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Abstract

Atrial fibrillation (AF) is the most common sustained arrhythmia in humans. The mechanisms that 

govern AF initiation and persistence are highly complex, of dynamic nature, and involve 

interactions across multiple temporal and spatial scales in the atria. This articles aims to review the 

mathematical modeling and computer simulation approaches to understanding AF mechanisms 

and aiding in its management. Various atrial modeling approaches are presented, with descriptions 

of the methodological basis and advancements in both lower-dimensional and realistic geometry 

models. A review of the most significant mechanistic insights made by atrial simulations is 

provided. The article showcases the contributions that atrial modeling and simulation have made 

not only to our understanding of the pathophysiology of atrial arrhythmias, but also to the 

development of AF management approaches. A summary of the future developments envisioned 

for the field of atrial simulation and modeling is also presented. The review contends that 

computational models of the atria assembled with data from clinical imaging modalities that 

incorporate electrophysiological and structural remodeling could become a first line of screening 

for new AF therapies and approaches, new diagnostic developments, and new methods for 

arrhythmia prevention.
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1. Introduction

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and an important 

contributor to population morbidity and mortality, affects over 2 million people in the 

United States alone; data suggests that its prevalence will continue to increase as the 

population ages.1,2 The mechanisms that govern AF initiation and persistence are highly 

complex, of dynamic nature, and involve interactions across multiple temporal and spatial 

scales in the atria, often leading to unpredictable outcomes and emergent phenomena at the 

organ level. Electrophysiological experimental investigations in cells, tissues and the whole 
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animal, and the human patient3–8 have led to a rapid increase in the body of knowledge 

regarding the mechanisms underlying AF. In this quest, modeling and simulation of atrial 

electrophysiology and arrhythmias has played an important role, both in hypothesis-driven 

research at various levels of integration, but also in providing the framework for the 

unification of diverse experimental findings. With the increase in computer power over the 

last decades and the advancement in imaging technologies, multiscale, biophysically-

detailed models of the atria have made the initial foray into clinical translation, as part of the 

emerging discipline of computational medicine,9 by evaluating therapeutic approaches and 

contributing the patient-specific optimization of cardiac care.

The present review article, part of a thematic series in Circulation Research on AF, provides 

a broad overview of the plethora of approaches in modeling atrial arrhythmias. The articles 

focuses on the important role mathematical approaches and computer simulations have 

played in our mechanistic understanding of AF, and discusses the emerging role of image-

based simulation and modeling in assisting the clinical diagnosis and treatment of atrial 

arrhythmias.

2. Modeling Atrial Fibrillation: Overview of Approaches

Modeling AF, even in its most simple mathematical representation, involves propagation of 

an electrical impulse (atrial cell action potential, AP) in a network of cells. In their vast 

majority, models of AF involve biophysically-detailed atrial cell membrane kinetics, i.e. 

ionic currents, pumps and exchangers, the mathematical description of which is based on the 

formalism introduced by Hodgkin and Huxley.10 In the study of AF, cells either form a 

regular two- or three-dimensional (2D or 3D) network, or are arranged in a volumetric 

representation of atrial geometry and structure. Additionally, cellular automata models have 

been used in the study of atrial arrhythmias, most notably the first model of AF, by Moe et 

al11 in 1964, which suggested that AF is maintained my multiple meandering wavelets; this 

study has had a profound effect on AF research over many years, as well as on the concepts 

of arrhythmia and its therapy. This section reviews briefly the methodological basis and 

advancements in both cell automata and biophysically-based models of AF.

2.1 Cellular Automata Models

Cellular automata models involve regular grids of cells (typically 2D, and of square or 

hexagonal structure), where each cell is in one of a number of states. The behavior of a cell 

in the grid evolves at discrete time steps, following state update functions. Cell state updates 

are obtained by taking into account cells’ states in the local neighborhood only. In the 

classical paper by Moe et al,11 cells in the automaton existed in one of 5 states, an absolutely 

refractory state, three stages of partial refractoriness permitting firing after a delay of 

decreasing duration, and an excitable state. The duration of the absolute refractory period 

was varied, and was distributed randomly within the sheet. While simulation of AF using a 

cellular automaton is computationally inexpensive, its most significant drawbacks are lack 

of dynamic electrotonic interactions (since influences do not extend beyond a defined 

neighborhood) and inability to dynamically regulate ionic flows. Despite these significant 

limitations, cellular automata models have enjoyed resurgence in the last few years,12,13 
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driven by the need to employ rapidly-executable models in clinical applications and to 

provide a framework for quick interpretation of clinical observations.

2.2 Biophysically-detailed cell electrophysiology models

Biophysically-based cell models, typically following the Hodgkin-Huxley formulation, 

represent current flow through ion channels, pumps and exchangers as well as subcellular 

calcium (Ca) cycling, and are governed by a set of ordinary differential and algebraic 

equations; ionic models differ vastly in their level of complexity. For the atrial cell, a 

number of ionic models have been developed, as reviewed in recent papers.14–16 Here we 

briefly summarize these developments and highlight the newest advancements in 

representing atrial cell electrophysiology not covered by these reviews.

The earliest atrial cell models were based on measurements in frog17 and rabbit.18,19 Two 

human atrial cells models were subsequently developed, by Courtemanche et al20 and the 

Nygren et al21, and have enjoyed a wide use in AF multiscale simulations. While these 

models have been partially developed using the same human experimental measurements, 

the paucity of the latter had necessitated the use of additional experimental data obtained 

from mammalian hearts. Therefore, the two models differ by their AP shape and by their 

dynamics, and have different rate-dependent behavior and restitution, due to marked 

differences in Ca handling formulation (see reviews22,23). The Courtemanche model has 

been further extended to reproduce regional heterogeneities and electrophysiological 

remodeling in the human atria,24,25 account for acetylcholine-dependent influences,26 and 

simulate effects of drug delivery;24,27 a canine atrial cell model25 has also been developed 

based on it.

As new human data has recently become available, both models have been modified to 

improve their physiological accuracy. Maleckar et al28 re-implemented the Nygren model, 

with improved description of repolarization and rate dependence. Koivumaäki et al29 further 

extended the Nygren and Maleckar models by accounting for atria-specific characteristics of 

sarcoplasmic reticulum (SR) Ca uptake and release, and specifically, the delay between 

peripheral and central SR Ca release, characteristic of cells lacking t-tubules. Krummen et 

al30 modified the Courtemanche model to account for extracellular K accumulation during 

rapid pacing and to fit AP duration (APD) and its restitution to newly available clinical 

recordings.

A third lineage of human atrial cell models was commenced by Grandi et al.31 The model 

incorporated new Ca dynamics formulation based on data from atrial myocytes at 

physiological temperature obtained from patients, and also represented the contribution of 

beta-adrenergic and cholinergic stimulation. The model was recently modified32 to represent 

a mutation (E299V) in KCNJ2, the gene that encodes the inward rectifier K channel protein, 

and used to examine its effect on AP (it resulted in abbreviated APD).

All three distinct human atrial cell models were further augmented to represent APs under 

chronic AF conditions. This effort has been based on seminal studies by the Allessie’s 

group,33 who proposed that “AF begets AF”, emphasizing that persistence of AF leads, in 

itself, to electrophysiological alteration in AP properties (predominantly via the altered 
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expression of different ion channels34–36), which, in turn, increases the propensity to chronic 

AF (cAF). To represent remodeling under the conditions of cAF, human ionic channel 

measurements were used to construct the respective cAF versions of the three main human 

ionic models, as summarized in the review by Bers and Grandi16. The study by Wilhelms et 

al37 provided a systematic benchmarking of these three models, their corresponding 

augmented models, as described above, as well as their cAF versions. Fig. 1 illustrates the 

benchmarked AP models (paced at a frequency of 1Hz) as well as the differences between 

the ionic currents and Ca cycling in the models; the Krummen et al model was not included 

in this analysis since the benchmarking study preceded its publication. This benchmarking 

provided information that could be used to guide the selection of the cell model for a 

particular study. In terms of usefulness of the cell models in the study of AF, as tested by 

Wilhelms et al, reentrant arrhythmia was inducible with all cAF models, however the 

resulting spiral wave dynamics were highly divergent, underscoring the fact that the choice 

of cell model should be tailored to the application. For instance, the Courtemanche et al 

model was found unique in its ability to consistently produce stable beat-to-beat APD 

alternans for tissue-level simulations (and so is the Krummen et al model). The differences 

in ionic model properties may reflect inherent electrophysiological variations in human atrial 

myocytes behavior and/or regional electrophysiological differences in the human atria; 

dynamic parameter fitting and adjustments38 might offer a standardized approach in model 

development.

Two very recent developments in single atrial cell models left the realm of the Hodgkin-

Huxley formalism. The goal of the modeling effort by Voigt et al39 was to help ascertain the 

mechanisms of SR Ca-release events in human paroxysmal AF (rather than cAF); 

experimental data from right atrium (RA) appendages (RAAs) from sinus rhythm patients 

and patients with paroxysmal AF were used for model development. The model was based 

on that by Grandi et al,31 but included a spatial representation of Ca handling and stochastic 

gating of ryanodine receptors (RyRs). Model results demonstrated that both RyR 

dysregulation and enhanced SERCA2a activity promote increased SR Ca leak and SR Ca 

release events, causing delayed after-depolarizations (DADs) in paroxysmal AF atrial cells.

The second model development40 entailed a different mathematical modeling approach that 

allowed characterization of Ca movement within the (idealized) 3D volume of an atrial 

myocyte. Novel model aspects included the geometrically realistic representation of Ca 

release sites within the cell, allowing for exploration of their interaction, as well as Ca wave 

initiation and propagation. The study explored the generation of centripetal Ca waves during 

excitation–contraction coupling, and the effect of positive inotropic stimulation on the 

spatial profile of Ca signals. It remains unknown, however, whether such modeling 

approaches could be incorporated in tissue-level atrial models and used in the study of AF.

2.3. Multiscale Modeling of Propagation

In tissue, atrial myocytes are electrically connected via low-resistance gap junctions. Ionic 

current can flow from cell to cell via this pathway, in addition to the current exchange 

between intracellular and extracellular spaces through cell membrane proteins, as described 

above. Propagation in excitable media, such as atrial tissue, is typically modeled using 
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spatially continuous models that are viewed as resulting from a local spatial homogenization 

of behavior in tissue compartments (membrane, intra- and extracellular spaces). Current 

flow in the tissue structure is typically governed by the monodomain reaction-diffusion 

partial differential equation, PDE, over the tissue or organ volume, with the use of 

conductivity tensor fields. Simultaneous solution of the PDE(s) with the set of ionic model 

equations represents simulation of electrical wave propagation in the heart. The conductivity 

tensor fields used in these continuous models integrate all the information about the 

distribution of gap junctions over the cell membranes as well as the fiber, sheet and other 

microstructure organization in the atria.

The methodology for modeling atrial propagation is the same as that for modeling wave 

propagation in the ventricles, thus for detailed information on the various approaches we 

direct the reader to comprehensive reviews on the subject14,15,41,42.

2.4. Geometric and Image-based Atrial Modeling

Cellular automata and biophysically-detailed models have both been used with simple 2D 

geometries (sheets of atrial tissue).11,12,26,43–47 Because of the smaller atrial wall thickness 

as compared to the ventricles, 2D geometries rather than 3D slabs of tissue have been 

typically employed in simplified AF simulations.

In contrast, geometrical atrial models include those of high structural detail of an atrium 

part, such as RAA, pulmonary veins (PVs), crista terminalis, or pectinate muscles (PM), of 

different animal species48,49, or geometrical models of at least one atrial chamber. 

Development of high resolution geometrical models of isolated atrial structures has been 

motivated by the notion that specific atrial structural substrates are more likely to be 

involved in sustaining AF.5

3D models of at least one of the atria have predominantly aimed to represent organ anatomy 

in the study of human AF. The exception is the high-resolution structural model of the sheep 

atria acquired by serial surface imaging50,51; the complex structure of this model is shown in 

Fig. 2A. The group of models based on geometric representations of at least one of the 

human atrial chambers can further be sub-classified into surface and volumetric models. 

Surface models represent atrial geometry in 3D but neglect wall thickness;52–55 the latter is 

not true for volumetric models.56–62 Furthermore, human atrial models incorporate either 

idealized atrial shapes representing closed-surface organ properties52,55,63 (spheroidal shape 

of the atrium), including the topology of the insertions of veins and valves, or atrial 

geometries based on image acquisition53,54,61,62 employing a variety of imaging modalities.

Human image-based atrial model development commenced with the use of the atrial 

geometry dataset56–58,64–67 (see also table of models in14) resulting from the Visible Human 

project.68 Subsequently, atrial geometries used in electrophysiological simulations were 

acquired using magnetic resonance imaging (MRI)53,54,61,62,69 (Fig. 2B) as well as 

computed tomography (CT)70; refer to71 for a review of image acquisition. An informative 

comparison between some of the different geometries used in human atrial modeling can be 

found in Fig. 5 of the review by Jacquemet et al.15 Additionally, a comprehensive listing of 

human atrial models is provided in Table 1 of Doessl et al; models not represented in that 

Trayanova Page 5

Circ Res. Author manuscript; available in PMC 2015 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



table include those recently published by McDowell et al61,62, and Tobon et al.67 Fiber 

structure has also been represented in these models either manually or using a semi-

automatic rule-based approach14 (Fig. 2C) since diffusion tensor imaging of the thin atrial 

walls does not provide reliable information about atrial fiber architecture. 3D atrial models 

have often incorporated add-on representations of atrial structures such as the Bachman’s 

bundle, crista terminalis, PMs, and the coronary sinus sheath.

Recently, organ-level atrial models have begun to represent fibrotic structural remodeling 

associated with persistent AF. Atrial fibrosis is imaged using late gadolinium enhancement 

(LGE) MRI.72 McDowell et al61,62 created the first model of patient atria with fibrotic 

remodeling (Fig. 2B) by segmenting out the enhanced regions in the LGE MRI scans; 

similar approaches followed.73 McDowell et al.61,62 used a sophisticated model of fibrotic 

remodeling in the LGE enhanced regions of the patient atria, accounting for (i) connexin 

downregulation/hypophosphorylation and lateralization, (ii) collagen deposition, and (iii) 

myofibroblast infiltration. Myofibroblasts in the fibrotic regions, represented by the ionic 

model of MacCannell et al74 were coupled to myocytes, as described in Maleckar et al.75 

The electrophysiological representation of fibrotic remodeling in the human atrial models 

remains, however, controversial because of the lack of experimental data. Similarly, the 

segmentation of the LGE MRI fibrotic regions and even segmentation of the geometry of the 

thin atria from clinical MRI is fraught with uncertainty and is an area of intense image-

processing research.

3. Exploring Atrial Fibrillation Mechanisms: Insights from Modeling

3.1 Mechanisms Landscape

Despite a significant body of basic and clinical research, the fundamental mechanisms 

governing AF initiation and maintenance are incompletely understood.7 As a result, 

treatment of AF remains ineffective, presenting a significant potential for improvement. 

Excellent recent reviews offer a detailed overview of the long history of mechanistic 

exploration of AF mechanisms.3,6 It is now accepted conceptually that the clinical 

progression of AF involves evolution from paroxysmal to persistent and permanent forms of 

the arrhythmia, and that it reflects progressive electrophysiological and structural 

remodeling35,76,77 caused by the downward spiraling impact of the arrhythmia itself and the 

progression of the underlying heart disease.4,78 Note that the described progression is seen 

in only part of the patient population, with the issue of AF evolution remaining the subject 

of intense research.

Our understanding today is that paroxysmal AF is typically driven by rapid focal activity 

(either early or delayed afterdepolarizations) or local reentry in the cardiac muscle sleeves 

around the PVs.79,80 Accordingly, PV isolation via RF ablation eliminates paroxysmal AF in 

70%-80% of the treated patient population.81 Persistent AF is thought to arise from 

electrophysiological remodeling of the atria resulting from altered protein expression and/or 

function of cardiac ion channels, often caused by AF itself.5 Its hallmark is the decrease in 

APD, often accompanied by increased DAD risk due to Ca overload.5,82 The overarching 

persistent AF mechanism is currently thought to be functional reentry: one or more rapidly 

rotating spirals, the emitted waves of which interact with anatomic and functional obstacles, 

Trayanova Page 6

Circ Res. Author manuscript; available in PMC 2015 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leading to wavefront fragmentation and fibrillatory conduction.83 Furthermore, autonomic 

neural remodeling contributes to AF recurrence and maintenance in both paroxysmal and 

persistent AF forms.84,85

Electrophysiological remodeling itself accelerates the progression from paroxysmal to 

permanent AF;4,78 the latter is also associated with irreversible structural changes, 

particularly fibrosis,86,87 rendering the remodeled atria as a substrate for both functional and 

anatomical reentry. While the multiple wavelet hypothesis,11 according to which AF is the 

result of randomly propagating multiple electrical wavelets changing in number and 

direction, has been a dominant mechanistic model of permanent AF (and even persistent 

AF), recent clinical evidence88 (albeit limited) has demonstrated that in humans permanent 

AF may also be the result of a small number of persistent rotors with fibrillatory conduction 

to the surrounding atrium.

While not all atrial modeling efforts to uncover AF mechanisms are classifiable along the 

lines of AF progression as described above, they have nonetheless addressed mechanisms 

that could be pertinent to any form of AF. A review of the most significant mechanistic 

contributions made by atrial simulations is provided below.

3.2 The Normal Atria: Intrinsic Atrial Structural and Electrophysiological Heterogeneities 
Predispose to Atrial Arrhythmias

Even in the structurally and electrophysiologically normal atria, the complex closed-surface 

geometry of the chambers,89 with a set of distinct structural features such as orifices and 

discrete bundles, presents a substrate that predisposes to arrhythmia initiation under 

conditions of source-sink mismatch, and also often determines the specific (anatomic) 

reentrant pathways of the ensuing arrhythmia, as found by modeling 

studies.48,49,52,60,63,90–93 Following the seminal experimental-simulation work by Spach and 

co-workers,94 atrial modeling results43,48,49,58,60,70 have similarly demonstrated that 

intrinsic differences in APD in the various atrial structures additionally predispose the atria 

to rhythm disorders. Local variation of wall thickness resulting from the presence of PMs 

has been shown90,93,95 to increase the downstream load on a propagating wavefront and 

result in wave break-up. Furthermore, PMs have been found to play a role in the conversion 

between AF and flutter by anchoring spiral waves.90,92 Modeling studies43,52, 91,93 have 

implicated the highly anisotropic conduction and longer APD in the crista terminalis in 

setting up the conditions for reentry generation. Using anatomical models of the rabbit RA 

and of the pig RA appendage, respectively, both based on histological reconstructions, 

studies by Aslanidi et al49 and Zhao et al48 demonstrated that because electrotonic coupling 

transverse to fibers in the crista terminalis is weak, high-frequency pacing at the border 

between the crista and PMs results in a reduced safety factor, leading to unidirectional block 

and subsequent generation of reentry. Based on results from a model of the human atria,60 

Fig. 3 shows the excitation wave on the epicardial surface of the atria during normal sinus 

rhythm as well as activation patterns in AF, the result of rapid pacing near the crista.

Other aspects of normal structure and electrophysiology have also been implicated, in 

simulation studies, in predisposing the atria to arrhythmias. Vigmond et al52 showed that the 

muscular sheath of the coronary sinus could act as a pathway for reentry and to also stabilize 
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reentrant circuits utilizing the isthmus near the inferior vena cava. Using a model of sheep 

atrial geometry and myofiber orientations also reconstructed from serial section images, 

Zhao et al51 demonstrated that the complex myocyte arrangement in the posterior LA 

contributes to dispersion in activation times in the region adjacent to the PVs, and to 

increased vulnerability to arrhythmia following ectopic beats originating in PV sleeves; the 

arrhythmia vulnerability was exacerbated by spatial variation in APD across this region.50 

Another study70 examined the effect of APD differences in the canine atria (LA vs. RA as 

well as increased APD shortening with increased distance from the sino-atrial node), and 

found that the APD gradients increase the propensity of wave break, spiral wave core 

meander, and quasi-stable reentry. Finally, the openings of the inferior and superior venae 

cavae52 and that of the tricuspid valve63 were shown to serve as anchors of reentry (atrial 

flutter).

The parasympathetic nervous system also plays a role in creating a substrate for AF: through 

the release of acetylcholine (ACh), vagal stimulation causes a significant reduction in 

effective refractory period and rate adaptation loss.96,97 This effect creates APD non-

uniformity over the atria due to the sparsely distributed vagal nerve endings (ACh release 

sites). Using a new formulation of ACh-dependent K current, Kneller et al26 demonstrated, 

in a 2D atrial model with periodic variations in ACh concentrations, that sufficiently large 

vagally-induced APD gradients may be established, causing a reentrant wave to break up 

and the activity to transition into a cholinergic form of AF; the specific arrhythmia 

morphology was found to depend on substrate size.98 The arrhythmogenic conditions 

associated with non-uniform vagal stimulation were further explored,55 providing a detailed 

analysis of vulnerability windows for ectopic beats under different levels and patterns of 

vagal activity. Finally, Atienza et al99 simulated left–right differences in ACh-dependent K 

current, finding that this difference resulted in faster rates of the LA rotor, driving RA 

activity.

3.3 Paroxysmal AF Initiation

The demonstration by Haissaguerre et al79 of the importance of PV foci in initiating 

arrhythmia constitutes an important advancement in our understanding of AF etiology. 

Different cellular mechanisms have been proposed100 for the generation of spontaneous 

activity in the cardiomyocyte sleeves of the PV, including automaticity and 

afterdepolarizations. In early simulations,101 PV automaticity has been represented by the 

addition of the hyperpolarization-activated inward current If to the human atrial AP; a PV 

cardiomyocyte-specific cell model was subsequently developed.102 The possibility of 

microreentry within the PV sleeves of varying diameter and length was explored by the 

modeling study of Cherry et al103; it demonstrated that the electrical and microstructural 

characteristics of the PVs, distinct from those of the LA, result in heterogeneous and 

anisotropic conduction and PV reentry. As presented in Fig. 4A, a single premature LV 

activation invading the PV establishes PV reentry, which in turn continuously re-excites LA, 

presenting a “focal source” of LA activation.

While simulation studies have not been conducted exploring how a biophysically and 

structurally detailed model of ectopy in the PV sleeves would drive the atria into paroxysmal 
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AF, the onset of paroxysmal AF has been explored by modeling the delivery of trains of 

pacing stimuli in the PV region. Gong et al64 demonstrated that spontaneous firings of 

ectopic foci, coupled with sinus activity, produced dynamic spatial dispersions of 

repolarization, including discordant alternans, which caused conduction block and led to 

atrial flutter and AF (see Fig. 4B as an example of the distribution of atrial transmembrane 

potential, including several distinct wavefronts). While the likelihood of reentry induction 

varied depending on ectopic foci locations and timing, ectopy from the PV region resulted in 

the largest vulnerable window.

A combined clinical-simulation study by Krummen et al30 examined the mechanisms behind 

the clinical interventions that induce AF, namely the administration of isoproterenol or 

adenosine, as well as rapid pacing. Isoproterenol and rapid pacing both steepened maximum 

APD restitution slope promoting AF initiation, although via distinct mechanisms, as 

demonstrated by the simulations. APD restitution steepening in the former intervention 

arose from the alteration of Ca dynamics, while restitution steepening in the latter stemmed 

from K accumulation. Adenosine did not steepen APD restitution, and AF propensity 

remained unchanged.

Finally, lone forms of paroxysmal AF have been found to be the result of inherited ion 

channel dysfunction. A missense gain-in-function KCNQ1 S140G mutation has been 

implicated in a familial form of AF, with simulation research,104 using a model of the 

human atrium, establishing the causal link between mutation and genesis of AF: increased 

IKs current arising from the mutation abbreviated APD, facilitated the conduction of high 

rate atrial excitation waves, and stabilized reentry. Similarly, numerical experiments32 have 

elucidated how a mutation (E299V) in KCNJ2, the gene that encodes the strong inward 

rectifier K channel protein (Kir2.1), results in AF.

3.4 “AF begets AF”33: Electrophysiological Remodeling in Persistent AF

AF and very rapid tachyarrhythmias cause, over time, electrical remodeling of the atria; the 

latter can also be induced by other conditions, most commonly congestive heart failure 

(HF).105 Electrical remodeling is manifested as altered ion channel expression and/or 

function in a way that further promotes AF.4,106 The triggering mechanisms, chiefly among 

which is increased Ca load, lead to the onset of a chain of protective mechanisms resulting 

in electrophysiological remodeling of the tissue. Models of the atrial cell under the 

conditions of persistent AF have been developed, as described in section 2.2 (termed cAF 

models, since they were used to represent electrical remodeling in both persistent and 

permanent forms of AF; see next section for latter), and have made contributions to 

understanding the dynamic interplay between the various remodeled ionic channels/

currents24,31 that give rise to diminished Ca transients and shorter APDs in persistent AF. A 

resulting characteristic of global atrial activity in persistent AF is rotor stabilization, which 

increases AF vulnerability and sustainability. This phenomenon has been investigated by 

modeling studies at the tissue level. Pandit et al45 examined the behavior of a stable but 

meandering rotor, and demonstrated that increasing the magnitude of the inward rectifier 

current K current (IK1) resulted in reduced meandering of the rotor (Fig. 5). A recent 

modeling paper44 analyzed systematically the relative importance of ionic currents and 
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transporters in modulating excitability, refractoriness, and rotor dynamics in human atrial 

tissue. Results underscored the important role of the Na/K pump in modulating APD, 

restitution, and dominant frequency (DF) of the reentrant activity, providing comparisons 

between behavior in sinus rhythm and persistent AF; IK1 and INa were both found to 

strongly affect rotor stability.

Simulations of electrophysiological remodeling were also extended to 3D modeling of the 

human atria.107 Colman et al107, incorporating heterogeneity in electrical remodeling across 

the structures of the human atria, found that remodeling abbreviated atrial APD non-

uniformly in the various atrial structures, resulting in relatively short APDs coexisting with 

marked regional differences in the APD at junctions of the crista terminalis/PMs and 

PVs/LA. The increased electrophysiological heterogeneity stabilized and accelerated 

reentrant excitation waves, leading to rapid and sustained AF.

A different remodeling effect of AF has been hypothesized to stem from the fact that under 

AF conditions the atria become dilated. Atrial dilation exerts a mechano-electric influence 

through stretch-activated ion channels; the effect is diastolic depolarization, abbreviated 

refractory periods, triggered activations, and increased dispersion in electrophysiological 

properties.108,109 Simulation studies in the human atria110 demonstrated that under dilation, 

focal sources near the PV initiated AF, resulting from electrophysiological alterations due to 

the heterogeneous stretch throughout the atria. Similarly, the experimental-modeling study 

by Yamazaki et al111 highlighted the stabilization of meandering spiral wave filaments at 

locations with large gradients in myocardial thickness, and thus stretch, leading to 

heterogeneous distribution of stretch-activated channels activation and their influence 

through mechano-electric feedback.

Finally, a model of heterogeneous electrical remodeling in the human atria was used66 to 

assess the spatiotemporal organization of the activity in persistent AF using different signal 

analysis techniques, such as DF112 and the organization index (OI, ratio of signal spectral 

power to total power of the spectrum)113. The ability of DF and OI maps to localize AF 

sources of high frequency was compared, with the results suggesting that a better 

localization might be obtained using OI maps.

3.5 Fibrotic Remodeling and Permanent AF

Structural remodeling, and specifically fibrosis, is a hallmark of permanent AF.86,87 Fibrotic 

remodeling of atrial tissue involves processes that occur in parallel across multiple scales: at 

the membrane level, gap junction remodeling due to connexin 43/40 (Cx43/40) protein 

downregulation/hypophosphorylation and lateralization114,115, at the cellular level, 

fibroblast proliferation and phenotype switching,86,116 and at the tissue level, the deposition 

of excess collagen87,117, both from reactive interstitial fibrosis separating muscle bundles, 

and from reparative fibrosis replacing dead cardiomyocytes, both interfering with electric 

continuity and slowing conduction.3,117 Thus, structural remodeling, combined with 

remodeling at the ion channel level as described above, gives rise to complex interactions at 

the organ level, setting the stage for AF initiation and maintenance in the fibrotic atria.
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Models of the fibrotic atria have accounted for different aspects of fibrotic remodeling, in an 

attempt to elucidate the mechanisms leading to altered conduction and those responsible for 

the drivers and organization of permanent AF. The simplest model representation of atrial 

structural remodeling was based on the assumption that a component of structural 

remodeling, gap junction remodeling (Cx43/40 downregulation/hypophosphorylation and 

lateralization), occurs throughout the atria in a uniform fashion. Two such studies have been 

conducted thus far: one65 assumed that the coupling strength between computational cells 

was decreased (Cx43/40 downregulation/hypophosphorylation only), while the other118 

modeled increased anisotropy throughout the LA (representing both aspects of Cx43/40 

remodeling). The simulations showed65 that decreasing the coupling between cells slowed 

conduction and decreased the wavelength, further perpetuating AF. Plank et al118 

demonstrated that increased anisotropy throughout the fibrotic human LV was an additional 

mechanism for the breakup of PV ectopic waves into multiple reentrant circuits; higher 

anisotropy ratios resulted in sustained reentrant activity even though the ectopic focus was 

no longer present. Similar conclusions were obtained from a human atrial model73 where the 

locations of the fibrotic (i.e. high-anisotropy-ratio) regions were implemented from patient 

MRI-LGE scans.

The next component of fibrosis, collagen deposition, has been represented in models as 

insulating barriers, and in several ways: (i) by removing randomly the electrical connections 

between two 2D layers of atrial tissue, the endocardial and the epicardial, in order to model 

an increased level of dissociation between these two layers (a form of reactive interstitial 

fibrosis), mimicking experimental observations in goats;119 (ii) by introducing a set of 

random collagenous septa disconnecting cardiac fibers in the transverse direction120 

(reactive interstitial fibrosis again); and (iii) by incorporating non-conductive or non-

excitable regions of various sizes throughout the tissue115,121,122 (reparative fibrosis), either 

randomly throughout the atria, or based on imaging data. Endo-epicardial dissociation 

resulted119 in a number of AF reentrant waves that was significantly higher than that in the 

case without dissociation, exacerbating AF complexity. The increase in collagen content in 

the interstitial spaces between fibers was not found to affect longitudinal conduction,61,62,115 

but caused slowed propagation in transverse direction, with the degree of slowing dependent 

on the length of the collagenous septa.120

Atrial models incorporating transverse collagen deposition115,121,122 (as in reparative 

fibrosis) have highlighted the significant interruption and disarray in atrial conduction 

patterns caused by it. Importantly, collagen deposition rather than Cx43 remodeling was 

found to be the major factor in atrial conduction disturbances under HF conditions115 (Fig. 

6A). Furthermore, it was established that not only the total amount, but also the specific 

distribution of collagen deposition (as generated by a stochastic algorithm) governed the 

occurrences of conduction block.121 To evaluate the consequences of HF remodeling (ionic 

and structural) on AF dynamics, Tanaka et al122 used 2D models of transmural posterior LA 

sections generated from histological data; patchy distributions of collagen were also 

reconstructed from that data (Fig. 6B, top image). Simulations demonstrated that whether 

the mechanism sustaining AF was reentrant or focal (generated by an S1–S2 protocol or 

pacing, Fig. 6B), fibrous patches of large size were the major factor responsible for the 

different dynamics of AF waves in failing versus control hearts. The patches anchored 
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reentrant circuits (see white circles representing wavebreak, the locations of which, when 

associated with large collagen patches, remained the same regardless of AF induction 

protocol) and impaired wave propagation to generate delays and signal fractionation.

The third major component of fibrotic remodeling, fibroblast proliferation and phenotype 

switching, has also been represented in computational models of the atria, particularly in 

view of the fact that fibroblasts, in addition to being part of the structural remodeling of the 

atria, can also exert electrophysiological influences on neighboring myocytes, possibly 

either through electrical coupling,123 or via paracrine effects.124 The first study to explicitly 

incorporate fibroblast presence as a representation of fibrotic remodeling was the 2D atrial 

model by Asihara et al.46 Within the fibrotic region, coupling of fibroblasts (kinetics 

governed by a fibroblast ionic model) to atrial myocytes caused shorter APD, slower 

conduction, and lower excitability as well as spiral wave breakups, similar to experimental 

results125 in neonatal rat monolayers. This effect was exacerbated when fibroblast density 

increased (Fig. 7A). Interestingly, when fibroblasts were substituted by collagen in the 

model, wave breakups were not observed. While this study presented intriguing mechanistic 

insight, it is important to acknowledge that myofibroblast-myocyte coupling needs 

additional evidence of its existence in the intact heart.

All three elements of fibrotic remodeling (gap-junction remodeling, collagen deposition, and 

myofibroblast proliferation), in addition to cAF ionic remodeling, were combined together 

in the LA model generated from MRI-LGE data of a patient with permanent AF,61,62 

capturing accurately both the atrial geometry and the distribution of fibrotic lesions. Here, 

fibroblast proliferation was represented in two ways: via fibroblast coupling to myocites or 

via the paracrine effects on ionic channels, acknowledging the paucity of evidence regarding 

myocyte-fibroblast coupling in fibrotic regions. The model was used to examine the 

mechanisms for AF initiation by PV ectopic stimulation. The study found that for fibrotic 

lesions typical of human remodeled atria under the conditions of persistent AF, gap junction 

remodeling in the fibrotic lesions was a necessary but not sufficient condition for the 

development of AF following a PV ectopic beat. The sufficient condition was myofibroblast 

proliferation in these lesions, where myofibroblasts exerted either electrotonic or paracrine 

influences on myocytes within the lesions. Deposition of collagen in the lesions assisted the 

myofibroblasts’ paracrine or electrotonic effects by additionally shortening APD there (Fig. 

7B).

4. Atrial Fibrillation Management: Can We Learn from Atrial Models?

The ability to construct multiscale models of the electrical functioning of the atria, 

representing integrative behavior from the molecule to the entire organ, has paved the way 

for the use of these models in AF management. Specifically, modeling work has been 

conducted to determine molecular targets for pharmacological rate control, and optimize 

antitachycardia pacing and AF ablation, as reviewed below.

4.1 Pharmacological Control of Atrial Rate

Anti-arrhythmic drugs constitute the main treatment option for AF. However, atrial rhythm 

control pharmacotherapy has been limited due to its inadequate effectiveness and adverse 

Trayanova Page 12

Circ Res. Author manuscript; available in PMC 2015 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



side effects.3 Additionally, such drugs are associated with risk of life-threatening ventricular 

proarrhythmia.126 Accordingly, research on pharmacological control of atrial rate has been 

directed towards finding drug targets that are atria-specific.127 The role of atrial modeling in 

this field of research has been to uncover the mechanisms for drug action, or the lack 

thereof. An experimental/simulation investigation of this type is represented by the study of 

Pandit et al.47 The objective was to probe the effectiveness of block of the atria-specific 

current IKur and to exploit the inherent differences between atrial and ventricular Na channel 

steady-state inactivation properties (by manipulating extracellular K concentration) in 

terminating cholinergic AF in pigs. Experimental results indicated that IKur was not a viable 

anti-arrhythmic target, and simulations shed light on the mechanisms, showing that in 

cholinergic AF the contribution of IKur was dwarfed by the large magnitude of IKACh. 

Furthermore, simulations determined that the lower availability of the atrial Na current at 

depolarized potentials could partly explain the earlier termination of AF compared with 

ventricular fibrillation during hyperkalemia. A recent attempt128 to further explore the 

therapeutic strategy of blocking IKur demonstrated that the antiarrhythmic effects of IKur 

inhibitors are dependent on kinetic properties of the blockade.

Block of Na channel conductance by ranolazine displays marked atrial selectivity; 

Nesterenko et al129 developed a Markovian model of Na channel gating that elucidated the 

mechanisms underlying ranolazine’s potent atrial selectivity. The possibility to develop Na-

channel blockers with maximal actions on fibrillating atrial tissue and minimal actions on 

ventricular tissue at resting heart rates was also probed.130 A model of state-dependent Na-

channel blocking (class I antiarrhythmic drug) action was used in simulations of AF and 

ventricular proarrhythmia. The study found that drugs that target inactivated channels are 

AF-selective, whereas drugs that target activated channels are not. Such simulation 

methodology has a strong potential to contribute to rational approaches to defining optimal 

Na-channel blocker properties.

Finally, simulation research44 has provided mechanistic explanations regarding the lower 

efficacy of pharmacological treatment in patients with long- term versus short-term AF, and 

of the antiarrhythmic properties of amiodarone and digitalis for AF treatment.

4.2 Anti-arrhythmia Pacing for AF Termination

Pacemaker-based therapy for AF has been recognized as a possible alternative to drug 

therapy; today many pacemakers and implantable defibrillators include pacing algorithms 

for AF prevention and termination.131 Most existing pacing algorithms deliver preventive 

therapies aimed to suppress AF triggers and reduce dispersion in atrial refractoriness.132 

Uldry et al133 recognized that with the use of an atrial model, a better understanding of the 

degree of local capture by pacing can be achieved, which might have important implications 

for the development of pacing algorithms for AF termination. The authors used a 3D surface 

model of the human atria and rapidly paced it at a cycle length shorter than that of the 

detected arrhythmia, from a single site, in an attempt to terminate AF. Results demonstrated 

that the septum was the only pacing site that yielded AF capture in both atria. However, 

capture was sporadic, and overall, did not result in AF termination or permanent changes in 

AF pattern. A new pacing scheme, shown in Fig. 8A, was subsequently devised,134 where 

Trayanova Page 13

Circ Res. Author manuscript; available in PMC 2015 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the initial rapid septal pacing phase, this time from a large septal area (shown in red in the 

septal area, Fig. 8A left), was followed by a slow septal pacing phase from the same location 

(at a cycle length longer than that of the detected arrhythmia) aimed at lengthening the APD 

and thus eliminating any residual fibrillating wavelets that might have survived in areas 

distant from the septum during the rapid pacing phase. The new algorithm could suppress 

AF reentries in a more robust way than single site rapid pacing, with AF termination rate 

increasing from 10.2 to 20.2%. This simulation research provided a classical example of 

how realistic models of the atria can be used to generate new ideas and approaches to AF 

management optimization.

4.3 Optimizing Atrial Ablation

Catheter-based ablation, the delivery of heat to destroy the ability of cardiac tissue to 

generate and conduct electrical signals locally, has emerged as a promising AF treatment 

option. The objective of AF ablation is to either abolish foci generating ectopic beats, or to 

create zones of conduction block, eliminating reentry. The procedure has successfully 

targeted AF triggers via PV electrical isolation.135 Aggressive ablation strategies, such as 

Maze III procedure,136 were found to be the most effective when the underlying AF 

involves turbulent activity with multiple wavelets (presumably permanent AF). Human atrial 

models have been used to optimize AF ablation, suggesting strategies to minimize the size 

of ablation lesions, and to study the effect of gaps in ablation lines. An example59 of 

simulated ablation lesions in a human atrial model are shown in Fig. 8B. A set of 

studies54,137 explored the effectiveness of ablation line patterns that are less invasive than 

Maze III procedure, and demonstrated that any such pattern needs to include ablation lines 

in both RA and LA so that a multiple-wavelet AF can be successfully terminated. 

Specifically, Maze III could be simplified while achieving the same success by diminishing 

RA ablation severity to a single line joining both vena cavae. Additionally, simulations54 

showed that imperfect ablation lines in the Maze III procedure decreased success rate by up 

to 28%, with the rate depending on the location of lesion imperfection.

Recent ablation strategies have begun to target the LA wall in an attempt to alter the 

arrhythmogenic substrate.88 Both 2D cellular automata models13 as well as biophysically-

detailed patent-specific models of fibrosis in the human atria138 have shown preliminary 

success in providing guidance in AF substrate ablation. There is a high expectation that 

atrial models can be employed to predict the optimal AF ablation strategies in a patient-

specific manner.

5. The Future of Simulation Research on AF Mechanisms and Atrial 

Arrhythmia Management

As this review demonstrates, mathematical modeling and computer simulations of atrial 

electrophysiology have made major contributions to the interpretation of an array of 

experimental data and to the dissection of the fundamental mechanisms and relationships 

underlying AF initiation and persistence. As this trend will continue in the future, atrial 

modeling as a tool will necessitate continuous adaptation and integration of new elements, 

including model re-design and evaluation, improvements in the execution time of 
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biophysically detailed atrial models, implementation of consistent strategies for comparison 

with experimental measurements, and investing in efforts to ensure repeatability and 

consistency of modeling results. The advancement of atrial modeling will continue to be 

strongly dependent on developments in experimental methodologies, which provide data to 

constrain, enrich, and validate the models. Of particular importance will be the capability to 

better resolve the pathophysiological structure of the atria and to fully characterize the 

complex electrophysiological and fibrotic remodeling in disease. Major challenges that lie 

ahead for computer models of AF include, among others, elucidating the dynamics human 

AF and detecting rotor locations, and well as understanding the multitude of factors that 

drive progression of AF in some, but not all, patients.

The use of atrial models in personalized diagnosis, treatment planning, and prevention of AF 

will also slowly become a reality; initial efforts in this direction are reviewed here. The 

feasibility of subject-specific AF modeling has been demonstrated through the use of atrial 

models reconstructed from clinical MRI scans. Biophysically-detailed models of the atria 

assembled with data from clinical imaging modalities that incorporate electrophysiological 

and structural remodeling in cardiac disease are poised to become a first line of screening for 

new AF therapies and approaches, new diagnostic developments, and new methods for 

arrhythmia prevention. There are number of important challenges that lie ahead: 

development and clinical translation of methodologies for personalized AF ablation 

planning; development of new and effective approaches for anti-arrhythmia pacing; and 

devising improved methodologies for AF rate control. Finally, implementing patient-specific 

cardiac simulations at the patient bedside for AF therapy and management could become a 

thrilling example of computational approaches in translational medicine.
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Non-standard Abbreviations and Acronyms

AF Atrial Fibrillation

2D Two-dimensional

3D Three-dimensional

AP Action Potential

PDE Partial Differential Equation

MRI Magnetic Resonance Imaging

CT Computed Tomography
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APD Action Potential Duration

Ca Calcium

cAF Chronic Atrial Fibrillation

RA Right Atrium

LA Left Atrium

RyR Ryanodine Receptor

SR Sarcoplasmic Reticulum

DAD Delayed Afterdepolarization

RAA Right Atrial Appendage

PV Pulmonary Vein

PM Papillary Muscle

LGE Late Gadolinium Enhancement

ACh Acetylcholine

DF Dominant Frequency

OI Organization Index

HF Heart Failure
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Figure 1. 
A. Schematic of the atrial cell, including representations of ionic channels and intracellular 

ion concentrations used in the various human atrial cell models. B. Schematic of Ca 

handling with different compartments and currents in the various atrial cell models. Each of 

the models’ Ca handling is represented in one quarter of the schematic. White spaces in the 

central region denote the SR, with straight broken lines representing the division between 

SR uptake and release regions. Gray spaces represent the other compartments within the cell 

and outside of SR, with the “cleft” and “dyad” sub-spaces shown in white. Arrows indicate 

directions of Ca flow between the different compartments. The SR Ca pump is indicated by 

circle and arrow. The Koivumaki et al model29 also incorporates additional compartments 

representing peripheral and central SR regions and the current flow between these regions 

and the intracellular space. Additional detail regarding Ca handling in the models can be 
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found in the original publications.20,21,28,29,31 D–G. Control and cAF APs of five atrial cell 

models paced at a frequency of 1Hz. Modified with permission from.37
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Figure 2. 
Geometrical models of the atria. A: Volume image of the sheep atria acquired by serial 

surface imaging (resolution 50 microns), with a representative slice. Subdivision of atria into 

different regions as represented by the different colors: RA—green, LA—blue, Bachman’s 

bundle (BB)—red, posterior left atrium (PLA)—yellow. Images reproduced with permission 

from50,51. B: A model of the fibrotic human atria generated from a patient LGE-MRI scan 

(top left) following segmentation (top right) into normal and fibrotic tissue (fibrotic lesions 

in red). With permission from62.
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Figure 3. 
Membrane potential distribution on the epicardial surface of the human atria. A: 

Spontaneous normal rhythm. B: Pacing-induced AF resulting from different 

electrophysiological properties of the crista terminalis. With permission from60.
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Figure 4. 
A: Continuous PV re-activation of the LA due to heterogeneous venous conduction and 

reentry following a single ectopic beat in the LA (with permission from103). The sinus beat 

propagates heterogeneously along the vein (wrapped and unwrapped views, 342ms). Vein 

length is 1 cm, and circumference is 2cm, with 30% longitudinal and 65% transverse 

cellular disconnections. A single premature activation originating somewhere in LA invades 

PV following the sinus beat (342ms and 408ms), encountering block (408ms) and 

establishing PV reentry (492ms). This reentry continuously re-excites the LA, serving as 

“focal source” for LA activations (576ms; propagation entering LA at bottom of image). B: 

A snapshot of membrane voltage in the human atria at a single time point during AF 

(different views of the atria are shown), in which numbered arrows (1–4) indicate multiple 

reentrant wavelets. AF was induced by PV ectopic beats (with permission from64). SVC and 

IVC–superior and inferior vena cava; BB--Bachman’s bundle; FW–free wall; TA—tricuspid 

annulus.
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Figure 5. 
A: Simulated APs in control and chronic AF conditions (CAF1, CAF2). CAF1 is an AF cell 

model with Ito and ICaL reduced, without IK1 upregulation; CAF2 is the same model with 

IK1 increased. B: Electrical restitution plotted as APD–70 versus the diastolic interval (DI) 

in control and chronic AF cases. C and D: Spiral waves (phase movie snapshots) and tip 

meander in chronic AF conditions CAF1 and CAF2. Phase movies are shown at four distinct 

times. The figure demonstrates that IK1 stabilizes and accelerates reentry, as manifested by 

the reduced tip meander. Modified with permission from45.
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Figure 6. 
Modeling fibrosis as regions of collagen presence. Collagen is represented as an insulator. 

A: Simulations of propagation in 2D tissue sections (control, left, and fibrosis, right). With 

permission from115. B: Simulations in LA transmural slices for HF conditions. Snapshots at 

several timeframes for cross-field stimulation (left) and pacing at a frequency of 6Hz (right). 

Colors indicate transmembrane voltage from low (blue) to high (red). The site of 

unidirectional block(ub.) is indicated by a black arrow. White circles on the upper voltage 

maps indicate sites of wavebreak. With permission from122.

Trayanova Page 31

Circ Res. Author manuscript; available in PMC 2015 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Modeling fibroblast proliferation in the regions of fibrosis. A: Effect of myocyte- fibroblast 

coupling on spiral wave behavior in a myocardial sheet of size 4.5×4.5 cm. Top, control case 

without fibroblasts. Middle and bottom, models of low-density and high-density fibroblast 

proliferation (LD-Fbs and HD-Fbs) in a central circular region of the sheet. In the LD-Fbs 

and HD-Fbs models, atrial myocytes (100pF), each connecting to 4 fibroblasts (6.3pF) 

within the Fb-Area, account for 12.5% and 50.0% of that area, respectively. The simulated 

ECG in each case is shown at the bottom. With permission from46. B: Maps of APD in four 

human atrial models (same atrial geometry). Fibrotic lesions are modeled with (bottom row) 

and without (top row) myofibroblast infiltration (and coupling to myocytes), as well as with 
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(right column) and without (left column) diffuse collagen deposition for both sets of maps. 

All models include gap-junction remodeling in the fibrotic lesions. With permission from61.
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Figure 8. 
Simulations of AF management. A: Dual stage septal pacing algorithm with successful atrial 

fibrillation termination in a 3D surface model of the human atria (with permission from134). 

B: Modeling lines of ablation in the atria. Tissue targeted by ablation is shown in white. 

Modified with permission from59.
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