, supra note 92, at 14-22 (collecting sources and summarizing the
literature on FOSS quality assurance practices and comparative quality with proprietary
software). Martin Michlmayr concludes his FOSS quality literature review with the
following:

In summary, the FOSS methodology incorporates a number of elements, such
as potentially high levels of peer review and user innovation, that may contribute
to quality. In recent times, a body of academic research on FOSS has been
established which gives supports to anecdotal claims that FOSS can attain high
levels of quality, in particular regarding code quality. However, there is also
increasing awareness that the FOSS methodology is facing a number of challenges
[such as usability, contributor burnout and resource limitations], some of which are
unique to the collaborative development effort performed by volunteer
participants. Given that this area of research is still very young and that much
focus has been on technical matters . . . further investigation is necessary.

Id. at21.

95. For an example of the sometimes contentious nature of the debate, a series of
postings on Slashdot is instructive. See Ben Chelf, Insecurity in Open Source: What Open-
Source Developers Can Learn About Security and Quality from—Gasp—Makers of
Proprietary Software, BUSINESSWEEK.COM, Oct. 6, 2006, http://www.businessweek.com/
technology/content/oct2006/tc20061006_394140.htm?campaign_id=bier_tco.g3a.rss1007
(based on a study undertaken by the company Coverity, the study authors argue that FOSS
can improve quality by adopting methods of testing from some proprietary software
products, but they note that “on average, open-source software is of higher quality than
proprietary software™); see also Bug Hunting Open-Source vs. Proprietary Software,
SLASHDOT, Oct. 7, 2006, http:/linux.slashdot.org/article.pl?sid=06/10/07/173255 (giving a
variety of reactions to the Coverity study).

96. GOLDMAN & GABRIEL, supra note 11, at 47-48. The authors also argue that more
early releases under a FOSS model allow for a greater reduction of defects as compared to
the proprietary software model. /d. at 85-86.

97. Although it is beyond the scope of this essay, the comparative quality question can
be reframed with an expanded conception of quality that considers data security issues such
as malware and spam. See generally Peter P. Swire, A Theory of Disclosure for Security and
Competitive Reasons: Open Source, Proprietary Software, and Government Systems, 42
Hous. L. REv. 1333 (2006) (discussing the pros and cons of secrecy versus disclosure in
systems software from a security perspective).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2115

E. New Nonplatform Software Functionality

The more one accepts Kelty’s conception of free software as a recursive
public, the more one can believe in the FOSS movement as a driver for new
platform software. But an additional inference that follows is that there
may then be less motive force for nonplatform or nonpublic FOSS software.
That debate relates to the topic of this section. Like the preceding section,
comparative quality of FOSS versus proprietary software, the ‘“new
functionality” question is one with unknowable answers in an empirical
sense.”8 For purposes of this section, however, I am assuming that the
answer is affirmative for generating new platform functionality. This
leaves the question regarding nonplatform functionality.

Anecdotal accounts vary on the issue, as do perspectives on how to sort
the question. Enterprise software used internally by companies, such as
accounting and operational software, is an area that many feel has little
FOSS presence, although those applications often depend on platform
software, such as databases, that might or might not be FOSS.%9 Assuming
as correct the characterization that FOSS has minimal presence in these
areas, there are many nonexclusive static explanations about why.!00 [n a

98. By use of the term “new functionality,” I am leaving some concepts fluid, such as
the extent to which software functionality has to differ from what came before to be “new.”
There is also the concept of new to a platform. For example, there was a point in history
where personal computers did not have a windows interface, but Macintosh computers did.
Another distinction is between invention and innovation. See Rebecca S. Eisenberg, Patents
and the Progress of Science: Exclusive Rights and Experimental Use, 56 U. CHI. L. REv.
1017, 1036-37 (1989) (distinguishing the act of invention from the follow-on act of
innovation, where the latter involves activities to commercialize the former).

99. Charles Babcock, The Open Source Enterprise—The Problems that Made Open
Source Code Impractical for Many Businesses Are Falling Away. Combined with the
‘Cheaper’ Factor, This Should Get Interesting, INFO. WK. (N.Y.), Nov. 17, 2008, at 41,
available at 2008 WLNR 21938519 (“Open source code still can’t touch the scope of
proprietary suites, but it’s closing the technology gap. . . . With its transparent and standards-
based development, open source code can cut the complexity and risk of custom coding for
integration or niche needs.”); Open Source Databases Widely Used, Seldom Paid for: Open
Source Systems Have Replaced Only a Few Commercial Products in the Enterprise,
COMMWEBNEWS.COM, Apr. 1, 2008, available at 2008 WLNR 6172514 (describing a report
that “concludes that the expected impact of open source code to commoditize the database
market has yet to occur”).

100. A first explanation for a purported minimal presence of FOSS in enterprise
applications is the head start of the proprietary vendors—they have been providing
accounting and operational software to businesses for many decades. A second, related
explanation is vendor lock-in due to switching costs. See, e.g., Charles Ferguson, How Linux
Could Overthrow Microsoft: The Open-Source Movement Is the Largest Threat the
Software Giant Has Ever Faced. Does Bill Gates Have a Plan?, TECH. REV. (Mass.), June
1, 2005, at 64, 69, available at 2005 WLNR 8789992 (relating how vendor “lock-in”
describes the disincentives a company has to switch to an alternative technology, which
include switching costs and network effects of the installed technology). A third explanation
might be that FOSS products do not yet offer equivalent functionality compared to
proprietary vendors in these application spaces. A fourth, related explanation is that FOSS
products, even when providing more or better functionality, do not provide a better value
perception for the prospective product-switching user due to perceptions of negatives with
FOSS, such as lack of centralized support or diminished usability.

2116 ' FORDHAM LAW REVIEW [Vol. 77

dynamic sense, those explanations may dissolve over time as companies
investigate greater use of FOSS for either its cost advantages or for new
functionality it may eventually provide. This is the crux of the issue: when
can the lack of FOSS penetration in a software market be attributed to
insufficient improvements in functionality to nudge a user into a product
switch? When will the FOSS improvements need to create functional parity
with the proprietary product, and when will they need to outpace?

Another perspective on the issue is to consider temporal structure. FOSS
evolved and emerged along with the Internet, so many of its platform
functionality advances are associated with the Internet. Many other types of
important software functionality, however, predated the Internet. Thus,
business applications were already entrenched in accounting, operations,
design, financial transactions, and other areas. This leads to the inference
that, over time, reimplementations of these applications may appear as
FOSS in a process that seeks to commoditize these application areas.!0! If
this occurs, the winners are users in the application space, and the losers are
the proprietary software vendors currently serving those users, assuming
that the FOSS implementations provide a better value proposition.

Since its emergence, FOSS has generated benefit in the nonplatform
space in the sense of learning spillovers due to the availability of its source
code. Thus, programmers working on an internal, custom business
application might examine FOSS code at a repository such as
SourceForge.net to learn how to program a particular method. This type of
transference is an important part of the FOSS ecology. It also underscores
the reality that much internal business application software is not from a
software product provider.102

Related to the question of learning spillovers from FOSS is the question
of software functionality that requires significant research and development
(R&D) funds and a long gestation period in the R&D pipeline before
commercial deployment. This could include core, embeddable technologies
such as encryption or speech recognition, or domain specific applications,
such as design software used in the electrical or structural engineering
fields. Sometimes, the R&D and scientific development in these areas use
open science or open source approaches,!03 but some organizations will
continue to operate assuming that certain types of investments require
appropriability mechanisms beyond the complementary goods/services

101. See, e.g., OFBiz, The Apache Open for Business Project, http://ofbiz.apache.org/
(last visited Mar. 23, 2009) (“The Apache Open For Business Project is an open source
enterprise automation software project licensed under the Apache License Version 2.0. . ..
Apache OFBiz is a foundation and starting point for enterprise solutions”); Posting of
Dan Farber to ZDNet, http://blogs.zdnet.com/BTL/?p=1502&part=rss&tag=feed&subj=zdblog
(June 14, 2005, 2:55 PM).

102. James Bessen, What Good Is Free Software?, in GOVERNMENT POLICY TOWARD
OPEN SOURCE SOFTWARE 12, 18-22 (Robert W. Hahn ed., 2002), available at http://aei-
brookings.org/admin/pdffiles/phpJ6.pdf.

103. Carnegie Mellon University, Speech at CMU, http://www.speech.cs.cmu.edu/ (last
visited Mar. 23, 2009) (showing some software research outputs available as open source).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2117

recoupment available under GPL-type FOSS licenses. For example, Apple
might fit this mold. It continues to rely in part on conventional proprietary
model exclusivity and related appropriation mechanisms.

There is some empirical research that attempts to characterize the degree
of innovativeness of FOSS applications. One study of interest evaluated
active projects on the SourceForge.net repository through a human reading
and coding of the project descriptions: it found that most projects
commoditized functionality from proprietary software products or ported
functionality to a new operating system.!%* As the study acknowledges, the
focus on SourceForge projects creates a sampling problem,'% but the
results are consistent with anecdotal observations I have fielded, and fit
with the temporal structure argument discussed above.

The extent to which FOSS applications in the nonplatform space will
eventually surpass, in some grand sort of average assessment, the
functionality of preexisting proprietary applications depends on many
factors. Some of those influences are the subject of the next part. New
modes to appropriate value from software may promote or suppress
transparency of source code and software development, depending on both
external factors and on considerations internal to the FOSS movement and
the ways in which it progresses.

III. NEW MODES OF APPROPRIABILITY FROM SOFTWARE

Apart from FOSS itself, there are two other Internet-enabled software
appropriation mechanisms gaining prominence. They are related in that

104. See generally Krzysztof Klincewicz, Innovativeness of Open Source Software
Projects (Aug. 11, 2005) (unpublished manuscript), available at http://opensource. mit.edu/
papers/klincewicz.pdf (in a review of the five hundred most active projects on the
SourceForge.net FOSS repository web site, finding minimal innovation as assessed from the
project descriptions; and finding most projects are porting functionality to a new operating
system platform, or replicating in FOSS the functionality from the proprietary software
environment). But see Christof Ebert, Open Source Drives Innovation, IEEE SOFTWARE,
May/June 2007, at 105, available at http://www2.computer.org/portal/web/csdl/doi/
10.1109/MS.2007.83; Dario Lorenzi & Cristina Rossi, Innovativeness of Software Solutions:
Evidence from an Alternative Methodology: Comparing Free/Open Source and Proprietary
Products 1, 16, 18 (n.d.) (unpublished manuscript), available at http://opensource mit.edu/
papers/lorenzi_rossi_MIT_20071220.pdf (focusing on small and medium sized software
companies in Italy, attempting to determine whether “programs based on FOSS [are] more
innovative than proprietary ones,” with the “sample of 134 software solutions . . . formed by
109 proprietary and 207 FOSS solutions,” finding “that proprietary and FOSS software not
only show different levels of innovativity, but, as far as, new to the world products are
concerned, they are also shaped by different innovation processes: radical innovation in the
FOSS vs. incremental innovation in proprietary field”).

Neither of the two studies discussed in this footnote differentiate the objects of the
study as platform versus nonplatform, thus providing no support for my suggestion that new
functionality will be less likely to come from FOSS in the nonplatform application space as
compared to the platform space. That inference remains supported only by structural
arguments. See Vetter, supra note 80, at 256-62.

105. Klincewicz, supra note 104, at 13 (“Even though SourceForge is the most
representative collection of OSS projects, it does not cover all relevant open source
communities.”).

2118 FORDHAM LAW REVIEW [Vol. 77

each depends on external computing. Thus, advertising-supported software
depends on the Internet for a value proposition whereby third-party
advertisements reach a user who enjoys the software capabilities in
exchange for bearing the advertisements. Software as a service is the
Internet era’s version of a long-standing business model in computing:
provide metered-for-a-price computing capabilities. Each of these finds the
external computers somewhere in the “cloud” out on the Internet. The term
“cloud” has become a popular phrase to characterize the type of virtual,
Internet-delivered computing capabilities increasingly in use by everyone in
their devices, phones, and computers.!06

This part reviews both of these cloud-based modes of appropriability and
also reviews FOSS under a conception of “copyleft capitalism”—an
extension in degree of the complementary economic models driving much
FOSS development.!97 Along with the two new cloud-based modes, FOSS
is a new mode of appropriability because a decade ago most information
technology observers doubted the ability of companies to establish and
sustain revenue models giving away software.

A. Advertising-Supported Software

Google’s search engine is synonymous with financially successful
advertising-supported software.19 Its success in that area allows it to
cross-subsidize a number of other popular software services, such as Gmail
or YouTube.!0? Most advertising-supported software is delivered over or
using the Internet in a “software as a service” delivery mode. The payment
model is different from the application examples in the next subsection.
Google is paid by advertisers who want a link to appear for their products
or services in a prominent place with the listings that Google’s Internet

106. Steve Lohr, A New Battle Is Beginning in Branding for the Web, N.Y. TIMES, Aug.
31, 2008, available at http://www.nytimes.com/2008/09/01/technology/01copyright.html?
th=&emc=th&pagewanted=all (“Cloud computing usually refers to internet services or
software that the user accesses through a Web browser on a personal computer, cellphone or
other device. The digital service is delivered remotely, from somewhere off in the computing
cloud, in the fashion of Google’s internet search service.”).

107. There are a number of potential business models applicable to FOSS. See MARTIN
FINK, THE BUSINESS AND ECONOMICS OF LINUX AND OPEN SOURCE 175-89 (2003). These
include using open source software to enable hardware and/or service sales, the core of
IBM’s strategy. The list also includes dual licensing, and service and support such as that
provided by Red Hat, and others. /d.

108. Google, Investor Relations, http:/investor.google.com/faq.html#money (last visited
Mar. 23, 2009) (noting that “the majority of [Google’s] revenue comes from advertising”).

109. Google, More Google Products, http://www.google.com/intl/en/options/ (last visited
Mar. 23, 2009); see also Posting of Josh to eCommerce and Entrepreneurship Blog,
http://www.plumbersurplus.com/Blog/post/2008/12/Life-in-the-Cloud-Beginning-the-Journey-
with-Google-Apps.aspx (Dec. 12, 2008) (“[W]e’re testing a transitioning of our users over
from the clunky and resource intensive (and expenS$ive) Microsoft Outlook, Word, Excel,
Powerpoint, MSN Live Messenger, etc over to Google’s cloud model of Google Apps,
Gmailesque email, Google Docs, Google Talk, and Google Sites. So, this week, I will be
‘living in the cloud’ and completing 100% of my work on email, documents, spreadsheets,
and presentations from Google Apps.”).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2119

search capability provides. It, along with other search engines, continually
evolves the search algorithms for various goals, including better targeting
for the advertiser to her desired audience.!1°

The example of Google shows that advertising-supported software is
viable in at least some instances. There are numerous questions about
scope, scale, and the degree of necessary network effects for viability. We
need not delve into those questions for the point needed in this essay—that
advertising revenues have arisen as an important revenue appropriation
technique for certain classes of platform software, such as search and some
types of content. Within this application space, some examples of less
glamorous products exist.!!! But the plausibility of the model seems
proven by Google, with FOSS consequences that resonate with source code
transparency along with the software-as-a-service model. Moreover,
Google’s success is fueled by the flagship FOSS project, GNU/Linux.!12
Thus, since the cloud is the Internet, FOSS underlies the cloud.

B. Software as a Service

Just as Google’s advertising-supported service is cost-subsidized by the
availability of a free operating system upon which to create their search
infrastructure, so are other software subscription services subsidized by
freely available FOSS.!!13 The irony of this situation is that, even under
most GPL-style licenses, the copyright works in the user interface that may
be delivered to the user from the cloud to the user’s device are not the
source code literary works covered by the FOSS license. In other words,
the interaction of a remote user with the software residing somewhere in the
cloud is not a distribution of the source code because typically the
information technology design does not make the source code available to
the remote user.!'!* This gives the service provider the opportunity to

110. See Eric Goldman, Search Engine Bias and the Demise of Search Engine
Utopianism, 8 YALE J.L. & TEcH. 188, 189 (2006) (noting that “search engines have
significant power to shape searcher behavior and perceptions™).

111. 1-800 Contacts, Inc. v. WhenU.com, Inc., 414 F.3d 400, 404-05 (2d Cir. 2005); see
also Press Release, WhenU, WhenU Wins Landmark Internet Decision (June 28, 2005),
available at http://www.whenu.com/press_release_05_06_28.html.

112. Google is reported to run a modified Linux-kemel-based operating system, but it
does not make the source code for its modifications available. See Google’s Summer of Code
Pays Students to Do Open Source, DATAMONITOR, June 9, 2005, available at 2005 WLNR
9127797, Interview by Jason Schumaker, Linux Journal, with Sergey Brin, Co-Founder and
President, Google, Inc. (Sept. 1, 2000), available at http://www linuxjournal.com/article/4196.

113. SugarCRM, SugarCRM Defines the New CRM Generation,
http://www.sugarcrm.com/crm/products/crm-products.html (last visited Mar. 23, 2009)
(describing how the company’s customer relationship management software can be deployed
using a subscription, on-demand pricing model, and also describing how the software is
available as FOSS and the company’s usage of and commitment to FOSS concepts in a
commercial, for-profit context).

114. See Vetter, supra note 80, at 269-72 (discussing the incentive pros and cons bearing
on the possibility of source code disclosure in association with actions by the software over
the Intemnet that do not rise to the level of a copyright distribution); see also Atl. Recording
Corp. v. Howell, 554 F. Supp. 2d 976, 981-84 (D. Ariz. 2008) (in the context of online

2120 FORDHAM LAW REVIEW [Vol. 77

directly monetize the freely available FOSS via the service, without
contributing to the community supporting the FOSS. What percentage of
service providers free ride FOSS in this way is impossible to know, but
some clearly recognize that in the long term their situation is improved if
they are involved positively with the FOSS community.!13

Of course, a software-as-a-service provider might not use FOSS. The
revenue model is metered computing capabilities, saving the end user the
costs of investing in on-site servers and application software.!!'® How the
service provider provisions internally is a function of many factors. For
example, the applications it wants to offer might not be available as FOSS,
or on FOSS platforms such as the GNU/Linux operating system. For the
user, there are numerous pros and cons of the traditional, in-house
information technology approach versus meeting some or all of its
corporate software application needs from the cloud as a service. Cost
factors, experience and expertise, data control and security, and
mission-criticalness will all influence the user’s choice.!17

Just as advertising-supported software providers are similar to
software-as-a-service providers through their use of cloud computing, both
face a similar choice when they use FOSS: to what extent do they involve
themselves in the community? This choice, however, also extends to
companies using FOSS internally without offering cloud computing
services to the world. The effect of these choices in aggregate is a
consideration in the next section.

C. Coppyleft Capitalism and Spillovers

In a 2008 interview, free software luminary Professor Eben Moglen
discussed the need for businesses, as much as individuals, to exercise
autonomy over their information technology.!'8 The mode for achieving
this autonomy is forming a critical mass that treats software as a renewable,
commons-like resource.

music sharing, finding that merely making files available for downloading did not constitute
a distribution when evidence was lacking that the files were actually downloaded).

115. See, e.g., SugarCRM, supra note 113.

116. Many decades ago, before the era of personal computers and the Internet, selling
time on a remotely located mainframe computer was called “time sharing.” In the current
era, the software-as-a-service model is also sometimes called the application service provider
(ASP) model. The two phrases are synonyms for our purposes.

117. These choices sometimes exist for personal software as well. For example, Intuit’s
popular Quicken personal money manager has always been available as software to run on a
personal computer so the user’s data is with her locally. Recently, the company offered the
product under a software-as-a-service model. See Quicken, Quicken Online—Free, Easy
Money Management, http://quicken.intuit.com/online-banking-finances.jsp?lid=site_banner
(last visited Mar. 23, 2009).

118. Todd Weiss, Q&4 Open-Source Backer Eben Moglen Says Software a ‘Renewable’
Resource, COMPUTERWORLD, Dec. 3, 2007, http://www.computerworld.com/action/article.
do?command=viewArticleBasic&taxonomyld=17&articleld=9050379&intsrc=hm_topic
(excerpting from interview with Eben Moglen, Founder of the Software Freedom Law
Center).

2009 COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2121

One of the things that everybody now understands is that you can treat
software as a renewable, natural resource. . . . like forest products or fish
in the sea. If you build community, if you make broadly accessible the
ability to create, then you can use your limited resources not on the
creation or maintenance of anything, but on the editing of that which is
already created elsewhere. . . .

... If you’ve become dependent on a commons for whatever role in
your business, then what you need is commons management. You don’t
strip mine the forest, you don’t fish every fish out of the sea. And, in
particular, you become interested in conservation and equality. You want
the fish to remain in the sea and you don’t want anybody else overfishing.
So you get interested in how the fisheries are protected.!1?

One example of a company seeming to follow this approach is
SugarCRM. Its software is used by customer representatives to manage
relations with customers—thus the acronym “CRM” for customer
relationship management. CRM software is a classic internal enterprise
business application. It might allow an employee to follow sales leads,
issue quotes, track support concerns, manage contacts and communications,
and perform other common interfacing activities. Companies traditionally
either developed their own CRM application, or procured one from a
proprietary software vendor. SugarCRM seeks to penetrate this market
with an ideology hoping to seed “copyleft capitalism.” Their software can
be deployed either as a service or onsite in one of two onsite delivery
modes.!20 Critically for SugarCRM’s approach, they “author and release
Sugar Open Source to a community of 2400 CRM experts and developers
who use the software, provide feedback and develop extensions to the
Sugar.”12! After initially publishing their own FOSS license, they recently
adopted GPLv3, further hoping to promote critical mass.122

Companies like SugarCRM are evolving the FOSS complementary goods
and services business model thus far associated with companies like IBM
and Red Hat. There is an intentional design in the SugarCRM approach to
spin up critical mass. In other words, they want a sufficiently large network
of users/contributors in order to approximate the renewable commons story
Professor Moglen relates. The copyleft commons motif is an extension of
the thus far prevalent appropriability mechanisms for FOSS. A key
success-threshold question in a submarket of all enterprise software, such as
the CRM submarket, is how much of the market must leave the proprietary
approach on either the user or provider side? Interorganizational learning
behavior might accelerate reaching critical mass in a particular submarket

119. See id.

120. SugarCRM, supra note 113.

121. 1d.

122. SugarCRM, SugarCRM GPL v3 FAQs, http://www.sugarcrm.com/crm/gplv3-
faq.html (last visited Mar. 23, 2009).

2122 FORDHAM LAW REVIEW [Vol. 77

once other submarkets are fully involved in copyleft capitalism. Thus, the
critical mass question has importance in a broad market sense for all of
information technology, both for platform and nonplatform applications.

Important theorists from the business literature and the legal literature
provide two accounts to couple around ‘“copyleft capitalism.” The
connecting element among these accounts is that many persons or
organizations are in a position when involved in FOSS to act as both a user
and a contributor. Some persons stake out a place as one or the other, but
those positions could change in the future. In the business literature, Eric
von Hippel discusses user innovation communities, both generally and
specifically for FOSS, cataloging the balance of incentives that often lead
innovators to freely reveal innovations.!?3> A part of the balance is the
possibility that adopting third parties will add value reclaimable by the
originator. In the legal literature, Mark Lemley and Brett Frischmann
challenge the conventional account that property rule systems, such as
intellectual property in the form of copyright and patent law, should
exclusively focus on internalizing externalities, arguing that, often, due to
demand-side information conditions in a dynamic analysis, externalities
express as positive spillovers that a property rules regime may want to
encourage.!?* The insight is particularly apt for intangibles such as
software protected by intellectual property due to the inherent uncertainty of
rights in such.!25 Further, FOSS licensing, particularly under copyleft, fits
within the concatenation of von Hippel’s work with that of Lemley and
Frischmann.

123. See vON HIPPEL, supra note 14, at 77-78, 81-87 (noting that the revealer has asset-
specific information, meaning that adopting users have take-up costs, describing the practical
difficulties with appropriating value from a kept-secret innovation due to perfect or close
substitutes existing with others who may reveal, and articulating the incentives to freely
reveal, including reputation, increased diffusion leading to informal standardization, and the
possibility that third-party improvements will lower the originator’s cost structure to use the
innovation).

124. See Frischmann & Lemley, supra note 9, at 258, 274-84 (noting in the introduction
that “in some cases, spillovers actually drive further innovation™); see also Katherine J.
Strandburg, Users as Innovators: Implications for Patent Doctrine, 79 U. CoLo. L. REv.
467, 470, 473-74 (2008) (noting that the “picture of user innovation is in sharp contrast to
the picture of innovation that dominates discussions of patent policy in the legal literature”
and evaluating a proposal to exempt nonsales research use from patent infringement);
Jonathan Barnett, Sharing in the Shadow of Property: Rational Cooperation in Innovation
Markets 58 (Univ. S. Cal. Ctr. in Law, Econ. & Org. Research Paper No. C08-22, 2008),
available at http://law.usc.edu/academics/centers/cleo/working-papers/cleo/documents/C08_
22_paper.pdf (noting that “the open-source model exhibits much of the characteristics of a
sharing regime insofar as it generates a common innovation pool in the form of unprotected
code™).

125. Demand-side information is often unknowable in a precise way to support formation
of pricing preferences, leading to underdemand compared to what would be socially optimal
for an innovation. See Frischmann & Lemley, supra note 9, at 263-64, 27980 (“Unlike a
reduction in supply associated with the monopoly deadweight loss problem, the problem
here is that demand is reduced, in the sense that the demand manifested by productive users
falls short of social demand.”).

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2123

Fitting within the motif of copyleft capitalism, FOSS under GPL-type
treatment reduces demand-side (user-side) valuation issues for ongoing use
of code because the license implements a semicommons whereby value
extraction comes primarily from complements or downstream reuse of
inputs by others. With respect to foreseeable complements, such as service
or support associated with a FOSS product, these complements are often
easier to value at greater certainty both on the user and supplier side, in part
because such valuation does not depend upon vendors estimating the
following items: long-term network effects (potentially enhanced with-
FOSS due to its interoperability advantages); user uptake; or aggregate
functionality across all contributed code components. This last valuation
decision is made on the supply side piece by piece as contributors decide
whether it is worthwhile to freely reveal their innovations by adding to the
code.!26 Moreover, the mere existence of a FOSS ecology reduces the
supply-side cost to make a project available. A user need only post the
project on SourceForge.net and she instantly has the infrastructure needed
to promote and evolve the project. Thus, characteristics of the ecology
enabled by FOSS further facilitate growth in the movement.!27

Within this recursive effect, copyleft capitalism in software operates
against a baseline. Many decades of proprietary software characterize an
industry that has grown to become a major component of any developed
economy. That industry, information technology, becomes more diffuse as
it grows, creating opportunities for new modes such as FOSS, and situations
where FOSS itself will become entangled in situations of mixed incentives
and diverse appropriability opportunities.

IV. COMMERCIAL FOSS AND APPROPRIABILITY

FOSS is heterogeneous. The dualism of free software/open source is a
simplification that may effectively model the past, but will be increasingly
blurred in the future. Commercial interests are becoming more involved
with FOSS, resulting in what are called “vendor-driven” projects. In
contrast, “community-driven” projects are volunteer-centric, but some of
the “volunteers” may be paid by their respective employers to participate in
the project.!28 A primary point of differentiation with a vendor-driven
project is that no single company dominates the community. The evolution
of vendor driven projects, including their increasingly sophisticated use of
licensing and intellectual property in strategic concert with other non-IP
mechanisms of appropriability, is one concern of this Part. The other is

126. See VON HIPPEL, supra note 14, at 81 (noting that “the real choice facing user
innovators often is whether to voluntarily freely reveal or to arrive at the same end state,
perhaps with a bit of a lag, via involuntary spillovers,” where involuntary spillovers refer to
the practical difficulty of keeping innovations secret, or the practical reality that often others
have created, and will reveal, the same or similar innovation).

127. KELTY, supra note 11, at 27-30.

128. Linus Dahlander & Martin W. Wallin, 4 Man on the Inside: Unlocking
Communities as Complementary Assets, 35 RES. PoL’Y 1243, 1247 (2006).

2124 FORDHAM LAW REVIEW [Vol. 77

how such uses reflect on the FOSS movement generally, and on courts’
perspectives about the movement when the time comes for the next case
with critical importance such as that seen with Jacobsen v. Katzer.'?9

Toward these concemns, before Part IV.B examines hybridization of
proprietary software and FOSS, the first section in this part describes the
beneficial spillovers that FOSS generates for proprietary software.

A. FOSS Benefits for Proprietary Software

Judging from some of the rhetoric that has echoed from some proprietary
software companies, nothing about FOSS could in any way be good for
information technology or proprietary software.!30 Reflecting the tensions
bearing on proprietary software, Microsoft officials are reported to have
hesitated in choosing whether they would rather see their software products
“pirated” than have users install and run FOSS applications.!3!
Additionally, FOSS has been called a ‘“destroyer” of intellectual
property.!32 Most of this rhetoric is for strategic purposes, particularly in
relation to governmental and corporate information technology
procurement. And certainly there are structural puzzles about what sustains
FOSS, particularly the volunteer-centric projects, but questioning its
sustainability does not necessarily repudiate its current beneficial effects.

The discussion in Parts II and III above demonstrates some of the
beneficial spillovers from FOSS for proprietary software, particularly as to
knowledge production and distribution. Learning opportunities from
studying source code are a benefit because available source is bounteous
due to FOSS. The repositories of FOSS code are not static as a learning
tool. If a learner follows a project over time, she can learn from the
electronically logged technological discussions of technical merit that guide
software architecture decisions. She can test the waters with attempts to
contribute as well, provided that doing so is not prohibited by her
employer.133 These learning benefits are available to all, not just to FOSS
programmers.

Another benefit is adaptation of FOSS collaborative development
practices and software tools for community-style development outside of
mainstream FOSS. For example, some companies established closed
community software development approaches adapted from FOSS

129. 535 F.3d 1373 (Fed. Cir. 2008).

130. Joseph Scott Miller, Allchin’s Folly: Exploding Some Myths About Open Source
Software, 20 CARDOZO ARTS & ENT. L.J. 491, 491-93 (2002) (describing the rhetoric and
counterrhetoric around a Microsoft executive’s statement that open source software is an
“intellectual-property destroyer™).

131. Piracy vs. Open Source Choice Stumps Microsoft Executive, WARREN’S WASH.
INTERNET DAILY, July 18, 2003 (on file with author) (in debate with Professor Lawrence
Lessig, a Microsoft executive is reported to have strategically avoided the question whether
the company would prefer developing countries to use open source software or pirated
proprietary software from Microsoft).

132. Miller, supra note 130, at 492-93.

133. See LINDBERG, supra note 11, at 181, 193-96.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2125

practices.!34 Some collaborative software development tools (software
products/projects themselves) have been deployed internally by major
information technology companies. For example, the most well-known
FOSS repository, SourceForge.net, itself is available as a software
development collaboration tool for businesses under an enterprise
license. 135

In addition, the platforms enabled by FOSS benefit proprietary software.
For example, while the Apache web server takes market share from
Microsoft’s web server product, it generally benefits many non-FOSS
software installations, whether they are proprietary software or internal
corporate networks. Harm to one particular proprietary competitor does not
necessarily translate into aggregate harm for proprietary software generally,
particularly for platforms. The general premise of volunteer-generated
FOSS seems, in the abstract, a threat to any proprietary software product,
but whether the threat is real in a particular market depends on many
factors. 136

Moreover, FOSS sometimes extends the network value of proprietary
software. For example, Microsoft’s server operating system benefits from
interoperability with GNU/Linux servers as a result of a FOSS project that
provides interoperability of important system administration data.!37 With
source code transparency, FOSS has innate advantages for interoperability.
Greater interoperability among information technology components
typically enhances the value of any particular component,!38 although in a
dynamic process certain types of interoperability are seen as a competitive
threat. For example, compatible file formats reduce switching costs for
users to change word processing software, a threat to the software provider
with greater market share. An extension of these points is that the

134. GOLDMAN & GABRIEL, supra note 11, at 67-71.

135. CollabNet, CollabNet SourceForge Enterprise, http://www.collab.net/products/sfee
(last visited Mar. 23, 2009).

136. Greg R. Vetter, Slouching Toward Open [nnovation: Free and Open Source
Software (FOSS) for Electronic Health Information, 30 WASH. U. J.L. & PoL’y (forthcoming
2009) (manuscript at 42-51), available at http://www.law.uh.edu/faculty/gvetter/documents/
VetterSlouchingTowardOpenInnovation-FOSSforEHI_6.29.2008.pdf) (describing a case
study of the software product market for software to manage electronic medical records at
hospitals or physician offices, developing six factors indicative of whether FOSS uptake is
likely in a particular software market).

137. Samba, http://us3.samba.org/samba/ (last visited Mar. 23, 2009) (“Samba is an Open
Source/Free Software suite that has, since 1992, provided file and print services to. ..
numerous versions of Microsoft Windows operating systems.”). The Samba project allows
organizations with multiple servers to incorporate servers running GNU/Linux into a
Microsoft Windows-based computing environment to achieve various feats of
interoperability, such as allowing the GNU/Linux servers to have access to domain
management information, such as user profiles. See Samba, What Is Samba?,
http://us3.samba.org/samba/what_is_samba.html (last visited Mar. 23, 2009) (“Samba is a
software package that gives network administrators flexibility and freedom in terms of setup,
configuration, and choice of systems and equipment.”).

138. Mark A. Lemley & David McGowan, Legal Implications of Network Economic
Effects, 86 CaL. L. REV. 479, 491-95 (1998).

2126 FORDHAM LAW REVIEW [Vol. 77

advantages of FOSS interoperability pressure proprietary software to itself
become more interoperable.

FOSS has already beneficially changed the ecosystem of information
technology.!3 These changes have both direct and disciplining benefits for
proprietary software. Some of those benefits are discussed above in this
section, but one other benefit should be mentioned: the ability for
proprietary software to directly incorporate attribution-only FOSS into
royalty-bearing products. This practice is discussed below because it is one
of several practices this essay includes in the category of commercial
FOSS. In this category, a software vendor is the dominant force for a
project rather than the traditionally conceived volunteer-centric FOSS
community.

B. Hybridizing FOSS and Proprietary Software

Paralleling community-driven FOSS’s inventive use of licensing and
other law to organize collaboration, vendor-driven FOSS is also evolving.
Licenses such as the GPL preclude certain types of commercialization.!40
For example, companies seeking to build a business by distributing the
GNU/Linux operating system,!4! which is mostly licensed under the GPL,
typically rely on some form of complementary value extraction, such as
selling affiliated goods or services and/or charging for the packaged
distribution.!#2 On the other hand, at one point in its history, the most well-
known GNU/Linux distributor, Red Hat, sold off-the-shelf copies of
GNU/Linux in retail channels. The GPL itself allows this one-time, at -he-
time-of-sale, distribution charge. The charge makes sense considering not
only the cost of the media and packaging, but also the effort required by
Red Hat to find, harvest, organize, and arrange in concert the many
hundreds of FOSS components necessary to provide a complete operating
system package. Considering only copyright licensing terms, what these
companies cannot do under the GPL is exclude competitive entry as to

139. The items given in the main text are focused on two ideas: things that specifically
help proprietary software, and things that relate to knowledge production. For completeness,
but recognizing that it goes beyond that intersection, another FOSS benefit accruing to any
type of organization is the potential for reducing cost in information technology operations.
See OLLIANCE GRouP, 2007 OPEN SOURCE THINK TANK: THE FUTURE OF OPEN SOURCE:
EXECUTIVE SUMMARY REPORT 5 (2007), available at http://thinktank.olliancegroup.com/
ostt2007report.pdf (highlighting a presentation by Tony Perkins, Founder and Editor of Red
Herring, where he noted that “[t]he cost of starting an Internet company plummeted by over
80% from 1996 to 2004” and that the “trend was largely enabled by open source software
and powerful, cheap hardware”).

140. See Dahlander & Wallin, supra note 128, at 1249.

141. See supra note 48.

142. In this context, the word “distribution” does not refer to the distribution right in
copyright, but to that word used as a label for a concerted bundle of FOSS components. For
example, various firms provide “distributions” of the GNU/Linux operating system. These
distributions are packages of many FOSS components.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2127

distribution of the very same software.!43 Once distributed under the GPL,
any other person can also distribute the software under a different
trademark even if in direct competition with the company that expended the
initial effort to harvest and arrange the package.

Vendor-driven projects deployed under an attribution-only license, in
contrast to the GPL, may have some degree of exclusionary power when the
released FOSS is a component of the vendor’s larger product, system, or
service offering. In other words, the attribution-only licensed FOSS is
supplemented or entangled with additional layers of proprietary software
for the vendor’s commercial product. The proprictary layers are likely
protected by at least the law of trade secrets, trademark, and copyright, and
perhaps also by patent law. In this scenario, the following proprietary
software, vendor-appropriation mechanisms are in play once a
customer/user has been secured: first-mover advantages, either generally in
the market or for the specific customer at issue; switching costs for the
customer/user coupled with the potential need for ongoing support,
maintenance, and new versions, all of which may allow regular monetary
extractions from the customer/user to the vendor; and opportunities to sell
other products or services when the vendor is diversified.

FOSS has influenced the marketing process of securing a new customer
for all forms of software. This leads an increasing number of vendors with
varying degrees of seriousness to espouse (or even implement) some type of
“support” for open source. This is probably a part of MetaCarta’s
motivation in its seemingly legitimate support of its FOSS projects. From
the user’s perspective, there are interoperability and anti-vendor-lock-in
advantages in the FOSS narrative, although realizing the advantages
requires business process reengineering and is not automatic.'* Thus,
according to the puffery of the sales situation, the more a proprietary
software vendor can be seen to embrace FOSS, the more it might be viewed
favorably at the time of purchase by a prospective user. If such embracing
is a sham, without any real support for a FOSS community or any real
FOSS benefits within the vendor’s offering, it is a marketing gimmick.

Beyond layering attribution-only FOSS with proprietary software,
another vendor licensing technique to explicitly hybridize proprietary
software approaches with FOSS approaches is the dual license.!45 The

143. J. T. Smith, Red Hat: You Can Distribute Red Hat Linux, Just Name It Something
Else, LiNux.coM, Dec. 10, 2001, http://www.linux.com/feature/19797 (“Basically, users are
still able to download Red Hat Linux for free and programmers are still able to base their
own distributions on Red Hat, but anyone who distributes a non-authorized copy of Red Hat
can’t call it Red Hat without the company’s permission. Call it Fred’s Linux or Generic
Linux—several distributions including Mandrake have used Red Hat as a base to build their
own products”).

144. Ebert, supra note 104, at 52.

145. See MEEKER, supra note 11, at 143-46 (providing a general overview of dual
licensing); Robert W. Gomulkiewicz, Entrepreneurial Open Source Hackers: MySQL and
Its Dual Licensing, 9 COMPUTER L. REV. & TECH. J. 203, 209-11 (2004) (describing dual

2128 FORDHAM LAW REVIEW [Vol. 77

most prominent example of a dual-licensed product is probably the database
company MySQL. After about a decade in which MySQL developed the
software, its developer community, and its user base, Sun Microsystems
purchased MySQL in early 2008 for about one billion dollars in
consideration.!46

For MySQL, dual licensing works as follows. Anyone who distributes
their software under the GPL can take and use the MySQL database under
GPL terms. But if someone, typically a “value added reseller” (VAR), uses
proprietary distribution terms, a commercial license is required from
MySQL. This typically occurs when the VAR embeds the database into
another software product. For effective dual licensing, a vendor such as
MySQL needs pristine handling of 1ntellectual property rights for any
inbound contributions from the community.

The three appropriation mechanisms reviewed thus far in this section can
be labeled as follows: (1) complements, (2) incorporation, and (3) dual
licensing; where incorporation is expressly understood to only apply to
attribution-only licensed FOSS. Items two and three are direct
appropriation, whereas item one, complements, is indirect. Similar to item
on¢ in indirectness are the new software appropriation models of
advertising support and software as a service (SaaS). The former requires
scale for success. The latter is generally applicable within the reach of the
broadband Internet: large or small software companies can use the SaaS
model wherever they can reach Internet connected users. Both models can
and do take advantage of FOSS, with or without providing modifications
back to the community. The condition in copyleft licenses requiring
disclosure of modifications is typically triggered upon a distribution of the
software. Web-delivered SaaS, as well as web-delivered advertising-
supported software, is not a distribution because it is merely web-delivered.
No source code is typically distributed; only the functionality and the
interface travel over the Internet. Thus, echoing how proprietary software
benefits from FOSS, these two new software models also benefit from
FOSS. The appropriability mechanism for Saa$ is to keep the source code
secret and couple this with the lock-in effects of housing the user’s data.
Along with typical software familiarity lock-in effects, such as user
retraining to switch, these influences aggregate to perhaps make the SaaS
user more locked in than a traditional proprietary software user who at least
keeps her own data on her own computers.

The common strand through all of these appropriation mechanisms 1s that
they are predominantly customer-centric as opposed to competitor
exclusionary. Incorporation and dual licensing allow exclusion of
competitors to a degree, but, without something other than the power of

licensing generally, and describing specifically MySQL’s dual-licensing implementation,
which included a need to handle license compatibility issues arising from the GPL).

146. Press Release, Sun Microsystems, Sun Microsystems Announces Agreement to
Acquire MySQL, Developer of the World’s Most Popular Open Source Database (Jan. 16,
2008), available at http://www.sun.com/aboutsun/pr/2008-01/sunflash.20080116.1.xml.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2129

copyright, competitors can often implement functionality to compete. In
other words, the opportunity to work around a competitor’s copyright leads
some companies to the power of patents. This brings us to the MetaCarta
example and its patent-based approach.!4” Of course, companies can design
around patents as well, but the leverage a patent might provide over
competitors is often more potent than that of copyright.

Given the availability of the patent system, a competitor exclusionary
strategy based on patents, whether fully or partially exclusionary, is an
understandable business decision. Whether it is beneficial in a given
market or context is always a question. MetaCarta’s patent acquisition may
have the ultimate goal of excluding competitors while permitting the FOSS
communities to practice any patent claims that are embodied by the FOSS
projects. Or, MetaCarta may have patents in response to its venture capital
investors. Alternatively, its patents may claim systems or methods that are
not embodied by the FOSS projects, although even if that is true there is the
possibility that some or all of a FOSS project embodies an element of what
is claimed. In other words, patents seem rational to exclude competitors, or
to satisfy investors, but the claim scope and coverage also influences
whether the patent strategy makes sense. For MetaCarta, the logic might be
as follows: the more the claim scope does not involve the FOSS projects,
except perhaps with the FOSS as a minor element of what is claimed, the
more the patent strategy might be thought to cover innovation that needs
value appropriation of the type obtainable with patent protection.

In concept, one might label the MetaCarta approach as sustainable
coexistence, where the opposite of that concept is a patent holder, such as
Microsoft, that some believe wants to disrupt or destroy certain FOSS
communities, such as those developing the Linux kernel, or turn the
communities into patent-royalty-paying users. Whether a commercial
FOSS company, such as MetaCarta, operates in sustainable coexistence
depends on whether and how it wields its patents and their claim scope.

Specifically, under a Contributor License Agreement (CLA), MetaCarta
requires inbound contributing developers to grant the FOSS project a
nonexclusive patent license for identified patents covering the version of the
software to which the code contribution attaches.!4® After-acquired patents

147. At the time of this writing, the USPTO has issued one patent to MetaCarta. U.S.
Patent No. 7,117,199 (filed Oct. 3, 2006). In addition to this issued patent, thirty
applications are published and attributed to MetaCarta as assignee. See U.S. Patent and
Trademark Office, Patent Application Search, http://appftl.uspto.gov/netacgi/nph-
Parser?Sect]=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=0
&p=1&F=S&I=50&Query=an%2Fmetacarta%0D%0A&d=PGO1.

148. MetaCarta, Contributor License Agreement, § 3 [hereinafter CLA], available at
http://labs.metacarta.com/license-explanation.html. The Contributor License Agreement
(CLA) grants a license to the project maintainer and software recipients with the following
scope:

[Plerpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those

2130 FORDHAM LAW REVIEW [Vol. 77

are not included in the CLA license grant, and the CLA also includes a
patent peace clause.!4?

On the outbound side, for its FOSS projects, MetaCarta generated a
modified version of the BSD license, an attribution-only-type license,
where it specifically disclaimed any express or implied licenses under any
party’s patents.!30 This stands in contrast against other BSD-style licenses
that include a grant of a patent license as well as apatent peace
provision.!51

The inference from MetaCarta’s approach is that it desires to inoculate
itself against the law of implied license in patent licensing whereby some
potential defendant in a patent infringement suit claims an implied license,
pointing to MetaCarta’s support for the FOSS projects. If the gambit is
successful, MetaCarta would presumably be able to hold the leverage of its
patents over any competitors that practice what the patents claim. It might
exclude the competitors and supply the market itself or license the
competitors. If these competitors are third parties uninvolved with any of
the FOSS projects, this looks like the typical competitor exclusionary use of
patents in information technology. If those competitors or their employees
contribute to any of the three MetaCarta-supported FOSS projects, the
situation is more interesting, but still does not parallel Microsoft’s
disruptive stance toward the GNU/Linux operating system.

From a vendor’s perspective, the purpose of hybridized structures like
MetaCarta’s approach is to add the strategic advantages of patents. These
advantages may include direct appropriation such as licensing or selling to
customers in place of excluded competitors, or secondary effects such as
influence on standard setting; support for price discrimination or product
differentiation; signaling to investors or others; and, in the FOSS context,
protection of particular projects by defensive use of patents.!52 The most

patent claims licensable by You that are necessarily infringed by Your
Contribution(s) alone or by combination of Your Contribution(s) with the Work to
which such Contribution(s) was submitted.
Id. The patents covered by this license are specifically identified by number, allowing the
contributor to list patents for which it is not granting a license. A catchall provision states
that any owned and issued patents at the time of the contribution are deemed licensed if not
listed, but, significantly, this provision does not reach to patent applications. /d.

149. Id. The CLA patent peace clause terminates only patent licenses to the patent suit
plaintiff and therefore is significantly less potent than the comparable clause in other FOSS
licenses, such as GPLv3. Compare id. (terminating patent licenses), with GPLv3, supra note
15, §§ 8, 10-11 (terminating all rights, including copyright licenses).

150. MetaCarta, Clear BSD License [hereinafter ClearBSD], available at
http://labs.metacarta.com/license-explanation.html (“NO EXPRESS OR IMPLIED
LICENSES TO ANY PARTY’S PATENT RIGHTS ARE GRANTED BY THIS
LICENSE.”).

151. See The Apache Software Foundation, Apache License, Version 2.0, § 3, available
at http://www.apache.org/licenses/LICENSE-2.0 (explicit patent grant and patent peace
clause).

152. Nigel Howard et al., Use Patent Law to Protect Open-Source Software: Supplement
the Incomplete Coverage Provided by Copyright and Trade Secret Law, N.J. L.J. Nov. 12,

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2131

prominent example of this last point is IBM. Its hybridized approach to
commercial FOSS includes contributing many resources to important
platform FOSS projects, complementary sales of services and other
information technology, and dedication of some patents to a commons to
support FOSS, all the while keeping other groups of patents to support
licensing revenues. IBM is not the typical case. Few companies are
situated to both dedicate large numbers of patents to help FOSS yet retain
even larger numbers in a commercial licensing program.

The need for a patent commons for FOSS extends to community driven
projects, and might also benefit commercial FOSS. IBM contributed to this
commons, but this commons will likely never include all patents, which
underscores ‘that information technology innovates and operates under the
influences of the patent system.!33 This observation leads to the last section
of this Part to touch upon the current influences of the patent system and
examine a few potential issues that may arise in the future.

C. Commercial FOSS in the Shadow of Patent Law

For FOSS, patent law remains an ominous dark cloud on the horizon that
has influenced FOSS licensing while the FOSS community’s voice against
patents has influenced the worldwide debate about software patents.!> The
voice against patent law includes the improbable proposal of eliminating
what are often called software patents, but also includes more feasible
actions to improve patent quality for patents covering
computer-implemented inventions.!3> Whether and when the dark cloud
will produce a specific FOSS storm is not for this essay to predict. Instead,
I use two patent law issues to consider how commercial FOSS, with
appropriation mechanisms from patent law, may fare with courts, or other
policymakers such as agencies, from the perspective of a knowledge
production narrative. Those two issues are implied license and injunctive
remedies.

2001, at 25 (discussing various possibilities to use patent law in defense or assistance of
FOSS).

153. See John R. Allison, Abe Dunn & Ronald J. Mann, Software Patents, Incumbents,
and Entry, 85 TEX. L. REV. 1579, 1593-97 (2007); Ronald J. Mann, Commercializing Open
Source Software: Do Property Rights Still Matter?, 20 HARv. J.L. & TECH. 1, 3—4 (2006);
Ronald J. Mann, Do Patents Facilitate Financing in the Software Industry?, 83 TEX. L. REv.
961, 988 (2005) (noting that certain information technology areas “had markedly higher
[patenting] rates, including graphics and digital imaging, expert systems and natural
language, multimedia, and security”).

154. Vetter, supra note 80, at 248-56.

155. See Peer to Patent, http://www.peertopatent.org (last visited Mar. 23, 2009); see also
Beth Simone Noveck, “Peer to Patent”: Collective Intelligence, Open Review, and Patent
Reform, 20 Harv. J.L. & TECH. 123, 127-28 (2006) (describing a pilot approach to allow
public input to the U.S. Patent and Trademark Office’s patent application examination
process, where the input from scientists and technologists is primarily via submittal of prior
art).

2132 FORDHAM LAW REVIEW [Vol. 77

1. Implied License

The ominous threat from patent law arises from activity by Microsoft,
but includes the fear of other assertions of patent rights, such as that
exemplified by the company in the Jacobsen case.!3® Microsoft has
asserted that 235 of its patents are infringed by certain high-profile FOSS
applications.'37 It has arranged license agreements with some end users in
conjunction with their FOSS distributors, which some speculate is based on
this assertion.!5® At the other end of the corporate spectrum in size and
scope, the company that originally threatened Robert Jacobsen did so with
patent rights. Jacobsen’s group found itself in the paradigmatic worst-case
patent scenario of a FOSS community: a for-profit competitor might have
patent leverage over the group. If the scope of the patent claims allowed for
it, Jacobsen’s group could perhaps redesign and reprogram their FOSS
application to not infringe in the future, leaving the interesting question of

156. Complaint for Declaratory Judgment, for Violations of Antitrust Laws, California
Business and Professions Code § 17200, and Lanham Act, and for Libel, Demand for Jury
Trial at 25-27, Jacobsen I, 2007 WL 2358628 (N.D. Cal. Aug. 17, 2007) (No. C 06-01905
JSW), available ar http://www jmri.org/k/docket/1.pdf (asserting in declaratory judgment
motion that Katzer’s patent is unenforceable and not infringed by the software Jacobsen’s
hobbyist group developed as FOSS); Letter from Kevin L. Russell, Attorney for Matthew
Katzer, to Robert G. Jacobsen, JMRI Project (Mar. 8, 2005), available at
http://www jmri.org/k/correspondence/20050308-KAM.pdf (asserting patent infringement
by the FOSS group’s software).

157. Babcock, supra note 99.

158. Microsoft entered into an arrangement with Novell relating to patents. Microsoft-
Novell Patent Cooperation Agreement (Nov. 2, 2006), available at
http://www.sec.gov/Archives/edgar/data/758004/000095013407012375/£26782exv10w35. htm.
Without delving into the details of the patent licensing provisions in the agreement here,
what happened next is that the FSF reacted by inserting a provision into GPLv3. The license
was still in draft form at the time of the Microsoft-Novell agreement. The provision sought
to diminish future possibilities of the Microsoft-Novell arrangement, but grandfathered in the
arrangement.

You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make
payment to the third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with specific products or
compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.
GPLv3, supra note 15, §11; see also Novell, Novell Answers Questions from the
Community, http://www.novell.com/linux/microsoft/fag_opensource.html (last visited Mar.
23, 2009) (“Our agreement with Microsoft . . . does not include a patent license or covenant
not to sue from Microsoft to Novell Novell’s customers receive a covenant not to sue
directly from Microsoft. We have not agreed with Microsoft to any condition that would
contradict the conditions of the GPL”).

Some have argued that this GPLv3 provision might suggest an implied license by
Microsoft of its patents in conjunction with other aspects of the Microsoft/Novell
arrangement. Those assertions and details will also be put aside, and this specialized
situation will not be treated below in Part IV.C.2, where a generalized implied scenario is
evaluated.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2133

ex post evaluation for patent infringement damages when the FOSS is
distributed for free.!3? In the Jacobsen case, according to one commentator,
the patent threat diminished as the case developed.160

The conceivable implied license issues under patent law involving FOSS
distribution are numerous. Some cases taxonomize the law of implied
license because the case outcomes are highly specific to the facts and
circumstances and outcomes are often based on different approaches.!6!
The common denominator for the patent holder or licensor is the potential
diminishment of whatever appropriation leverage she expected with the
patent or license. The diminishment is due to a successful assertion of
implied license as a defense. In this essay, the goal is not to exhaustively
treat implied license in patent law, but to look at a few scenarios where it
might alter appropriability in commercial FOSS.

The first conceivable scenario involves a patent holder that also
contributes to a FOSS project when some or all of that software embodies

159. Patent remedies include injunctions and damages. 35 U.S.C. §§ 283-284 (2000).
The damages standard starts with the statutory command that damages be “adequate to
compensate for the infringement, but in no event less than a reasonable royalty for the use
made of the invention by the infringer.” Id. § 284. Working backward through this language
in the context of a FOSS project with overlapping and potentially infringing functionality
compared to a patent-enforcing proprietary software product, what are reasonable royalties
when the FOSS is distributed without ongoing royalties because the FOSS license disallows
that? Reasonable royalties establish a floor to damages, but when it can, a patent suit
plaintiff may try to prove lost profits due to lost sales. This raises additional questions about
how to count lost sales when FOSS products are in the market and is discussed infra, in Part
v.C2.

160. Lawrence Rosen, Bad Facts Make Good Law: The Jacobsen Case and Open Source
2 (Oct. 1, 2008) (unpublished manuscript), available at http://www.rosenlaw.com/Bad
FactsMakeGoodLaw.pdf (“It soon turned out that [the company’s] patent infringement
allegations were bogus.”).

161. Most implied license cases involve entangled parties. Thus, one type of implied
license is where the patent holder or licensor grants some type of a right for consideration,
such as a license statement allowing the licensee to make, sell, and use a described
technology (as opposed to merely licensing specific patents). Under the notion that the
licensor should not be allowed to derogate from the granted right, if the licensor later
acquires a patent from a third party that dominates the technology, the licensee may be found
to have an implied license under that after-acquired patent. See AMP Inc. v. United States,
389 F.2d 448, 45455 (Ct. Cl. 1968).

A second type of implied license is akin to finding the intent of the parties to a
contract under all the facts and circumstances. A third type is more applicable to
nonentangled parties, and thus perhaps especially relevant to FOSS. When a patent holder
distributes a technology that has as its only purpose practicing the claimed method or
apparatus/composition (either alone or with user or third-party supplied technology), this
may raise the implied license defense. Anton/Bauer, Inc. v. PAG, Ltd., 329 F.3d 1343,
1350-53 (Fed. Cir. 2003) (on preliminary injunction posture, manufacturer of battery
connecting plate held to have granted an implied license for claims infringed when the
manufacturer’s female plates are mated with third-party-manufactured male connector
plates); Met-Coil Sys. Corp. v. Korners Unlimited, Inc., 803 F.2d 684, 687 (Fed. Cir. 1986)
(“A patent owner’s unrestricted sales of a machine useful only in performing the claimed
process and producing the claimed product plainly indicate that the grant of a license should
be inferred.” (internal quotation marks omitted)).

2134 FORDHAM LAW REVIEW [Vol. 77

the claims.!62 This scenario was often discussed in relation to GPLv2
because that widely used license does not state an explicit patent grant, so
commentators suggested the possibility of an implied license in conjunction
with the GPL.!163 Whatever FOSS license is involved, its text will typically
impact the implied license analysis, as will communications or statements
among the patent holder/licensor and the licensees. The inference
potentially leading to a finding of implied license in this first scenario is
that the patent holder should not be allowed to use patent rights to derogate
from the FOSS copyright license granted to the public.164

The second scenario is an adjustment of the first, where the patent claims
are not embodied by the FOSS project to which the holder
contributes/supports. Perhaps the FOSS software is an element of what is
claimed, or perhaps not. The point in this scenario is that it might be
possible for users of the FOSS to incorporate it into other information
technology which then infringes the holder’s patent. The other technology
might infringe alone, or infringes because of the combination with the
FOSS. This fact would matter in an implied license analysis, as would the
degree of specificity of the software contributed by the patent holder: the
more that it is attuned to a single purpose whereby it needs to be fitted with
other software, the more likely a finding of implied license when the
combination infringes the patent claims of the contributing holder.165 On
the other hand, if the patent claim scope is nonoverlapping or
technologically remote from the FOSS, the inferential logic diminishes for
finding an implied license defense without something more, such as
conduct or statements by the patent holder.

While MetaCarta is not assumed to necessarily fit in either situation one
or two, it represents a third scenario because it expressly repudiated any
implied license for any party’s patents in the FOSS license it constructed
for the three FOSS projects it supports.®6 While such an express

162. When the hypothetical patent holder is the primary developer of a FOSS project that
embodies the claims and that has many complements, then this configuration resembles a
theoretical model for optimizing FOSS licensing terms for a platform progenitor. See
Geoffrey Parker & Marshall W. Van Alstyne, Innovation Through Optimal Licensing in Free
Markets and Free Software (Sept. 2005) (unpublished manuscript), available at
http://ssrn.com/abstract=639165 (suggesting a period of exclusive control for the platform
originator for improvements to the platform, followed by the remainder of the platform life
having an open source approach to improvements).

163. ApaM PUGH & LAURA A. MAJERUS, FENWICK & WEST LLP, POTENTIAL DEFENSES OF
IMPLIED PATENT LICENSES UNDER THE GPL (2006), available at http://www.fenwick.com/
docstore/Publications/IP/potential_defenses.pdf.

164. One question about this inference is whether the right granted from the FOSS
licensor to the public as FOSS licensee needs to be supported with consideration, which in
its traditional form may be lacking. See id. (arguing that the possibility of downstream
improvements being redistributed for public availability may substitute for, or act as,
consideration to certify the right not to be derogated).

165. Anton/Bauer, 329 F.3d at 1350-53.

166. ClearBSD, supra note 150 (“NO EXPRESS OR IMPLIED LICENSES TO ANY
PARTY’S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.”). But see Nat’]
Rubber Mach. Co. v. McNeil Mach. & Eng’g Co., 132 F.2d 436, 438 (6th Cir. 1942) (license

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2135

repudiation is likely effective, in an implied license analysis sometimes
other facts and circumstances can overwhelm such an express statement. If
we assume that MetaCarta’s situation is close to scenario one, where its
contributed software embodies, or nearly embodies, the patent claims, then
the express repudiation is a factor the court might balance against another
fact: inbound contributors may grant patent licenses to the project. Why
aren’t these passed on? The question gives one pause, and might give a
court pause. I do not intend to conclude on this issue in the abstract. The
real point is the pliability of the implied license analysis when mixing
FOSS licenses with contributor conduct and communications.!6” Such
pliability allows greater leeway for a court to shape outcomes in light of
perceived benefits from different modes of production and distribution, that
is, proprietary software versus FOSS, or a hybridized mixture of the two.

To the extent implied patent license case law develops around FOSS
situations, the cases may share a characteristic often not found in the
traditional implied license cases: nonentangled parties.!68 This results
from the public nature of FOSS and its distribution approach that often
allows any party to download the software without identification.
Nonentanglement cases will not have in evidence any communications or
actions between the parties, so the cases will turn on the public statements
of the FOSS contributing/supporting patent holder, the terms of the FOSS
license, whether the developer community was aware of the patents,
whether the patent holder helped shape the license or community, and claim
scope in relation to the FOSS. Courts should add to this mix a frank
assessment of the public benefit spillovers for the FOSS at issue, which will
turn in part on information about its licensing model, functionality,
developer community, and user base. Among these inquiries, user base is a
subject about which it is often hard to obtain good information for many
FOSS projects. This problem is also an issue for the topic of the next
subsection: patent law injunctive remedies for commercial FOSS.

2. Injunctive Remedies

The competitor exclusionary power of a patent is perhaps at its height
with an injunction, and therefore the threat of an injunction is an important

agreement schedule excluded patent from license grant, but other facts and circumstances
allowed for an implied license).

167. FOSS licenses do not have “integration” clauses, or at least, I do not recall having
seen an integration clause in a FOSS license, thus, to the extent courts use contract
construction principles to interpret the conditions of FOSS licenses, it seems that evidence of
statements and conduct associated with the license promulgation and/or the contributed
software will be relevant and heard by the court.

168. By the term nonentangled parties, I do not mean nonpracticing entities. These
entities, sometimes called “patent trolls,” are not in the market, whereas the scenarios
discussed in the implied license subsection assume a patent holder engaged in commercial
FOSS and therefore in the market.

2136 FORDHAM LAW REVIEW [Vol. 77

mechanism of appropriation.!6® In 2006, the potency of the injunction
diminished under the U.S. Supreme Court’s opinion in eBay, Inc. v.
MercExchange, L.L.C.'70 The case instructs courts to use a four-factor test
to determine whether to grant an injunction to a successful patent
infringement plaintiff. FOSS casts a different light on all four factors. A
conceivable suit is by a proprietary software plaintiff against either a
commercial FOSS defendant or against a community-driven FOSS project.
Also conceivable is a suit by a commercial FOSS entity against a
community-driven project, but I assume that no community projects will
ever hold patents to act as a plaintiff.

To proceed, this subsection arrays the four factors against four potential
suits, where proprietary software uses the abbreviation “Prop,” commercial
FOSS goes by “cFOSS,” and community-driven FOSS uses “tFOSS” for
traditional FOSS. The purpose of the resulting table is to express some
high-level, abbreviated items that a court evaluating each factor should
entertain as an additional consideration due to the presence of FOSS in the
suit. The premise behind these considerations is to account for the
differences of FOSS as a mode of knowledge production and its public
benefit spillovers. In other words, the table presents additions to whatever
would be considered typically. If there are no additions, the annotation
reads “no change.”

To properly evaluate several of the factors, FOSS projects need better
data about their user base. The appellate court in the Jacobsen case
mentioned in a footnote the general benefits of FOSS as a mode of
knowledge production and distribution. The legal inquiry before the court
did not require any specific quantification of that public benefit by looking
at the user base of Robert Jacobsen’s group. When such an inquiry
becomes important because, many, if not most, FOSS projects have only a
download count. It is not rational to equate download counts to installed
users, and there may be no good way to reliably prove to a court that a user
base number derived from download counts is believable. The user base
data is often insufficient and this could negatively impact the proof needed
for a FOSS project involved in some future patent litigation.

169. Mark A. Lemley & Carl Shapiro, Patent Holdup and Royalty Stacking, 85 TEX. L.
REV. 1991, 1992-93 (2007).

170. 547 U.S. 388 (2006); see also Bernard H. Chao, After ebay, Inc. v. MercExchange:
The Changing Landscape for Patent Remedies, 9 MINN. J. L. SCl. & TECH. 543 (2008).

2009]

COMMERCIAL FREE & OPEN SOURCE SOFTWARE

2137

Table I: Injunction Factor Considerations for FOSS

88
Irreparable
Injury to P

(2) Law
Damages
Inadequate
for P

(3) Balance of
Hardships

(4) Public
Interest Not
Disserved by
Permanent
Injury

No change

No changel71

Account for
scope and
reach of
cFOSS
software,
perhaps with
less weight on
D’s
commercial
customers

Impact on
cFOSS
developer
community and
user base,
perhaps with
less
consideration for
D’s commercial
customers

No change

No change,
unless triggered
by a patent
peace clause! 72

No change

No change

No sales and

Users of the

Impact on D’s

marketing by [tFOSS software | Account for developer
~ D;not are not scope and community and

Prop | tFOSS intended asa necessarily reach of tFOSS user base;
commercial | sales that would software! 74 impact on FOSS
sales have been made licensing system

threat!73 by P generally

171. This place in the matrix illustrates an advantage of commercial FOSS: it has the

possibility of paying damages for the past, and it may have sufficient financial resources to
secure a settlement. Hopefully, commercial FOSS companies would obtain settlements
applicable across the board for at least community-driven FOSS along with the settlement
for itself. In addition, to the extent some courts may use eBay, Inc. v. MercExchange, L.L.C.
as a basis to award “future-looking damages” or “compulsory” licenses, a commercial FOSS
company may also be able to fund this as well. In contrast, a community-driven FOSS
project is unlikely to be able to pay anything without severe financial impact on the core
developers and other named defendants from the community. This includes limited ability to
fund a defense in the patent infringement suit, much less pay damages.

172. The commercial FOSS entity’s impetuses to sue a proprietary software company
could arise as the result of a retaliation need in light of a patent peace clause in a FOSS
license. Assume that the proprietary software company was a user of the commercial FOSS
entity’s community-supported FOSS and it sued another user on a patent. Under the patent
peace clause, the suit might terminate the proprietary company’s rights under the FOSS
license. To protect the users, the commercial FOSS entity may need to initiate a patent suit
against the now-unlicensed proprietary software company. Note that the extent to which this
retaliation suit gains leverage over the proprietary software company depends on the degree
of importance of the FOSS for its operations.

173. FOSS users are merely theoretical proprietary software customers because the
proprietary software provider has perhaps been unwilling or unable to price-discriminate to
capture this group. In evaluating the irreparable harm factor generally, the nature of the

2138

FORDHAM LAW REVIEW

)
Irreparable
Injury to P

(2) Law
Damages
Inadequate
for P

(3) Balance of
Hardships

[Vol. 77

(4) Public
Interest Not
Disserved by

Permanent
Injury

Evaluate
comparative
diminishment
between the
two different
FOSS
communities

Account for P’s
voluntary
engagement
with FOSS,
signaling
acceptance of
unusual
appropriability
mixes

Account for

scope and
reach of tFOSS
software;
account for P’s
voluntary
engagement
with FOSS

Assuming two
different FOSS
projects, impact
onD’s
developer
community and
user base;
impact on FOSS
licensing system

generally

Here is an example showing how insufficient user information could be a
problem. Assume that the patent plaintiff is a proprietary software
company suing a community-driven FOSS project, where the software has
identical functionality. Further assume that the company’s sales dropped
from 30,000 licenses/year in prior years to 15,000 licenses/year in the last
year for internal causes, but it does not realize the cause. During this prior
year the community-driven FOSS project posted its first compete version
and it had 10,000 downloads, of which it can verify that 8000 were from
computers in the United States, but it can verify no more—it does not know
what percentage of those 8000 U.S. downloads are active users. Assuming
a successful patent infringement action, plaintiff’s damages model will

competition in a market is relevant, particularly as to the number of competitors.
TruePosition Inc. v. Andrew Corp., 568 F. Supp. 2d 500, 531-32 (D. Del. 2008) (“Courts
awarding permanent injunctions typically do so under circumstances where plaintiff
practices its invention and is a direct market competitor. Plaintiffs are also frequently
successful when their patented technology is at the core of its business, and/or where the
market for the patented technology is volatile or still developing.” (footnotes omitted)).
Whether a traditional (tFOSS) community should ever be modeled as a competitor in the
eBay analysis is questionable given the public benefit spillover potential of tFOSS
communities.

174. Accounting for the reach of the user base for tFOSS software is consistent with
another area of law that sometimes bears on user rights and license agreements for
intellectual property: § 365(n) of the Bankruptcy Code. 11 U.S.C. § 365(n) (2006). By
allowing, under certain conditions, an option for the licensee to elect to continue to use the
intellectual property, the code gives recognition to the reliance interest within the group of
licensee users. Robert T. Canavan, Unsolved Mysteries of Section 365(N)—When a
Bankrupt Technology Licensor Rejects an Agreement Granting Rights to Future
Improvements, 21 SETON HALL L. REv. 800, 812-13 (2000) (noting that a nondebtor licensee
may elect to continue its licensee status, thereby protecting its investment in manufacturing
or other capacity dependent on the license). My thanks to Sharon Sandeen for this point.
The analysis in the table contemplates the tFOSS developers as patent defendants rather than
noncontributing users. However, the nondeveloping users are also potential patent
infringement defendants. In either case, an injunction diminishes the productive capacity of
both developer-users and nondeveloper-users of the tFOSS software to whatever extent their
activity has become dependent on the software.

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2139

likely propose that at least 8000 licenses are its “lost sales” attributable to
the FOSS community’s infringement. In reality, there may be only 800, or
80, active users. Only the true active users seem like a plausible inclusion
into the lost sales damages model. When the number is low, the FOSS
projects wants the true number because it reduces the damages amount
potentially payable.

This example can also apply to injunctive relief. The recommendation in
Table 1 for the public benefit factor is to assess the impact on the FOSS
user base. How can this be done before a court if a reliable count of active
users is not available? Generally, for a community-driven project, more
users means more public benefit resulting from the FOSS. If the FOSS
project could show that 5000 of the 8000 U.S. downloads are active users
who have come to rely on the software, and royalty-free use of it, it should
give a court pause before implementing a permanent injunction.

The two scenarios of this example suggest that FOSS development
practices begin to explore technological techniques to gain some minimal
information about their active user base.!’> If privacy concerns are an
issue, the information can be nonidentifying of the users so long as it is
collected with a technique provable in court as reliable. Collecting this
information is not necessarily important only for GPL-style FOSS that
remains in community development. It could be important for
attribution-only FOSS that is embedded in proprietary software. Thus, such
data could be particularly helpful to argue the public benefit prong of the
four-factor permanent injunction test if a FOSS community could show that
among the hypothetical 8000 U.S. downloads, 1000 were embedded
instances of the software in a proprietary product.!76

Many in the FOSS movement might argue that the last row in Table 1
above is inconceivable given the political backlash a commercial FOSS
entity would suffer if it sued a community-driven FOSS project. This
argument might extend to suggest that the possibility of such a suit is a
reason why patent-based mechanisms of appropriability are a poor choice
for the appropriation mix of a commercial FOSS firm. This essay’s premise
is to acknowledge these views but assume that patent issues such as implied
license questions or injunctions are going to arise eventually, even if they
are most likely to arise in one of the scenarios in the top three rows that
involve a proprietary software company. If the prediction is correct that
such issues will arise, the important fallback step will be to have courts
recognize the successes and aspirations of the FOSS movement in order to

175. See VON HIPPEL, supra note 14, at 88 (“It can be difficult to track what visitors to an
information commons take away and reuse, and there is as yet very little empirical
information on this important matter.”).

176. The recommendation for some type of technical apparatus to collect this information
should not overlook the possible need to account for the collection activity in the FOSS
licenses. For instance, in the embedded FOSS example, the attribution-only license would
probably need to add a condition that the user not remove a particular software object, or file
of code, that implements the collection of active user base information.

2140 FORDHAM LAW REVIEW [Vol. 77

understand its narrative for knowledge production and public benefit in the
context of the case before it.

CONCLUSION

In the puzzle of appropriability for new knowledge outputs from
information technology, FOSS is a box of paradoxes. The oft-noted
paradox is that FOSS licensing uses intellectual property rights, most
prominently copyright, to imbrue software with conditions defeating not
only trade secrecy in the code but also the conventional use-restricting
deployment of copyright itself. Some FOSS licenses extend this dynamic
to patent rights for those involved with the community underlying the
software. FOSS licensing thus enhances public accessibility for the
knowledge contained in its software source code. In its strongest form,
under copyleft licenses, public accessibility may be cemented for the future
of the code. Noncopyleft licenses such as attribution-only licenses often
allow direct commercialization of the code under a proprietary software
model. Thus, paradoxically, a robust FOSS ecology may subsidize both
proprietary vendors and new business models such as advertising-supported
software or Internet-delivered software as a service.

Another paradox relevant to this essay is that while FOSS licensing has
spawned numerous benefits within information technology, including direct
knowledge generation of new collaborative techniques, as well as other
important spillovers, it may not be doing as well in producing innovative
software in the sense of new nonplatform functionality. To the extent this
is true, it may be path dependent because proprietary software came first.
To the extent courts deal with future licensing issues related to FOSS, their
perspective on this issue is one of several considerations in the narrative
about FOSS that may influence outcomes or the policy that informs
outcomes.

The FOSS narrative has traditionally been one of volunteer-centric
projects. That narrative dominated in the recent important FOSS case of
Jacobsen v. Katzer. With increasing hybridization, however, of FOSS with
appropriation methods akin to the world of proprietary software, the
narrative told to courts may change. The appearance of patents for
competitor exclusion appearing among the appropriation methods may be
particularly noticeable and narrative-influencing. This observation rests in
a background of two realities: great acrimony by the FOSS movement with
respect to patent protection for software; and the possibility that proprietary
software companies will use patents against FOSS communities. The latter
possibility juxtaposes two very different knowledge production paradigms
when FOSS is represented by its traditional narrative. But when
commercial FOSS of a hybridized nature is involved, courts will need to
closely evaluate the FOSS elements in order to account for their
contribution to the public benefit within the context of the licensing dispute
at issue. In the patent licensing context, this will require a nuanced view of
issues such as injunctions that may curtail or chill FOSS development and

2009] COMMERCIAL FREE & OPEN SOURCE SOFTWARE 2141

issues related to implied license doctrines under patent licensing. Even
while deplorable by much of the FOSS movement, it seems inevitable that
an increase in commercial FOSS will result in an increased entanglement
with patent law. This cries out for a careful accounting of the beneficial
influences from FOSS to information technology within the context of each
case, because increasing deployment of commercial FOSS also seems
inevitable.

Notes & Observations

	Commercial Free and Open Source Software: Knowledge Production, Hybrid Appropriability, and Patents
	Recommended Citation

	Commercial Free and Open Source Software: Knowledge Production, Hybrid Appropriability, and Patents
	Cover Page Footnote

	tmp.1306565184.pdf.Ap7E1

