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In this paper we present an optimal design procedure for second- and third-order active resistance-capacitance
(RC) single-amplifier building blocks that are used to build a high-order tolerance-insensitive allpole filter. The
design procedure of low-sensitivity, low-pass second- and third-order active-RC allpole filters, with positive feed-
back, has already been published. The design was extended to the high-pass and band-pass filters, as well as, to
the filters using negative feedback. In this paper we summarize all these previously presented designs in the form
of a tabulated step-by-step design framework (cookbook). The low passive sensitivity of the resulting circuits, as
well as low active sensitivity features are demonstrated on the high-order Chebyshev filter examples. The resulting
low passive sensitivity is investigated using the Schoeffler sensitivity measure, whereas the low active sensitivity is
investigated with Matlab using finite and frequency dependent opamp gain.
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Projektiranje svepolnih aktivnih RC filtara niske osjetljivosti pomoću optimiranih bikvadratnih sekcija.
Prikazan je optimalan postupak projektiranja aktivnih RC filtarskih sekcija drugog i trećeg reda bez konačnih nula
s jednim pojačalom koje se koriste pri gra�enju filtara visokog reda s niskom osjetljivošću. Postupak projektiranja
nisko osjetljivih, nisko propusnih filtara već je objavljen, a u ovome je radu navedeni postupak proširen na nove
sekcije koje realiziraju pojasno propusnu i visoko propusnu frekvencijsku karakteristiku kao i na sekcije koje ko-
riste negativnu povratnu vezu u realizaciji. Svi su postupci optimalnog projektiranja sažeti i raspoloživi u obliku
tablica s postupkom projektiranja “korak po korak”. Niska osjetljivost na tolerancije pasivnih komponenata, kao
i niska osjetljivost na varijacije aktivnog elementa (pojačala) pokazani su na primjerima projektiranja Chebyshev-
ljevih filtara visokog reda. Pritom ostvarena niska osjetljivost, kako pasivna tako i aktivna, istraživane su pomoću
Shefflerove mjere osjetljivosti, odnosno uporabom frekvencijski ovisnog modela operacijskog pojačala u simulaciji
pomoću programa Matlab.

Ključne riječi: aktivni RC filtri, niska osjetljivost, bikvadratne sekcije s jednim pojačalom, kaskadna struktura

1 INTRODUCTION

In this paper, a method of designing high-order allpole
active-RC filters (both even and odd order) using combina-
tion of second- and third-order single-amplifier filter sec-
tions (bi-quads and, for lack of a better word, bi-triplets)
is presented. Second- and third-order building blocks are
designed in an optimal way and can be used in the cascade
or some other structure of high-order filters.

To keep the cost of the filters low, it is desirable to avoid
the need for filter tuning, and this is possible only for fil-
ters of medium to low selectivity and low sensitivity to
component tolerances. Fortunately the RC ladder nature of
the resulting circuits permits a recently introduced scheme
of impedance tapering [1] which in many cases can re-
duce the sensitivity to component tolerances sufficiently
to eliminate the need for tuning. Furthermore, the perfor-

mance of the filters when they operate on high frequencies
can be improved by reducing theirs active sensitivity, and
by that reducing the influence of the finite gain-bandwidth
product (GBW) of a real operational amplifier (opamp).
Active sensitivity reduction is accomplished by the gain-
sensitivity product (GSP) minimization. The reduction of
active sensitivity is performed together with reduction of
passive sensitivity.

Preliminary results of the new design method have been
presented elsewhere [1–5] for filters of second- and third-
order and for low-pass (LP), band-pass (BP) and high-pass
(HP) filter types. For those filters, sensitivity to compo-
nent tolerance, which is considered one of the main perfor-
mance criteria, was investigated in detail. The sensitivity
of a filter transfer function to passive component tolerances
is examined using the Schoeffler sensitivity measure as a
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basis for comparison [6]. Using Matlab with real opamp
model, having the finite GBW product, the filter perfor-
mance at high frequency is simulated and by that the active
sensitivity is investigated.

In Section 2 the main idea how to design low-sensitivity
filters is explained. In Sections 3 and 4, a complete step-
by-step design procedure for the most common LP, BP and
HP filters of the second- and third-order is summarized in
the form of a cookbook (table). Although no cookbook ap-
proach will solve all possible problems, it is often prefer-
able to use quick step-by-step designs instead of returning
to complicated equations to obtain slightly better perfor-
mance. In the cookbook in this paper engineer uses tabu-
lated equations and mechanically follows prescribed pro-
cedure. The most useful (recommended) filter sections are
marked. In Section 3 it is also shown that HP filters have
dual properties to LP filters in the sense of sensitivity and
thus possess dual optimum design procedures. It is demon-
strated that filters related by the complementary transfor-
mation have identical properties in the sense of sensitivity
and thus possess identical optimum designs. The largest
variety of biquads for realization of BP transfer function is
presented.

In Section 5 the main features of our design procedure,
namely, low passive and active sensitivities are illustrated
by examples of seventh-order LP and HP, and sixth-order
BP filters realized by cascading optimum biquads. The
resulting optimized high-order cascaded filters are com-
pared with other designs such as non-optimized cascade
(designed simply by using equal caps and res).

2 LOW SENSITIVITY DESIGN

Consider the transfer function T(s) of an nth-order
allpole filter in terms of the transfer function coefficients:

T (s)=
N(s)
D(s)

=
Kbksk

sn + an−1sn−1 + . . . + aisi + . . . + a1s + a0
.

(1)

The transfer function T(s) in (1) has no finite zeros, i.e. it
has n zeros at infinity (k=0) for a LP filter, k-fold zero at
the origin (k=n/2) for a BP filter, or k=n for a HP filter. (For
convenience we denote b0=a0 in (1) for LP filter.) In this
paper we consider building blocks of the second- and third-
order having transfer functions of the form (1) (with n=2
or 3). For the filters given in Figures 2–4, transfer function
coefficients ai are given in Tables 1, 3 and 5. In Tables 2, 4
and 6 the corresponding optimum designs are summarized
in the form of a designer’s cookbook.

The relative sensitivity of a function F(x) to variations
of a variable x is defined as

SF (x)
x =

dF/F

dx/x
=

dF (x)
dx

x

F (x)
=

d [lnF (x)]
d [lnx]

. (2)

The relative change of the filter transfer function T(s) in
(1) due to the variation of its coefficients ai is given by

ΔT (s)
T (s)

=
n∑

i=0

ST (s)
ai

Δai

ai
, (3)

where S
T (s)
ai are the amplitude-to-coefficient sensitivities.

The variation of the amplitude response α(ω) is given by

Δα(ω) =
n∑

i=0

Re
[
ST (s)

ai

]∣∣∣
s=jω

· Δai

ai
=

n∑
i=0

fi(ω)
Δai

ai
.

(4)
The coefficient ai relative change is given by

Δai

ai
=

r∑
μ=1

Sai

Rμ

ΔRμ

Rμ
+

c∑
ν=1

Sai

Cν

ΔCν

Cν
+ Sai

β

Δβ

β
, (5)

where Rμ are resistors, Cν capacitors and β the feedback
gain of an operational amplifier. The terms Sai

x represent
the coefficient-to-component sensitivities.

The magnitude |T(jω)| of T(s) in (1) depends only on
the values of the coefficients ai of the polynomial D(s)
and frequency ω. The functions fi(ω) in (4) represent an-
other form of amplitude-to-coefficient sensitivities in (3),
and are dependent on the values of ai and ω, as well.
The amplitude-to-coefficient sensitivities are proportional
to the pole Qs, meaning that the higher pole Qs results by
higher sensitivities. Since the high-order filters have higher
pole-Qs, the general rule should be to design filters with as
low ripple and as low order as consistent with the filter
specifications.

Unlike the amplitude-to-coefficient sensitivities, the
coefficient-to-component sensitivities are dependent on the
realization of the filter circuit and can be reduced by non-
standard filter design such as impedance tapering shown
in [1]. Consider a general passive-RC, nth-order ladder
network presented in Figure 1. Impedance tapering is
essentially impedance-scaling every successive stage of a
ladder-like structure by an increasingly high power of a
scaling factor. In other words we successively scale each
section by an increasing amount, that is, ρ, ρ2, ρ3, etc., in
order to isolate each section from the next.

Consequently, if we apply ideal tapering to the lad-
der network in Figure 1(a), we shall have the network
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(b) When ρ>> the sections are isolated with amplifiers

Fig. 1. Ideally impedance-tapered passive ladder network

presented in Figure 1(b). (The terms ideal tapering and
partial tapering are used according to the definition in
[1].) Note that, because of the geometrical progress of fac-
tor ρ, when ρ becomes high enough, the network can be
represented with isolating amplifiers between adjacent L-
sections. This is possible because impedance scaling of the
middle L-section increases its input impedance and thus
minimizes the loading of the previous L-section.

These successive increases of impedances reduce the
coefficient-to-component sensitivities and by that reduce
the overall transfer function sensitivity to component tol-
erances. In this paper, this design technique is applied to
the most important practical second- and third-order build-
ing blocks (called biquads and bitriplets).

3 SECOND-ORDER BIQUADS

3.1 Second-order sections with positive feedback

Consider the second-order filters shown in Figure 2,
having ladder-RC network in an opamp positive feedback
loop. The circuits in Figure 2 belong to the Sallen and
Key type [7]. The names of the filter sections are given ac-
cording to [8, 9]. Transfer function has the form (1) with
n=2 and the coefficients as function of components are in
Table 1. The voltage gain β is obtained with an ideal non-
inverting opamp and the gain is given by

β = 1 + RF /RG. (6)

In what follows, we briefly demonstrate the desensiti-
zation on the example of HP filter circuit shown in Figure
2(b) [3, 4]. The sensitivities of the HP coefficient a1 to all
passive components R1, R2, C1, C2, RG, and RF , given
in [4] are repeated here:

Sa1
R1

= qp ·
√

R2C2
R1C1

(β − 1) ,

Sa1
R2

= −qp ·
√

R1C1
R2C2

(
1 + C2

C1

)
,

Sa1
C1

= qp ·
√

R1C2
R2C1

(
R2
R1

(β − 1) − 1
)

,

Sa1
C2

= −qp ·
√

R1C1
R2C2

,

Sa1
RG

= Sa1
β Sβ

RG
= −Sa1

RF
=

= qp ·√(R2C2)/(R1C1) (β − 1) .

(7)

Incidentally, it can be shown that the sum of the sensi-
tivities (7) of a1 to all resistors and also to all capacitors
equals minus one, that is,

2∑
μ=1

Sa1
Rμ

=
2∑

ν=1

Sa1
Cν

= −1. (8)

Expressions of this kind are often referred to as sensi-

tivity invariants. They are a result of the so-called homo-

geneity of the function in question; in this case being the
homogeneity of the coefficient a1(Ri, Ci).

Note that all sensitivities of the coefficient a0 to passive
components are equal to a theoretical minimum of –1/2
(and to the RG and RF they are zero). All good active
filters should have gain-independent a0.

Thus, there is nothing that can be done to reduce a0 sen-
sitivities; but on the other hand, coefficient a1 sensitivities
in (7) depend on the component values.

The general impedance scaling factors, providing the re-
lationship between elements in the RC network, are given
by:

R1 = R, R2 = rR = rR1,
C1 = C, C2 = C/ρ = C1/ρ,

(9)

and shown in Figure 2. Equations (9) are used in all design
equations in this paper. Furthermore, from the expression
for β(r,ρ) in Table 2(b) it is seen that increasing the value
of resistance ratio r, while keeping the value of capacitance
ratio ρ equal to unity, the value of β is getting smaller and
nearer to unity, and the term (β–1) approaches zero, thus
minimizing the influence of the (β–1)-multiplied terms in
(7).

Including the expression for β(r,ρ) into sensitivities in
(7) and with (9) we have the coefficient sensitivities in an-
other form given by:

Sa1
R1

= qp

(√
ρ/r + 1/

√
ρ r
)
− 1,

Sa1
R2

= −qp

(√
ρ/r + 1/

√
ρ r
)

,

Sa1
C1

= qp ·√ρ/r − 1, Sa1
C2

= −qp ·√ρ/r,

Sa1
RG

= Sa1
β Sβ

RG
= −Sa1

RF
= qp

(√
ρ/r + 1/

√
ρ r
)
− 1.

(10)
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Table 1. Transfer function coefficients of second-order active-RC filters with positive feedback in Fig. 2.

Coefficient (a) Low pass (b) High pass (c) Band pass -Type A
a0 = ω2

p (R1R2C1C2)−1 (R1R2C1C2)−1 (R1R2C1C2)−1

a1 = ωp

qp

R1(C1+C2)+R2C2−βR1C1
R1R2C1C2

(R1+R2)C2+R1C1−βR2C2
R1R2C1C2

R2(C1+C2)+R1C1−αβ·R2C1
R1R2C1C2

K αβ αβ (1 − α)β qp

√
(R2C1)/(R1C2)

Coefficient (d) Band pass -Type B (e) Band pass -Type A Dual (f) Band pass -Type B Dual
a0 = ω2

p (R1R2C1C2)−1 (R1R2C1C2)−1 (R1R2C1C2)−1

a1 = ωp

qp

(R1+R2)C2+R1C1−αβ·R2C2
R1R2C1C2

R2(C1+C2)+R1C1−αβ·R2C1
R1R2C1C2

(R1+R2)C2+R1C1−αβ·R1C1
R1R2C1C2

K (1 − α)β qp

√
(R2C2)/(R1C1) (1 − α)β qp

√
(R2C1)/(R1C2) (1 − α)β qp

√
(R1C1)/(R2C2)

(a) Low pass (recommended) (b) High pass (recommended)

(c) Band pass - Type A (Lossy) (d) Band pass - Type B

(e) Band pass -Type A (Lossy) Dual (f) Band pass - Type B Dual

Fig. 2. Second-order active-RC filters with positive feedback and impedance scaling factors r and ρ

It can readily be seen that sensitivities in (10) are in-
versely proportional to the square root of r and partially
proportional to the square root of ρ. (By partial propor-

tionality we mean that ρ will appear partially in the numer-
ator, partially in the denominator.)

Consequently, to reduce the sensitivity expressions, pro-
portional quantities have to be decreased, those inversely
proportional increased, and those partially proportional

should be equal to unity.
Thus, the sensitivities in (10) can be reduced by increas-

ing the resistive scaling factor r while keeping the capac-
itive scaling factor ρ equal to unity. This will be the op-
timum strategy for desensitization of the HP filter to pas-
sive component tolerances (it is referred to as partial ta-

pering of the resistors or resistive tapering). The high-
impedance RC section is marked by the rectangle in Fig-
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Table 2. Step-by-step design procedures for the design of low-sensitivity second-order active-RC filters in Fig. 2.

Step\Type (a) Low pass (b) High pass (c) Band pass -Type A (Lossy)
i) Start Choose: C1=1, ρ>> (e.g. ρ=4) Choose: C1=1, r>> (e.g. r=4) Choose: C2=1, ρ=1
ii) min. GSP Choose: r=1 or r for min GSP Choose: ρ=1 or ρ for min GSP Choose: r=ρ or r for min GSP

r = ρ
36q2

p
× ρ = r

36q2
p
× r = ρ

36q2
p
×

×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
×
[√

1 + 12q2
p

(
1 + 1

r

)
+ 1
]2

×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
iii) ωp, R1 R1 = 1

ωpC1

√
ρ
r R1 = 1

ωpC1

√
ρ
r R2 = 1

ωpC2

√
ρ
r

iv) GSP qpβ
2
√

ρ
r qpβ

2
√

r
ρ qpαβ2 1√

rρ

v) β β = 1 + 1+r
ρ − 1

qp

√
r
ρ β = 1 + 1+ρ

r − 1
qp

√
ρ
r αβ = 1 + ρ + r − 1

qp

√
ρr

vi) Compo-
nents

R2 = rR1;C2 = C1/ρ;
α = K/β;
R11 = R1/α;
R12 = R1/(1 − α);
RG = 1;
RF = RG(β − 1).

R2 = rR1; C2 = C1/ρ;
α = K/β;
C11 = αC1;
C12 = (1 − α)C1;
RG = 1;
RF = RG(β − 1).

R1 = rR2; C1 = C2/ρ;
RG = 1;
β = (αβ) + 1/qp

√
rρ · K;

α = (αβ)/β;
R11 = R1/(1 − α);
R12 = R1/α;
RF = RG(β − 1).

Step\Type (d) Band pass -Type B (e) Band pass -Type A (f) Band pass -Type B Dual
(Lossy) Dual

i) Start Choose: C1=1, r>> (e.g. r=4) Choose: C2=1, ρ=1 Choose: C1=1, ρ>> (e.g. ρ=4)
ii) min. GSP Choose: ρ=1 or ρ for min GSP Choose: r=ρ or r for min GSP Choose: r=1 or r for min GSP

ρ = r
36q2

p
× r = ρ

36q2
p
× r = ρ

36q2
p
×

×
[√

1 + 12q2
p

(
1 + 1

r

)
+ 1
]2

×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
iii) ωp, R1 R1 = 1

ωpC1

√
ρ
r R2 = 1

ωpC2

√
ρ
r R1 = 1

ωpC1

√
ρ
r

iv) GSP qpαβ2
√

r
ρ qpαβ2 1√

rρ qpαβ2
√

ρ
r

v) β αβ = 1 + 1+ρ
r − 1

qp

√
ρ
r αβ = 1 + ρ + r − 1

qp

√
ρr αβ = 1 + 1+r

ρ − 1
qp

√
r
ρ

vi) Compo-
nents

R2 = rR1;C2 = C1/ρ;
RG = 1;
β = (αβ) + 1/qp

√
ρ/r · K;

α = (αβ)/β;
R11 = R1/(1 − α);
R12 = R1/α;
RF = RG(β − 1).

R1 = rR2; C1 = C2/ρ;
RG = 1;
β = (αβ) + 1/qp

√
rρ · K;

α = (αβ)/β;
C11 = (1 − α)C1;
C12 = αC1;
RF = RG(β − 1).

R2 = rR1; C2 = C1/ρ;
RG = 1;
β = (αβ) + 1/qp

√
r/ρ · K;

α = (αβ)/β;
C11 = (1 − α)C1;
C12 = αC1;
RF = RG(β − 1).

ure 2(b). The investigations of coefficient sensitivities have
been performed on all filter sections in this paper, but be-
cause of the lack of space, those expressions are not pre-
sented here. Only the results are used to present the opti-
mum design strategies for each section.

If we consider, for example, the LP filter section in Fig-
ure 2(a) and calculate the a1-sensitivities then it will be
shown that the desensitization is obtained in a dual way by
increasing the value of capacitance ratio ρ while keeping
the resistance ratio r equal to unity. This is because the LP
and HP filter sections are RC-CR dual, and the positions
of r and ρ simply exchange. This is true for all dual cir-
cuits. For every circuit in Figure 2, the optimum design
procedure is summarized in Table 2.

Special cases are the BP-Type A Lossy and BP-Type A

Lossy Dual circuits shown in Figure 2(c) and (e), respec-
tively, that have the first RC sections with larger impedance
(r and ρ are larger than or equal to unity). Those circuits
can be constructed by the so-called Lossy LP–BP transfor-

mation [5]. It is shown in [5] and repeated here in Table
2, that optimum designs of those sections are those having
equal ratios of capacitors and resistors.

3.2 Second-order sections with negative feedback
Consider the second-order filters shown in Figure 3,

having ladder-RC network in an op-amp negative feed-
back. Transfer function coefficients are in Table 3. The
voltage gain β̄ is given by
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β̄ = 1 + RG/RF . (11)

Note that the gains β in (6) and β̄ in (11) are connected
by the complementary transformation and they are related

1/β̄ + 1/β = 1. (12)

Furthermore, the circuits having negative feedback
shown in Figure 3 are related to theirs counterparts in Fig-
ure 2 by the complementary transformation in [10].

The complementary transformation provides that all
complementary circuits possess identical transfer func-
tions with the same coefficients but with β and β̄ inter-
changed (compare coefficients in Tables 1 and 3). This
provides the same sensitivity characteristics and the same

design strategies for complementary pairs [2]. For exam-
ple, for both (+) BP-Type B filer in Figure 2(d) and (–) BP-
Type R filter in Figure 3(d) there is the same optimum de-
sign procedure choosing r>1 and ρ=1 (or ρ for min. GSP)
because they form one complementary pair. The comple-
mentary pairs are: {(+) HP, (–) BP-R}, {(+) LP, (–) BP-C},
{(+) LP, (–) BP-C}, {(+) BP-A-Lossy, (–) BP- Lossy}, {(+)
BP-A-Lossy Dual, (–) BP- Lossy Dual},{(+) BP-Type B,
(–) BP-Type R} where (+) denotes positive feedback cir-
cuits and (–) circuits with negative feedback.

As shown above, there also exist dual circuits that pos-
sess dual (opposite) design strategies: those are the dual

pairs: {(+) LP, (+) HP}, {(–) LP, (–) HP}, {(+) BP-A-
Lossy, (+) BP-A-Lossy Dual}, {(–) BP-Lossy, (–) BP-
Lossy Dual },{(+) BP-B, (+) BP-B Dual}, {(–) BP-R, (–)
BP-C}.

Note that complementary circuits form pairs between
different feedbacks positive (+) and negative (–) types but
the dual circuits in pair share the same feedback, i.e. posi-
tive (+) or negative (–).

For every circuit in Figure 3, the optimum design proce-
dures are summarized in Table 4. The high-impedance sec-
tions are surrounded by dashed rectangle. Special cases are
the BP-Type Lossy and BP-Type Lossy Dual. It is shown in
Table 4, that optimum designs of those sections are those
having equal ratios of capacitors and resistors.

Note that negative-feedback LP and HP filters in Fig-
ures 3(a)–(b) have gain-dependent a0 and therefore are not
preferable to use and have no equation for minimum GSP.

To design sections with low pole Q-factor, qp (e.g.
qp<2) unity gain low-Q version of the circuits can be used
[8]. This is possible for all presented circuits except BP-
Lossy and BP-Lossy Dual circuits in Figures 3(c) and (f),
respectively. Those circuits are unable to realize pole Q-
factor, qp≥0.5 if they posses the unity gain β̄=1.

4 THIRD-ORDER BITRIPLETS

In this paper we consider two examples of the third-
order filters with positive feedback [1, 3]. Those are the
LP and HP filters, shown in Figure 4(a) and (b), respec-
tively. The corresponding coefficients are given in Table 5.
They are RC-CR duals of each other and from the optimum
design of the LP circuit readily follow (dual) optimum de-
sign of the HP circuit. Optimum step-by-step design pro-
cedures are summarized in Table 6. In what follows we
demonstrate our new design procedures on examples.

5 DESIGN EXAMPLES

5.1 Design of low-pass filters
Suppose we build an anti-aliasing LP filter, which is re-

quired to suppress high frequency components before sam-
pling (compact disc recording device). The LP filter has to
be as simple as possible (therefore we realize it using an
active-RC filter), and must be selective. Because relatively
high filter order is needed, the filter must have acceptably
small sensitivity to component tolerance to be realizable
without subsequent need for tuning. For those reasons we
decided to use the cascade of optimized second- and/or one
third-order allpole LP filter circuits presented in Figures
2(a) and 4(a).

In the example we will use the cookbook with closed
form step-by-step design in Tables 2(a) and 6(a).

A LP filter has to satisfy the following specifications:
the maximum pass-band attenuation of Amax = 0.5dB
for the frequencies up to the fp=20kHz, and the minimum
stop-band attenuation of Amin = 50dB for the frequen-
cies above fs=34kHz. The filter has a unity gain in the
pass band (K=1). The normalized LP prototype cut-off fre-
quency is Ωs=fs/fp=1.7.

Using equations in [11] we can readily calculate the fil-
ter order n and the cut-off frequency ω0 for the design of
the Butterworth or Chebyshev filters. We have the follow-
ing two solutions: i) Butterworth n=13, ω0=136253rad/s
and ii) Chebyshev n=7, ω0=125664rad/s.

Note that the order n of the Chebyshev filters is smaller
than the order of the Butterworth filter. Also recall that the
Chebyshev filter with higher ripple would require lower
filter order. Consequently, in what follows we realize the
Chebyshev filter with 0.5 dB pass-band ripple.

The normalized Chebyshev poles readily follow from
tables (e.g. in [8]) or using Matlab program. They are
given by (and also shown in Figure 5):

p0 = −σ0 = −0.25617
p1, p

∗
1 = σ1 ± jΩ1 = −0.0570032 ± j1.00641

p2, p
∗
2 = σ2 ± jΩ2 = −0.159719 ± j0.807077

p3, p
∗
3 = σ3 ± jΩ3 = −0.230801 ± j0.447894

(13)
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Table 3. Transfer function coefficients of second-order active-RC filters with negative feedback in Fig. 3.

Coefficient (a) Low pass (b) High pass (c) Band pass -Type Lossy
a0 = ω2

p [1 − (1 − α)β̄]/(R1R2C1C2)
{
R1R2C1C2

[
1 − (1 − α)β̄

]}−1 (R1R2C1C2)−1

a1 = ωp

qp

(R1+R2)C2+R1C1−β̄R1C1
R1R2C1C2

R2(C1+C2)+R2C2−β̄R2C2
R1R2C1C2

R2(C1+C2)+R1C1−β̄·R2C1
R1R2C1C2

K (1 − α)β̄/[1 − (1 − α)β̄] (1 − α)β̄/[1 − (1 − α)β̄] αβ̄ qp

√
(R2C1)/(R1C2)

Coefficient (d) Band pass -Type R (e) Band pass -Type C (f) Band pass -Type Lossy Dual
a0 = ω2

p (R1R2C1C2)−1 (R1R2C1C2)−1 (R1R2C1C2)−1

a1 = ωp

qp

(R1+R2)C2+R1C1−β̄R2C2
R1R2C1C2

R1(C1+C2)+R2C2−β̄R1C1
R1R2C1C2

R2(C1+C2)+R1C1−β̄·R2C1
R1R2C1C2

K αβ̄ qp

√
(R2C2)/(R1C1) αβ̄ qp

√
(R1C1)/(R2C2) αβ̄ qp

√
(R2C1)/(R1C2)

(a) Low pass (b) High pass

(c) Band pass - Type Lossy (d) Band pass - Type R (recommended)

(e) Band pass -Type C (recommended) (f) Band pass - Type Lossy Dual

Fig. 3. Second-order active-RC filters with negative feedback and impedance scaling factors r and ρ

The corresponding normalized pole parameters are
ωp1=1.00802, qp1=8.8418 (max. Q), ωp2=0.82273, qp2 =
2.575546 (mid. Q), and ωp3=0.503863, qp3 = 1.091552
(min. Q). The resulting transfer function is:

T (s) = k
(s+0.25617)(s2+0.114006s+1.01611)×

0.0447309
(s2+0.3194s+0.676884)(s2+0.4616s+0.25388) .

(14)

In the even-order Chebyshev LP filter, the d.c. gain k
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Table 4. Step-by-step design procedures for the design of low-sensitivity second-order active-RC filters in Fig. 3.

Step\Type (a) Low pass (b) High pass (c) Band pass -Type Lossy
i) Start Choose: C1=1, r=1, Choose: C1=1, ρ=1, Choose: C2=1, ρ=1, r=ρ or

ρ>> (e.g. ρ=4) r>> (e.g. r=4) r for min GSP
[see f ) Type Lossy Dual]

ii) ωp, R1 R1 = 1
ωpC1

√
ρ
r · 1√

K+1
R1 = 1

ωpC1

√
ρ
r · √K + 1 R2 = 1

ωpC2

√
ρ
r

iii) β̄ β̄ = 1 + 1+r
ρ − 1

qp

√
r
ρ · 1√

K+1
β̄ = 1 + 1+ρ

r − 1
qp

√
ρ
r · 1√

K+1
β̄ = 1 + ρ + r − 1

qp

√
ρr

iv) Compo-
nents

R2 = rR1; C2 = C1/ρ;
α = 1 − K/

[
β̄(K + 1)

]
;

R11 = R1/(1 − α);
R12 = R1/α;
RF = 1;
RG = RF (β̄ − 1).

R2 = rR1;C2 = C1/ρ;
α = 1 − K/

[
β̄(K + 1)

]
;

C11 = (1 − α)C1;
C12 = αC1;
RF = 1;
RG = RF (β̄ − 1).

R1 = rR2; C1 = C2/ρ;
α = K/(β̄qp) · √rρ;
R11 = R1/α;
R12 = R1/(1 − α);
RF = 1;
RG = RF (β̄ − 1).

Step\Type (d) Band pass -Type R (e) Band pass -Type C (f) Band pass -Type Lossy Dual
i) Start Choose: C1=1, r>> (e.g. r=4) Choose: C1=1, ρ>> (e.g. ρ=4) Choose: C2=1, ρ=1
ii) min. GSP Choose: ρ=1 or ρ for min GSP Choose: r =1 or r for min GSP Choose: r=ρ or r for min GSP

ρ = r
36q2

p
× r = ρ

36q2
p
× r = ρ

36q2
p

×
[√

1 + 12q2
p

(
1 + 1

r

)
+ 1
]2

×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
×
[√

1 + 12q2
p

(
1 + 1

ρ

)
+ 1

]2
iii) ωp, R1 R1 = 1

ωpC1

√
ρ
r R1 = 1

ωpC1

√
ρ
r R2 = 1

ωpC2

√
ρ
r

iv) GSP qpβ̄
2
√

r
ρ qpβ̄

2
√

ρ
r qpβ̄

2 1√
rρ

v) β̄ β̄ = 1 + 1+ρ
r − 1

qp

√
ρ
r β̄ = 1 + 1+r

ρ − 1
qp

√
r
ρ β̄ = 1 + ρ + r − 1

qp

√
ρr

vi) Compo-
nents

R2 = rR1;C2 = C1/ρ;
α = K/(β̄qp) ·

√
ρ/r;

R11 = R1/α;
R12 = R1/(1 − α);
RF = 1;
RG = RF (β̄ − 1).

R2 = rR1; C2 = C1/ρ;
α = K/(β̄qp) ·

√
r/ρ;

C11 = αC1;
C12 = (1 − α)C1;
RF = 1;
RG = RF (β̄ − 1).

R1 = rR2; C1 = C2/ρ;
α = K/(β̄qp)

√
rρ;

C11 = α C1;
C12 = (1 − α)C1;
RF = 1;
RG = RF (β̄ − 1).

Table 5. Transfer function coefficients of third-order active-RC filters with positive feedback in Fig. 4.

Coefficient (a) Low pass (b) High pass
a0 = γω2

p
1

R1R2R3C1C2C3

1
R1R2R3C1C2C3

a1 = ω2
p + γωp

qp

R1C1+(R1+R2+R3)C3+(1−β)C2(R1+R2)
R1R2R3C1C2C3

R1(C1+C2)+R2(C2+C3)+R3C3(1−β)
R1R2R3C1C2C3

a2 = γ + ωp

qp

R1R2C1C3+R1R3C3(C1+C2)+
R1R2R3C1C2C3

R1R2C1(C2+C3)+R2C2C3(R1+R3)+
R1R2R3C1C2C3

+R2R3C2C3+(1−β)R1R2C1C2
R1R2R3C1C2C3

+R1R3C3(C1+C2)(1−β)
R1R2R3C1C2C3

K αβ αβ

(a) Low pass (b) High pass

Fig. 4. Third-order active-RC filters with positive feedback and impedance scaling factors ri and ρi (i=2, 3)

62 AUTOMATIKA 51(2010) 1, 55–70



Low-Sensitivity Active-RC Allpole Filters Using Optimized Biquads D. Jurišić, G. S. Moschytz, N. Mijat

Table 6. Step-by-step design procedures for the design of low-sensitivity third-order active-RC filters in Fig. 4.

Step\Type (a) Low pass (b) High pass
i) Start Choose: ρ2=ρ, ρ3=ρ2 (e.g. ρ=3) Choose: r2=r, r3=r2 (e.g. r=3)
ii) Choose design
frequency ω0

Choose: ω0; ω0 < ω0 max where
ω3

0 − a2ω
2
0 + a1ω0 − a0 = 0 → ωa

ωDI = 4a0/(4a1 − a2
2)

→ ω0 max = min{ωa, ωDI}

Choose: ω0; ω0 min < ω0 where
ω3

0 − a2ω
2
0 + a1ω0 − a0 = 0 → ωa

ωDI = (4a0a2 − a2
1)/4a0

→ ω0 min = max{ωa, ωDI}

iii) Normalize a0,
a1, a2 and calculate
a, b, c

α0 = a0/ω3
0 ; α1 = a1/ω2

0 ;α2 = a2/ω0 →
a = α0 + α2 − α1 − 1; b = α2 − 2;

c = −(1 + ρ2).

α0 = a0/ω3
0 ; α1 = a1/ω2

0 ;α2 = a2/ω0 →
a = 1

α0
(−α0 − α2 + α1 + 1); b = α1

α0
− 2;

c = −(1 + r2).
iv) Calculate r2 (ρ2) ar2

2 + br2 + c = 0 → r2 (take positive and
real r2)

aρ2
2 + bρ2 + c = 0 → ρ2 (take positive and

real ρ2)
v) Calculate r3 (ρ3) r3 = ρ2ρ3/(r2α0) (In the step ii) above ω0

should be chosen to provide r2≈r3 for min.
sensitivity)

ρ3 = r3r2α0/ρ2 (In the step ii) above ω0

should be chosen to provide ρ2≈ρ3 for min.
sensitivity)

vi) β β = 1 + ρ2
ρ3

− r3
ρ3

[
(α2 − 1) − 1+ρ2

r2

]
β = 1 + r2

r3

[
ρ3+r3(1−α2)

ρ2+1 + 1
]

vii) CalculateR1 Choose: C1=1, calculate R1 = (ω0C1)−1 Choose: C1=1, calculate R1 = (ω0C1)−1

viii) Components C2 = C1/ρ2; C3 = C1/ρ3;
R2 = r2R1; R3 = r3R1;
α = K/β; R11 = R1/α;

R12 = R1/(1 − α);
RG = 1; RF = RG(β − 1).

R2 = r2R1; R3 = r3R1;
C2 = C1/ρ2; C3 = C1/ρ3;

α = K/β;C11 = αC1;
C12 = (1 − α)C1;

RG = 1; RF = RG(β − 1).

Fig. 5. Seventh-order 0.5dB Chebyshev filter pole plot

has to be equal to −Amax[dB] providing the maximum
magnitude 0 dB. In the odd-order Chebyshev LP filter we
choose k=1, because the maximum magnitude is 0 dB at
ω=0 rad/s. The magnitude of the transfer function in (14)
denormalized to ω0 = 2π· 20· 103 rad/s is shown in Figure
6 together with filter specifications.

In what follows we present the design of each compo-
nent in cascade (two biquads and one bitriplet). The first

Fig. 6. The specifications and the Chebyshev LP filter

transfer function magnitude

design example is a mid.-Q biquad with qp2=2.575546 and
ωp2=0.822729. The frequency ωp2 should be denormal-
ized by multiplication with the pass-band cut-off frequency
ω0 = 2π· 20· 103 rad/s and the pole frequency for design
ωp=103387 rad/s is obtained. The step-by-step design pro-
cedure of a second-order LP filter, shown in Figure 2(a), is
in Table 2 column (a) and proceeds as follows:
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i) For the LP filters most efficient is the capacitive
tapering with equal resistors or resistor values for min-
imum GSP. Therefore we choose ρ=4 and C1=500pF.
Then we calculate: ii) r=2.036; iii) R1=27.1kΩ; and iv)
GSP=7.9287. v) The gain β=1.482. From the last row
vi) remaining components readily follow R2=55.21kΩ,
C2=125pF. For the unity gain K=1 the attenuation
α=0.67476, R11=40.18kΩ and R12=83.37kΩ follow. We
choose RG=10kΩ; RF =4.82kΩ follows. This design is
recommended in this paper, because it is straightforward
yielding an optimum biquad.

The expression for the GSP product in row iv) of Table
2 is given by:

GSP = Γqp

A = A · Sqp

A = qp · β2
√

ρ/r. (15)

Including the gain β(r,ρ) into the GSP(r,ρ) in (15), the lat-
ter has a minimum which can be found if we fix the value
of ρ and set the first derivative to r equal to zero. The value
of r which minimizes (15) is given by

r =
ρ

36q2
p

[√
1 + 12q2

p

(
1 +

1
ρ

)
+ 1

]2

. (16)

Equation (16) is in the row ii) in Table 2(a) in the form
appropriate for the LP filter type. Because of duality be-
tween LP and HP filters the equation for min. GSP in the
HP filter case, which is in the row ii) in Table 2 column (b),
has the same form, but the start is with r and in a ’dual’ way
ρ is calculated.

There exists another ways on the design of LP filters, for
example, with more emphasis to the reduction of passive

Fig. 7. Active and passive sensitivity plots for qp = 2.5755

rather than active sensitivity. We can fix the value of r

(e.g. by choosing equal resistors [r=1]: LP case) and then
calculate ρ. Thus, there is a possibility to make derivative
of (15) to ρ, that is, with given r we calculate ρ (which
minimizes GSP in a different way) given by

ρ =
r

4q2
p

[√
1 + 12q2

p

(
1 +

1
r

)
− 1

]2

. (17)

The parameters using this alternative approach follow:
r=1 (equal resistors); from (17) ρ=5.121 and GSP=8.66.
Note that the GSP is slightly increased (worsen) but the
passive sensitivity has decreased (improved) when com-
pared to the above example.

The passive coefficient-to-component sensitivities for
the LP filter have more or less the general form given by

Sqp
x ≈ qp ·

(√
r

ρ
+

1√
rρ

)
, (18)

where x represents any of the elements in the passive RC

network. Both expressions for active (15) and passive (18)
sensitivities having the value of r equal to unity and the
value of ρ as an independent variable are plotted in Fig-
ure 7. It is shown in Figure 7 that the passive sensitivities
decrease monotonically to zero with increasing value of ρ,
while at the same time the active sensitivity has a mini-
mum which can be found by (17). It can be seen that for
a choice of ρ to the left of minimum both active and pas-
sive sensitivities increase rapidly. This is not appropriate
because when r=ρ=1 (the simplest but not optimum de-
sign) there is high GSP=17.57, and the passive sensitivity
is rather high. On the contrary, we see that GSP increases
very slowly for ρ larger than 5.121 (min. GSP), whereas
the value of passive sensitivity falls quite fast. Therefore, it
is common practice to choose ρ somewhat larger than the
value for minimum of GSP. For example, we could choose
r=1 and ρ=7, which leads to GSP=8.84 and very low pas-
sive sensitivity.

We can conclude that the way in which we choose to
design second-order filters is the trade off between passive
and active sensitivities reduction.

The second design example is a min.-Q pole pair hav-
ing qp3 = 1.09155 and ωp3 = 0.503863, combined with
the real pole p0 = γ = 0.25617, to be realized by the
third-order LP filter section in Figure 4(a). The frequen-
cies ωp3 and γ are multiplied by the pass-band cut-off fre-
quency ω0 = 2π· 20 krad/s, and using the relations in the
first column in Table 5, the denormalized coefficients of
the third-order transfer function are given by

a0 = 1.29057· 1014, a1 = 5.8764· 109, a2 = 9.0198· 104.
(19)
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Fig. 8. Implicit and graphical method of finding ω0 for the

case r2 ≈ r3 in third-order LP filter design

The step-by-step design procedure is in Table 6 column
(a) and proceeds as follows:

i) Choose capacitive tapering: Select ρ2=3, ρ3=9. ii)
Calculate ω0max and select ω0 for minimum sensitivity:

From Table 6 line 2 ωDI=33587rad/s and ωa=32191rad/s
are obtained; ω0max=32191rad/s. It is practical to draw all
solutions for r2, r3 and β [calculated in the steps iv)–vi)]
using Matlab as shown in Figure 8 and choose the value of
the design frequency ω0=2.98 · 104 rad/s, which will pro-
vide r2≈r3. This choice is consistent with the minimum
sensitivity condition by the second-order LP filter: capac-
itive tapering with equal resistors (ρ>1, r=1). Note also
that the value ω0<ω0max for the realizable filter.

iii) Calculate α0, α1, α2 and a, b and c: With ω0=
2.98 · 104, we obtain α0=4.8768, α1=6.6173, α2=3.0268,
and therefore a=0.28631, b=1.02678, c= –4.

iv)–vi) Calculate r2, r3 and β: Solving the quadratic
equation for r2, we obtain r2=2.3525 and the values of
r3=2.35342 and β=1.24797 readily follow.

vii) Select C1 and calculate remaining components:

We choose C1=500pF, thus R1=(ω0C1)−1=67.1kΩ and
we obtain C2=167pF, C3=55.5pF, R2=157.886kΩ and
R3=157.95kΩ. Finally, for K=1 α=0.8013, R11= 83.76kΩ,
R12=337.77kΩ, RG=10kΩ, and RF =2.48kΩ are obtained.
A simple check for the correctness of element values is to
verify that a0=(R1R2R3C1C2C3)−1. Element values for
the seventh-order LP filter realized in cascade are summa-
rized in Table 7. In the cascade the third-order biquad I
realizes a real pole and a pole pair with min. Q combina-
tion, biquad II realized pole pair with mid. Q, and biquad
III realizes max. Q poles. All biquads have unity pass-band
gain K. For the purpose of sensitivity investigation, gain K

Fig. 9. Schoeffler sensitivities of the LP filter examples

Fig. 10. MC runs of the LP filter examples

optimization for maximum dynamic range as in [12] is not
needed.

Another non-optimized example (equal capacitors) of
the seventh-order filter satisfying specifications in Figure
6 was calculated and the elements are presented in Table 7.

On both LP filter examples in Table 7 referred to as Op-
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Table 7. Seventh-order LP filters elements (resistors in kΩ, capacitors in pF)

Biq. R11 R12 R2 R3 C1 C2 C3 RG RF

Optimized
I 83.75 337.8 157.9 157.9 500 167 55.5 10 2.48
II 40.18 83.37 55.21 500 125 10 4.82
III 38.4 62.28 41.97 500 125 10 6.17

Biq. R11 R12 R2 R3 C1 C2 C3 RG RF

Equal Caps.
I 190.9 173.6 48.60 14.04 500 500 500 10 11.00
II 50.50 31.35 19.35 500 500 10 16.12
III 45.58 24.2 15.79 500 500 10 18.87

Fig. 11. Finite GBW influence on LP filter examples

timized and Equal Capacitors an overall sensitivity anal-
ysis was performed with the relative changes of the re-
sistors and capacitors assumed to be uncorrelated ran-
dom variables, with a zero-mean Gaussian distribution
and 1% standard deviation. It was calculated the stan-
dard deviation σα(ω) [dB] (which is related to the Schoef-
fler’s sensitivities) of the variation of the logarithmic gain
Δα=8.68588·Δ|T (ω)/|T (ω)| [dB], with respect to all pas-
sive elements, and the corresponding standard deviations
σα(ω) are shown in Figure 9. Monte Carlo (MC) runs us-
ing PSpice are shown in Figure 10 as a double check. It
is demonstrated that the passive sensitivity is reduced by
the optimum design using the cookbook presented in this
paper.

An active sensitivity of seventh-order LP filter examples
in Table 7 are investigated numerically using a single-pole
model of the opamp response, given by

A(s) =
A0ωp

s + ωp
=

ωt

s + ωp

∼= ωt

s
, (20)

where ωt is the unity-gain bandwidth (the GBW product),
A0 the d.c. gain, and ωp is the 3dB bandwidth. In the

Fig. 12. The specifications and the Chebyshev HP filter

transfer function magnitude

frequency range of interest, ω>>ωp, and we can assume
ωp=0. To investigate influence of the real opamp, we incor-
porate A(s) in (20) to the calculation of the overall filter’s
transfer function magnitude using Matlab. All simulations
are done using element values from Table 7. One simula-
tion is obtained with the constant gain A(s)=A0→∞ (nom-
inal characteristic drawn by dotted line), while others use
(20) with ωt/(2π)=3MHz, all shown in Figure 11. Observ-
ing Figure 11 one can conclude that the finite GBW prod-
uct influence at high frequencies is reduced for the filter us-
ing optimized cascade (due to the GSP minimization) and
much larger in the case of equal-capacitor (non-optimized)
Biquads cascade. Note that for the third-order bitriplets
there are no explicit equations for the GSP minimization
as there were for the second-order biquads. Luckily, by the
third-order sections, both active and passive sensitivities
have been reduced at the same time.

5.2 Design of high-pass filters
A HP filter has to satisfy the specifications with the min-

imum stop-band attenuation of Amin=50dB for the fre-
quencies up to the fs=24kHz, and the maximum pass-
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Table 8. Seventh-order HP filters elements (resistors in kΩ, capacitors in pF)

Biq. C11 C12 C2 C3 R1 R2 R3 RG RF

Optimized
I 400.6 99.43 212.7 212.4 1.887 5.660 16.98 10 2.482
II 337.4 162.6 245.6 4.671 18.68 10 4.82
III 309.3 190.7 283 5.331 21.33 10 6.166

Biq. C11 C12 C2 C3 R1 R2 R3 RG RF

Equal Res.
I 33.35 36.58 129.7 451.6 10 10 10 10 10.97
II 125.3 202. 327.4 10 10 10 16.12
III 138.9 262.1 401.1 10 10 10 18.87

Fig. 13. Schoeffler sensitivities of the HP filter examples

band attenuation of Amax=0.5dB for the frequencies above
fp=40kHz. Filter has a unity gain in the pass band. The
normalized LP prototype cut-off frequency is Ωs=fp/fs=
1.67. The specifications are met by the seventh-order
0.5dB Chebyshev filter.

In what follows we design HP filter with low sensitiv-
ity to component tolerances and reduced influence of the
active component gain variation, which is very important
to operate correctly on high frequencies. The cascade of
optimized second- and/or one third-order allpole HP filter
circuits as presented in Figures 2(b) and 4(b) is used. In
the example the optimum design follows the closed form
step-by-step equations in the Tables 2(b) and 6(b).

The Chebyshev poles in (13) are used. On the LP proto-
type normalized transfer function (14) we apply the LP-HP
transformation

sLP → ω0/s, (21)

where ω0=2π·fp=251327 rad/s. According to (21) the fre-
quency transformation yields new denormalized pole pa-
rameters ωi=ω0/ωiLP (i=1, 2, 3) and γ=ω0/γLP in [rad/s].

Fig. 14. Finite GBW influence on HP filter examples

We obtain ωp1=249327 rad/s, qp1=8.8418 (max. Q), ωp2=
305480 rad/s, qp2=2.575546 (mid. Q), and ωp3=498801
rad/s, qp3=1.091552 (min. Q) and γ=981096 rad/s. The
magnitude of the HP transfer function is shown in Fig-
ure 12 together with filter specifications. The cookbook

design in this paper yields optimized filter sections. Fil-
ter components are given in Table 8. Note that the opti-
mized Bitriplet I has increasing resistor values and capaci-
tors C2≈C3, which is the condition for the minimum sen-
sitivity of HP filters (see row v), column (b) in Table 6).
Biquads II and III are designed in an optimum way with
reduced passive sensitivity choosing R2=4R1 and capaci-
tors ratio for min. GSP (reduced active sensitivity). This is
a dual design to the LP filter.

Besides, a non-optimized filter sections are designed
having equal resistors and components are given in Table
8, too. On both LP filter examples in Table 8 Schoeffler’s
sensitivities were calculated, and the corresponding stan-
dard deviations are shown in Figure 13.

All simulations for investigation of active sensitivities
are done using element values from Table 8 and shown in
Figure 14. Both Figures 13 and 14 demonstrate that the op-
timum designs recommended in this paper applied to filter
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Table 9. Elements of the sixth-order BP filters with positive feedback (resistors in kΩ, capacitors in pF)

Biq. R11 R12 R1 R2 C1 C2 RG RF

Optimized
I 45.61 12.47 9.793 39.17 500 292.3 10 7.952
II 36.27 7.195 6.004 24.02 500 265.1 10 8.656
III 31.57 24.57 13.82 55.27 500 265.1 10 17.68

Biq. R11 R12 R1 R2 C1 C2 RG RF

Equal Res.
I 76.22 16.06 13.26 13.26 500 500 10 20.0
II 62.41 10.17 8.743 8.743 500 500 10 22.1
III 51.59 32.98 20.12 20.12 500 500 10 35.25

Fig. 15. The specifications and the Chebyshev BP filter

transfer function magnitude

biquads yield low sensitivity filters (both passive and active
sensitivities are reduced).

5.3 Design of band-pass filters

A BP filter has to satisfy the specifications with
the minimum stop-band attenuation of Amin=50dB
for the frequencies up to the fs1=4kHz, and above
fs2=144kHz and the maximum pass-band attenuation of
Amax=0.5dB for the frequencies between fB1=16kHz
and fB2=36kHz. Central frequency of the filter f0 =√

fs1fs2 =
√

fB1fB2 =24kHz, which shows that the
filer is geometrically symmetrical with the band-width
B=2π·(fB2–fB1)=2π·20krad/s. Filter has a unity gain in
the pass band. The normalized LP prototype cut-off fre-
quency is Ωs=(fs2–fs1)/(fB2–fB1)=7. The specifications
are met by the sixth-order BP 0.5dB Chebyshev filter. The
start is with the third-order LP prototype filter. The nor-
malized poles using Matlab are:

p0 = −σ0 = −0.626456;
p1, p

∗
1 = σ1 ± jΩ1 = −0.313228 ± j1.02193.

(22)

The corresponding pole parameters are ωp1=1.06885,
qp1=1.70619 and γ=0.626456, and the resulting LP nor-
malized transfer function is given by

T (s) =
k · 0.715694

(s + 0.626456)(s2 + 0.626456s + 1.14245)
.

(23)

On (23) we apply the LP-BP transformation

sLP → s2 + ω2
0

Bs
, (24)

where ω0=2π·f0 and B are the BP parameters given above.
We obtain the cascade realization of biquads with denor-
malized pole parameters of the BP filter

T (s) =
3∏

i=1

ki(ωpi/qpi)s
s2 + (ωpi/qpi)s + ω2

pi

, (25)

where ωp1=150796 rad/s, qp1=1.91554, k1=1, and us-
ing Geffe algorithm [13] ωp2=228758 rad/s, ωp3=99404.6
rad/s qp2=qp3=4.16858, k2=1.87441, and k3=7.35506.
(Note that the gains are optimized for maximum dynamic
range [12].) The magnitude of the BP transfer function is
shown in Figure 15 together with filter specifications. The
cookbook design in Table 2(d) yields optimized Type B BP
filter sections as in Figure 2(d). To all sections the same de-
sign strategy, which increases resistors ratios r=R2/R1=4
were applied, whereas the capacitors ratios ρ=C1/C2 were
calculated for minimum GSP. Filter components are given
in Table 9 for every biquad.

In the lower half of the same table there are elements
of the non-optimized BP filter calculated by the simple de-
sign using equal resistors and equal capacitors. On both
LP filter examples in Table 9 Schoeffler’s sensitivities were
calculated, and the corresponding standard deviations are
shown in Figure 16. Symbol (+) indicate the filter circuits
with positive feedback.

As the next example the filter was realized by a cascade
of BP-Type R circuits as in Figure 3(d) with negative feed-
back (–). Those biquads are complementary to the biquads
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Fig. 16. Schoeffler sensitivities of the BP filter examples

in Figure 2(d). Elements of the complementary circuit (–)
are calculated using the same design strategy as those for
the (+) circuit (r=4 and ρ for min. GSP). The procedure in
Table 4(d) is used and the same element values as R1, R2,
C1 and C2 in Table 9 are obtained.

Or, in an another, shorter way, we can start from ele-
ments R1, R2, C1 and C2 in Table 9 and recalculate at-
tenuation ᾱ = (1 − α)/α, and gain β̄ = αβ; the new
R11=R1/ᾱ, R12=R1/(1 − ᾱ), RF =10kΩ and RG=RF (β̄–
1) follow.

The Schoeffler’s sensitivity of that negative-feedback
circuit (–) was calculated, as well, and shown in Figure 16
by dotted line. This circuit has the minimum sensitivity.
The reason for that are more reduced sensitivities of a1 to
the resistors RG, RF in (–) circuits, and the absence of an
additional sensitivities in a1 (due to the feedback gain α) to
the resistors R11 and R12, when compared to (+) circuits.

All simulations for investigation of active sensitivities
are done using element values from Table 9 and shown in
Figure 17. Again the optimum designs presented in this
paper applied to filter biquads yield low sensitivity filters.
The optimized filter with (–) feedback has the magnitude
nearest to the nominal (dotted) curve. This is because, for
the same design parameters, the GSP product for (+) filter
is (1/α)>1 times larger than that for the (–) filter (compare
GSP equations in Tables 2(d) and 4(d)). Among all filters
realizing BP transfer function the BP-Type R and his dual
counterpart BP-Type C section in Figures 3(d) and (e), re-
spectively, have the best performance.

6 CONCLUSIONS

In this paper we present an optimal design procedure
for the most important second- and third-order active-RC

Fig. 17. Finite GBW influence on BP filter examples

single-amplifier building blocks in the form of a cookbook.
The optimum design of the LP, HP and BP filters with pos-
itive and negative feedback is presented. The duality be-
tween filters and the complementary filters are investigated
related to the optimum designs. Among all topologies the
best (most useful) sections are indicated as recommended.

The new design provides optimum building blocks in
a high-order filters having both passive and active sensi-
tivity reduced compared to non-optimized simple designs.
Some other design trade-offs that emphasizes more passive
or active sensitivity reductions have been commented. Op-
timized sections can be used as building blocks in differ-
ent filter structures such as cascade or multiple-feedback
structures (e.g. leap-frog and follow-the-leader-feedback).
A cascade design is the simplest one and using optimized
second-order and/or third-order sections is the most prac-
tical and most useful solution in building higher-order fil-
ters.

The low passive sensitivity features, as well as the in-
fluence of the finite opamp’s GBW product of the resulting
circuits, are demonstrated on the high-order Chebyshev fil-
ter examples. The resulting low passive sensitivity is inves-
tigated using the Schoeffler sensitivity measure, whereas
the low active sensitivity is shown using Matlab with real
opamp parameters.

All calculations in the paper are done with denormalized
parameters and elements, although the same equations can
be used for calculations with normalized values.
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