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ABSTRACT 
 
In this paper we propose an optimisation approach to determining the optimal decay factor in 
time weighted (BRW) simulation. Testing of BRW simulation with different decay factors and 
competing VaR models is performed on a sample of nine Mediterranean countries, over a four 
year period that includes the ongoing financial crisis. After optimisation the BRW simulation is 
among the best performing tested VaR models, second only to EVT approaches. Optimising the 
decay factor in regards to Lopez function results in decay factor estimates that are higher than 
usually employed 0.97 and 0.99. The optimal decay factors are stable over time and provide 
significantly better backtesting results than the standard assumptions. 
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1. INTRODUCTION 
 

Although we now have at our disposal advanced VaR estimation techniques such as 
conditional extreme value models, there exists a need for some less sophisticated, 
computationally less time consuming and costly VaR models. Such models are in demand by 
less conservative investors or when serving as a quick approximation to the true level of risk an 
investor is facing. The existing approaches to estimating market risk for a portfolio of securities 
can be divided into three groups: fully parametric methods based on an econometric model for 
volatility dynamics and the assumption of conditional normality e.g. RiskMetrics and GARCH 
family of models; non-parametric models; and models based on extreme value theory (EVT). 
The nonparametric approach represents the most widely used and simplest method of calculating 
VaR. The main representative in this group of models is the historical simulation. The whole 
concept is built on the premise that potential changes in the risk factors are identical to the 
observed changes in the risk factors over a historical period i.e. that history regularly repeats 
itself. Modelling the risk factors underlying the changes in portfolio value significantly lowers 
the computational time since the number of relevant risk factors is considerably smaller than the 
number of financial instruments in the portfolio. Historical simulation assumes that the 
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historically observed factor changes used in the simulation are taken from independent and 
identical distributions (IID) which are the same as the distribution applicable to the forecasts. 
The main strength of the historical simulation is that it, ex ante, does not presume any specific 
distribution of the data. Hendricks (1996) used simulated spot foreign exchange portfolios to 
show that with departures from normality historical simulation provided good estimates of the 
99th percentile. When using historical simulation a trade-off is made between long observation 
periods which potentially violate the assumption of IID and short observation periods which 
reduce the precision of the estimate. A more realistic setting which violates the IID assumption 
would be that returns from the recent past better represent today portfolio's risk than returns from 
the more distant past. Based on this setting in the paper from 1998 Boudoukh, Richardson, and 
Whitelaw, BRW hereafter, introduced a generalization of the historical simulation which assigns 
a relatively higher amount of probability to returns from the more recent past. In practical 
application this modification makes a significant difference in forecasting performance (see e.g. 
Boudoukh, Richardson and Whitelaw, 1998, Pritsker, 2001, Žiković 2006). Boudoukh, 
Richardson and Whitelaw (1998) test the performance of BRW simulation on USD/DEM 
exchange rate, spot oil prices and S&P500 index. They find that it performs better than the 
parametric models and the historical simulation and at the same time produces independent VaR 
errors. Žiković (2006) found that BRW simulation with decay factor set to 0.99 is superior to 
historical simulation for a range of confidence levels in small and illiquid markets of EU 
candidate states. The most comprehensive study analysing the behaviour and characteristics of 
BRW and historical simulation can be found in Pritsker (2001). Pritsker found that BRW and 
historical simulation adjust slowly to changes in the true level of risk. He concludes that 
correlation of the VaR estimates with the true VaR is fairly high for the BRW simulation in 
contrast to the historical simulation. BRW model moves with the true VaR in the long run but is 
slow to respond promptly to changes in the level of risk. As a result, VaR estimates based on 
historical simulation and BRW are not very accurate. Apart from the mentioned papers, BRW 
simulation is not extensively used in the mainstream VaR literature. What is even more 
interesting is that after the original paper from 1998 we could not find any papers calculating 
VaR with different decay factors from the values originally suggested.  
 

The goal of this paper is to present an optimisation procedure to determining the optimal 
decay factor for BRW simulation and explore the benefits of such an optimisation on VaR 
forecasts. Contributions of this paper are several: development of an optimisation approach to 
estimation of optimal decay factor in BRW simulation, analysis of the stability of the optimal 
decay factors and identification of the benefits to VaR estimation from the optimisation of the 
decay factor. VaR models that are analyzed are: time weighted (BRW) simulation with different 
decay factors, parametric GARCH model with GARCH specification and distribution that has 
the highest Akaike information criterion (AIC) value, unconditional EVT approach using 
Generalized Pareto distribution (GPD) (see Longin, 2000) and conditional quantile EVT-
GARCH approach (McNeil, Frey, 2000). We test the optimisation procedure and its benefits on a 
sample of nine stock indexes from EuroMed region. We analyse the following stock market 
indexes (France – CAC, Italy – MIB 30, Spain – IBEX, Greece – FTASE, Turkey – XU 100, 
Egypt – CASE, Croatia – CROBEX, Malta – MALTEX, Morocco – MOSEMDX). The analysed 
group of stock indexes is very heterogeneous comprising stock indexes from developed countries 
such as France, Italy and Spain as well as emerging markets such as Turkey, Egypt and 
Morocco.   

 
The rest of the paper is organised as follows: in section 2 of the paper, the characteristics of 

time weighted (BRW) historical simulation approach to measuring VaR are discussed. In section 



 

3 we present the optimisation procedure for obtaining optimal decay factor values and section 4 
discusses the optimisation results. Section 5, analyses and compares the performance of optimal 
decay factor BRW model with other VaR models on a sample of nine stock indexes from 
Mediterranean countries at 99% confidence level. The final section summarizes the conclusions. 
 
 

2. TIME WEIGHTED (BRW) HISTORICAL SIMULATION 
 
Historical simulation (HS VaR) drastically simplifies the procedure for computing VaR, since it 
does not make any direct distributional assumption about portfolio returns. Due to its simplicity 
and speed investors often rely on VaR figures obtained by historical simulations. Under the 
historical simulation approach the value of VaR is calculated as the 100cl’th percentile or the 
(T+1)cl’th order statistic of the set of portfolio returns. The time series of historical portfolio 
returns is constructed just by using the current portfolio holdings and historical asset returns. 
 
Historical simulation VaR can than be expressed as: 
 

        (1) 
 

where is taken from the set of ordered portfolio returns . If 
(T+1)cl is not an integer value then the two adjacent observations can be interpolated to calculate 
the VaR. Historical simulation has a number of shortcomings, which have been well recorded 
(see Pritsker, 2001). Perhaps most importantly, historical simulation does not properly 
incorporate conditionality into the VaR forecasting framework. The only source of dynamics in 
the historical simulation comes from the movement of the observation window with the passing 
of time. Unfortunately, in practice this source of conditionality is minor. Another shortcoming of 
the historical simulation is that it assigns equal probability weight of 1/N to each observation. 
This means that the historical simulation estimate of a specific confidence level (cl) corresponds 
to the N(1-cl) lowest return in the N period rolling sample. Because a crash is the lowest return in 
the N period sample, the N(1-cl) lowest return after the crash, turns out to be the (N(1-cl)-1) 
lowest return before the crash. If the N(1-cl) and (N(1-cl)-1) lowest returns happen to be very 
close in magnitude, the crash actually has almost no impact on the historical simulation estimate 
of VaR. From the equation for historical simulation it can be seen that HS VaR changes 
significantly only if the observations around the order statistic change significantly. 
Although historical simulation makes no explicit assumptions about the distribution of portfolio 
returns, an implicit assumption is hidden behind the procedure: the distribution of portfolio 
returns doesn’t change within the window. From this implicit assumption several problems may 
arise in using this method in practice. From the assumption that all the returns within the 
observation window used in historical simulation have the same distribution, it follows that all 
the returns of the time series also have the same distribution: if yt-window,...,yt and yt+1-window,...,yt+1 
are IID, then also yt+1 and yt-window has to be IID, by the transitive property. Forecasts of historical 
simulation VaR are meaningful only if the historical data used in the calculations have the same 
distribution. Another problem connected with the historical simulation is the fact that for the 
empirical quantile estimator to be consistent, the size of observation window must go to infinity. 
The length of the window must satisfy two contradictory properties: it must be large enough, in 
order to make statistical inference significant, and it must short enough, to avoid the risk of 
taking observations outside of the current volatility cluster. Clearly, there is no easy solution to 
this problem. If the market is moving from a period of low volatility to a period of high 
volatility, VaR forecasts based on the historical simulation will under predict the true risk of a 



 

position since it will take some time before the observations from the low volatility period leave 
the observation window. Finally, VaR forecasts based on historical simulation may present 
predictable jumps, due to the discreteness of extreme returns. If VaR of a portfolio is computed 
using a rolling window of N days and today’s return is a large negative number, it is easy to 
predict that the VaR estimate will jump upward, because of today’s observation. The same effect 
(reversed) will reappear exactly after N days, when the large observation drops out of the 
observation window.  
 

A more realistic setting which violates the IID assumption assumes that the returns from 
the recent past better represent today portfolio's risk than returns from the more distant past. 
Based on this setting in the paper from 1998 Boudoukh, Richardson, and Whitelaw introduced a 
generalization of the historical simulation which assigns a relatively higher amount of probability 
to returns from the more recent past. The BRW approach combines exponential smoothing and 
historical simulation, by applying exponentially declining probability weights to past returns of 
the portfolio. After the probability weights are assigned, VaR is calculated from the empirical 
cumulative distribution function weighted by the modified probability weights. Historical 
simulation method can be considered as a special case of the more general BRW model in which 
the decay factor (λ) is set equal to 1. Under the BRW approach, the most recent return receives 
probability weight of just over 1% for λ = 0.99 and a weight of over 3% for λ = 0.97. In both 
cases, this means that if the most recent observation is the worst loss of the N days, it 
automatically becomes the VaR estimate at 1% confidence level. The BRW method appears to 
remedy one of the main problems of historical simulation since very large losses are immediately 
reflected in VaR forecasts. The simplest way to implement BRW approach is to construct a 
history of N hypothetical returns that the portfolio would have earned if held for each of the 
previous N days,  rt-1,…, rt-N and then assign exponentially declining probability weights wt-1,…, 
wt-N to the return series1. Given the probability weights, VaR at the specific confidence level can 
be approximated from G(.; t;N), the empirical cumulative distribution function of r based on the 
return observations rt-1,…, rt-N . 
 

        (2) 

 
Because the empirical cumulative distribution function, unless smoothed, for example via 

kernel smoothing, is discrete, a VaR figure at the cl confidence level will typically not 
correspond to a particular return from the return history. Instead, the BRW solution for VaR at 
the specific confidence level can be between a return that has a cumulative distribution that is 
less than cl, and one that has a cumulative distribution that is higher than cl. These returns can be 
used as estimates of the BRW VaR model at specific confidence level. The estimate that 
understates VaR at the cl percent confidence level (upper limit) is given by Pritsker (2001): 
 

    (3) 
 

                                                
1 The weights sum to 1 and are exponentially declining at rate λ (0 < λ ≤ 1) 

 

 



 

and the estimator of lower limit is given by: 
 

    (4) 
 
where λ is the exponential weight factor, N is the length of the history of returns used to compute 
VaR, and cl is the VaR confidence level. is the lowest return of the N 
observations whose empirical cumulative probability is greater than cl, and is 
the highest return whose empirical cumulative probability is less than cl. The main issue in 
evaluation of BRW VaR is the extent to which VaR forecasts based on the BRW method respond 
to changes in the underlying risk factors. It is important to know under what circumstances risk 
estimates increase when using the  estimator. The result is provided in the 
following proposition: 
 
Proposition: If  then . (5) 
 
Proof: 

When BRW VaR is estimated for returns during time period t+1, the return at time t−N is 

dropped from the sample, the return at time t receives weight  and the weight on other 

returns is λ times their earlier values. Consequently, r(cl) is defined as: 
 

      (6) 
 

To verify this proposition, it suffices to examine how much probability weight the VaR 
estimate at time t+1 places below , (see Žiković, 2006):  
 
Case 1:  - in this case, since by assumption,  then: 
 

. Therefore,   (7) 
 

 (8) 
 
Case 2:  - in this case, since  by assumption, then: 
 

.     (9) 
 
Therefore:    
 

 (10) 
 

The proposition shows that when losses at time t are bounded below the BRW VaR 
estimate at time t, the BRW VaR estimate for time t+1 will indicate that risk at time t+1 is no 
greater than it was at time t. To understand the importance of this, it suffices to examine the case 
when today's VaR estimate for tomorrow's return is conditionally correct, but since risk changes 
with returns, tomorrow's return will influence risk for the day after tomorrow. Under these 



 

circumstances, one might wonder: what is the probability that a VaR estimate that is correct 
today will increase tomorrow? The answer provided by the proposition is that tomorrow's VaR 
estimate will not increase with probability 1−cl. For example, if cl is equal to 1%, then a VaR 
estimate that is correct today will not increase tomorrow with probability 99%. Although the 
BRW approach suffers from the explained logical inconsistency, this approach still represents a 
significant improvement over the historical simulation, since it drastically simplifies the 
assumptions needed in the parametric models and it incorporates a more flexible specification 
than the historical simulation. BRW quantile estimator can be expressed as: 
 

     (11) 

 
where  are the weights associated with return yi and I(·) is the indicator function. If 

, BRW quantile estimator equals the historical simulation estimator. The main 
difference between BRW approach and historical simulation is in the specification of the 
quantile process. With historical simulation each return is given the same weight, while with the 
BRW approach returns have different weights, depending on how old the observations are. 
Strictly speaking, none of these models is completely nonparametric, since a parametric 
specification is proposed for the quantile. Boudoukh, Richardson and Whitelaw in their original 
paper set λ equal to 0.97 and 0.99, as in their framework no statistical method is available to 
estimate this unknown parameter. In the next section we present an optimisation approach to 
determining the optimal decay factor for the purpose of VaR estimation. 
 
 

3. OPTIMISATION OF THE BRW DECAY FACTOR 
 

The forecast evaluation approach to backtesting VaR models was suggested by Lopez 
(1998) and is motivated by the evaluation methods often used to rank the forecasts of 
macroeconomic models. This approach allows for ranking of different competing models, but 
does not give any formal statistical indication of model adequacy. In ranking them, it also allows 
to take account of any particular concerns one might have. For example, higher losses can be 
given greater weight because of greater concern about them. Furthermore, because they are not 
statistical tests, forecast evaluation does not suffer from the low power of standard tests such as 
the Kupiec test. This makes forecast evaluation approach very attractive for backtesting with the 
small data sets typically available in practice. The first input in a forecast evaluation is a set of 
paired observations of returns for each period and their associated VaR forecasts. The second 
input is a loss function that gives each observation a score depending on how the observed return 
compares to the VaR forecast. To implement forecast evaluation, it is necessary to specify the 
loss function. Lopez (1998) suggested a size-adjusted loss function: 
 

         (12)  

 
where Lt represents a loss and VaRt calculated VaR values at time t. This loss function allows for 
the sizes of tail losses to influence the final rating of VaR model. VaR model that generates 
higher tail losses would generate higher values under this size adjusted loss function than a VaR 
model that generates lower tail losses, ceteris paribus. However, with this loss function, there is 



 

no longer a straightforward condition for the benchmark, and the benchmark has to be estimated 
by some other means. Under assumption that the observed returns are IID an empirical loss 
function and the value of the final score can be derived by repeating the operation a large number 
of times, and using the average final score as the estimate of the benchmark. However, if the 
VaR model is parametric, simpler and more direct approaches can be used to estimate the 
benchmark. For example, return data can be simulated under the assumption of a specific 
distributional form using Monte Carlo methods, and the average of final scores can be taken as 
the benchmark.  
 

We propose the optimisation of the decay factor for BRW simulation with regards to 
minimising the Lopez size-adjusted function. The decay factor that minimizes the Lopez size 
adjusted function for a given time series is chosen as the optimal since it minimizes the deviation 
(positive or negative) between observed and expected VaR exceedances while taking into 
account the size of those exceedances. In this manner we are treating over conservative and 
inadequate VaR forecasts equally. Optimisation procedure can be written as: 
 

      (13) 

 

 

 
 The optimisation procedure is straightforward. The proposed algorithm runs through 
decay factor values and at each step calculates the VaR and records the VaR performance in the 
backtesting period at the selected confidence level. After finishing its runs through decay factor 
values, having recorded VaR performance for each decay factor, it searches for the VaR model 
with the lowest Lopez size-adjusted value in absolute terms. The decay factor that was used in 
the VaR model with the lowest Lopez size-adjusted value is chosen as the optimal since it 
produces the lowest possible deviation from the realised level of risk i.e. number of exceedances 
and their size. 
 
 

4. BRW DECAY FACTOR OPTIMISATION RESULTS 
 
Based on presented optimisation procedure the obtained optimal values of decay factor 

for time weighted BRW simulation are calculated for the analysed stock indexes during the 
consecutive time periods of the latest 500, 1,000 and 1,500 days. 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 1  

Optimal decay factor values for tested indexes at 99% confidence level and different time 
frames 

 
 

Lopez optimal decay factor values show consistency over different time windows with 
minimal changes in their values, with the exception of Egyptian CASE index jump from 1,000 to 
500 days time window. There is economic justification in optimising decay factor for each time 
series since once calculated these values do not change very often, and even when they change 
they do so by a very small amount. This is a very useful characteristic which allows the 
optimisation procedure not to be performed daily but far less frequently, resulting in lower 
computational time and costs. More developed Mediterranean countries (France, Italy, Spain and 
Greece) have a very stable optimal decay factor ranging from 0.993 for Spain’s IBEX index to 
0.997 for Greek FTASE index. Situation is similar with emerging and developing economies so 
we cannot point to any significant difference in the optimal decay factor based on wealth, 
development or size of the stock market. The highest decay factor value (0.998) was found for 
the Maltin MALTEX index (1,500 and 1,000 day window) and Turkish XU 100 index (1,000 
day window). The lowest value of decay factor (0.991) is found for Moroccan MOSEMDX 
index (1,000 and 500 day window) and Egyptian CASE index (1,500 and 1,000 day window). 
The decay factor values are rounded to three decimal places since we found that further 
refinements of decay factor did not yield any significant improvements. In all of the cases 
optimal decay values are between 0.99 and 1, which signals that using lower decay factors, such 
as proposed 0.97 and 0.99 might results in unreliable VaR forecasts. 
 
Optimised BRW model can provide practitioners with far better results than the ones we grew 
accustom to expect from this model. 



 

 
5. VAR BACKTESTING COMPARISON 

 
To test whether there is any practical advantage in optimising the decay factor we test the 

performance of optimised BRW simulation versus the usually assumed decay factors of 0.97 and 
0.99 as well as an GARCH and conditional GDP and unconditional EVT-GARCH approach. 
Data used in the analyses of VaR models is the daily log returns from analysed indexes from 
Mediterranean countries. The returns are collected from Bloomberg for the period 01.01.2000 - 
12.11.2008. The calculated VaR figures are for a one-day ahead horizon and 99% confidence 
level. To secure the same out-of-the-sample VaR backtesting period for all of the tested indexes, 
the out-of-the-sample data sets are formed by taking out 1,500 of the latest observations from 
each index. The rest of the observations are used as presample observations needed for VaR 
starting values and volatility model calibration. The only exception is the MOSEMDX index 
which started in 2002 and the analysis for a 1,500 days time frame is still not possible. That is 
why backtesting results for this index are based on a 1,000 days period. All of the analysed VaR 
models are tested in several ways to determine their statistical characteristics and ability to 
adequately measure market risk in the analysed markets. The first test in the evaluation of VaR 
performance is the Kupiec test, a simple expansion of the failure rate, which is prescribed by 
Basel Committee on Banking Supervision as the test for regulatory acceptance of a VaR model 
(see Kupiec, 1995). The second test is the Christoffersen (IND) independence test which tests 
whether VaR exceedances are IID (see Christoffersen, Hahn, Inoue, 2001). Although the 
independence of the VaR errors is not required under the Basel 2 rules, in practice it is of vital 
importance. The dependence of the VaR errors is crucial for the stability of any financial 
institution since bunched VaR errors can erase the capital reserves much faster than the slight 
underestimation of risk.  
 Kupiec and Christoffersen independence (IND) test backtesting results, at 5% 
significance level, for tested VaR models at 99% confidence level are presented in tables 2 and 3. 
 
Table 2  
Kupiec test backtesting results at 99% confidence level, 5% significance level, period: 1,500 

days up to 12.11.2008.* 

* Grey 
areas mark VaR models that satisfied Kupiec backtesting criterion 
  
Table 3  

Christoffersen independence (IND) test backtesting results at 99% confidence level, 5% 
significance level, period: 1,500 days up to 12.11.2008.* 

* Grey 
areas mark VaR models that satisfied Christoffersen independence backtesting criterion 



 

 
Tested GARCH, EGARCH and GJR-GARCH models with Gaussian, T, skewed T and 

GED distribution performed unsatisfactory in Mediterranean stock markets, both developed and 
developing, providing satisfactory results only for CROBEX and MALTEX index. Such weak 
performance of this widely used VaR model can be attributed to the fact that the time period 
under consideration includes the ongoing global financial crisis. Since we are using a sufficiently 
long backtesting period of 1.500 days (almost six years of daily data) global financial crisis 
should not be used as an excuse and investors should seriously rethink the safety of their VaR 
models. Based on the obtained results we can safely say that it should not to be used in the tested 
stock markets for the purpose of risk measurement at high quantiles. The test reveal an 
absolutely supreme performance of conditional and unconditional EVT models that satisfied 
both tests for all of the tested indexes, with the only exception of the unconditional GPD model 
failing the Christoffersen independence test for MOSEMDX index. VaR model performance for 
the most developed Mediterranean countries; France, Italy and Spain is identical, with BRW 
simulation (optimal and 0.99 decay factor) and EVT models satisfying both employed tests. For 
developing Mediterranean countries VaR performance is similar to the developed ones since 
only the optimal decay factor BRW simulation and EVT models passed the two tests. The only 
exception is the Greek FTASE index for which only EVT models forecasted the true level of 
risk. Overall, the results are very consistent in pointing to the conclusion that for the time period 
under consideration only EVT models (especially the conditional EVT-GARCH model) perform 
satisfactory for all the tested stock indexes, while other VaR models tend to underpredict the true 
level of risk. The backtesting shows that performance of the BRW simulation depends, to a very 
large extent, upon the choice of decay factor. The BRW simulation with decay factor of 0.97 
performs poorly and is not an adequate risk measure in any of the tested markets. Decay factor of 
0.99 shows considerable improvements but still fails for four out of nine indexes (FTASE, 
CASE, CROBEX and MALTEX). BRW simulation with individually optimised decay factor 
brings a significant improvement over the usually used 0.99 decay factor and fails only once, in 
the case of Greek FTASE index. This makes the optimised BRW simulation second only to EVT 
approaches.  

 
In the tested sample the optimised BRW simulation proved superior to the parametric 

GARCH estimation, both in developed and developing markets. The reasons for such a good 
performance of the optimised BRW model can be attributed to the high decay factors, in the 
range between 0.99 and 1.00. When using the BRW simulation with such high decay factors the 
observation window becomes very long since no cut-off level exist as in the case of the historical 
simulation. In this manner the model has a very long history from which to form the time 
weighted empirical cumulative distribution function and produce robust VaR forecasts. On the 
other hand information is updated but also lost much faster in the GARCH setup. These 
characteristics can work in favour of the BRW simulation and against GARCH in a situation 
where there are sudden bursts of volatility lasting only a couple of day. After these short bursts 
the excess volatility fades away only to appear again suddenly. In such instances the GARCH 
model cannot correctly conclude whether it is in a state of increased market stress or not. Upon 
visual inspection of the analysed indexes we find that exactly this is the case, especially in the 
period of global financial crisis. In the described circumstances the lower speed with which the 
BRW model with high decay factor reacts to the changes actually works in favour of the model 
since it does not automatically start to decrease VaR forecasts due to the calm periods between 
the short bursts of volatility. In situations where there is a clearly visible shift between periods of 
high and low volatility GARCH is obviously a preferred method. In situations where it is not 
easy to conclude about the characteristics of a certain period since calm and volatile days 



 

interchange very suddenly we conclude that the BRW simulation should be preferred to GARCH 
estimation. The results show that making even small adjustments to decay factor for example 
0.001 in case of CASE index makes the difference between an acceptable and unacceptable VaR 
model. This is a clear proof that optimisation of the decay factor makes a huge difference in 
judging the performance of the BRW simulation. It can be concluded that studies evaluating the 
performance of the BRW model are flawed if they do not in some way optimise the decay factor. 
Taking ad hoc values is certainly not a reliable way of testing the performance of any VaR 
model.  

 
With regards to independence of VaR exceedances results of the Christoffersen 

independence test are much better but still some VaR models such as the GPD EVT and BRW 
model fail in some cases, meaning that their VaR errors are not IID i.e. they tend to cluster 
together which makes them completely unusable in these circumstances. Since EVT and the 
optimal decay factor BRW simulation models are the best performing models according to 
Kupiec and independence test it is useful to know which model gives the closest fit to the true 
level of risk. The results are presented in table 4. 
 
Table 4  
Lopez test ranking of competing VaR models at 99% confidence level, period 1,500 days up 

to 12.11.2008.* 

* Grey 
areas mark VaR models yielding lowest Lopez score i.e. smallest deviation from expected values 
 

In case of CAC, IBEX, XU 100 and CASE index optimal decay factor BRW simulation 
has the lowest Lopez size adjusted score, making it, by this criterion, the best VaR model since it 
minimises the deviation between recorded and expected VaR failure rate. For MIB 30, FTASE 
and MOSEMDX index the EVT models were the best models with regards to Lopez score 
function. Parametric GARCH model was the best performing VaR model for CROBEX and 
MALTEX index. When looking at the Kupiec, independence and Lopez test performance of non-
EVT models is far worse than reported by similar studies which can be attributed to increased 
market stress and occurrence of extreme loses that cannot be accounted for by classical VaR 
models. The magnitude of losses that occurred in these markets under the parametric models 
using normality assumption are expected to occur once in a thousand years and in the historical 
simulation models periods of such high volatility and extreme losses simply fell out of the 
observation sample. The only models which overpredict the true level of risk in most of the 
indexes are the EVT models. The Lopez test results show that although EVT, especially the 
conditional EVT-GARCH version is superior to the optimised BRW model often the optimised 
BRW model provides a closer fit to the true level neither under or overpredicting it.  
 
 

6. CONCLUSION 
 

In this paper we present an optimisation approach to determine the optimal decay factor 
for the BRW simulation based on minimising the deviation (positive or negative) between 



 

observed and expected VaR exceedances while taking into account the size of those 
exceedances. The optimal decay factors obtained in this manner show consistency over different 
time windows with minimal changes in their values, which gives economic justification to their 
optimisation for each stock index since once calculated these values do not change very often, or 
they do so by a very small amount. This is a very useful characteristic which allows the 
optimisation procedure to be performed far less frequently. The optimal decay values are similar, 
for both developed and developing Mediterranean economies, ranging between 0.991 and 0.998, 
so we cannot point to any significant difference in the optimal decay factor based on wealth, 
development or size of the stock market. For the time period under consideration only the EVT 
models perform satisfactory for all of the tested Mediterranean stock indexes, while other VaR 
models tend to underpredict the true level of risk. Performance of the BRW simulation depends, 
to a very large extent, upon the choice of the decay factor. The BRW simulation with the decay 
factor of 0.97 performs poorly and is not an adequate risk measure in any of the tested markets. 
The decay factor of 0.99 shows considerable improvements but still fails for four out of nine 
indexes. The BRW simulation with the individually optimised decay factor brings a significant 
improvement over the usually used 0.99 decay factor. In the tested sample the optimised BRW 
simulation proved superior to the parametric GARCH estimation, both in developed and 
developing markets. The reasons for such a good performance of the optimised BRW model can 
be attributed to the high decay factors, in the range between 0.99 and 1.00. When using the BRW 
simulation with such high decay factors the observation window becomes very long since no cut-
off level exist as in the case of the historical simulation. In this manner the model has a very long 
history from which to form the time weighted empirical cumulative distribution function and 
produce robust VaR forecasts. On the other hand information is updated but also lost much faster 
in the GARCH setup. These characteristics can work in favour of the BRW simulation and 
against GARCH in a situation where there are sudden bursts of volatility lasting only a couple of 
day. Among the non-EVT VaR models the optimal decay factor BRW simulation is a preferable 
method and as such presents a viable alternative when it comes to VaR estimation. The Lopez 
test results show that although EVT, especially the conditional EVT-GARCH version is superior 
to the optimised BRW model often the optimised BRW model provides a closer fit to the true 
level neither under or overpredicting it.  

 
Optimisation of the decay factor makes a huge difference in judging the performance of 

the BRW simulation. It can be concluded that studies evaluating the performance of the BRW 
model are flawed if they do not in some way optimise the decay factor. Taking ad hoc values is 
certainly not a reliable way of testing the performance of any VaR model. In this paper we 
suggest optimising the decay factor with regards to the Lopez size adjusted function but there is 
no reason why optimisation of the decay factor with some other target function could not yield 
even better results. This possibility represents an interesting opportunity for future research. 
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OPTIMIZACIJA FAKTORA OPADANJA U VREMENSKI PONDERIRANOJ 

(BRW) SIMULACIJI: POSLJEDICE ZA IZRAČUN VAR-A U 
MEDITERANSKIM ZEMLJAMA 

 
 

SAŽETAK 
 
U radu se predlaže optimizacijski pristup određivanju optimalnog faktora opadanja u vremenski 
ponderiranoj (BRW) simulaciji. Testiranje uspješnosti BRW simulacije sa različitim faktorima 
opadanja u odnosu na široki raspon VaR modela provedeno je na uzorku od devet mediteranskih 
zemalja tijekom razdoblja od četiri godine, uključujući i razdoblje aktualne svjetske financijske 
krize. Rezultati testiranja pokazuju da nakon provedene optimizacije BRW simulacija je među 
najuspješnijim testiranim VaR modelima zaostajući jedino za modelima temeljenim na teoriji 
ekstremnih vrijednosti. Optimiziranje faktora opadanja u odnosu na Lopezovu funkciju rezultira 
faktorima opadanja koji su viši od uobičajeno korištenih vrijednosti 0.97 i 0.99. Dobiveni 
optimalni faktori opadanja su izrazito stabilni tijekom testiranog razdoblja te rezultiraju 
značajno boljim VaR prognozama. 
Ključne riječi:  Upravljanje rizicima, rizična vrijednost, vremenski ponderirana (BRW) 

simulacija, optimizacija, faktor opadanja, Mediteran 
 


