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RECENT PROGRESS IN DISCRIMINATING BETWEEN COAL 
CUlTlNG AND ROCK CUTTING WITH ADAPTIVE 

SIGNAL PROCESSING TECHNIQUES 

By Michael J. Pazuchanics 1 and Gary L. Mowrey 1 

ABSTRACT 

This report documents the current status of the U.S. Bureau of Mines ongoing investigation of the 
use of adaptive signal discrimination (ASD) systems to distinguish between cutting coal and cutting rock. 
Cutting-tool forces and vibrations were measured in the laboratory using both conical bits and roller 
cutters in a linear-cutting apparatus for several material samples and two cutting directions. A number 
of ASD systems consisting of one or more signal classifiers were trained and tested to study how data 
window size, type of signal feature, and combining (polling) of classifier results influence system 
performance. The results show that ASD system recognition rates can be improved by increasing data 
window size, removing air-cutting portions from the signal data, overlapping data windows, and com
bining (fusing) information at various levels of ASD system operation. 

lEiectricai engineer, U.S. Bureau of Mines, Pittsburgh Research Center, Pittsburgh, PA. 

.1 



2 

INTRODUCTION , .'1 0, 
~ _ -" ,'J , 

For a number of years, the U.S. Bureau of Mines has 
been engaged in developing technology to permit the tele
operation and computer-assisted operation of mining ma
chines in underground coal mining. This work is done in 
support of the Bureau's goal to reduce production costs 
and improve methods of recovering coal while enhancing 
the safety of the Nation's miners. One thrust of that effort 
deals with the problem of in-seam guidance, i.e., position
ing the cutter head of a mining machine within the desired 
boundaries of a coal seam. An important element neces
sary for in-seam guidance is a coal interface detector 
(eID) system. 

In recent years, most eID improvements have come 
about through extensive use of signal processing, which 
was made possible by the dramatic increase in computa
tional power of ever-smaller computers. There are several 
examples. Sensor work is being conducted in the United 
Kingdom on pick force, using real-time correlation of cut
ting force signals with a reference cutting force signature 
(1).2 In Germany, research has been done on machine 
vibration, using fast Fourier transformation of incoming 
vibration data every 0.1 s (2). In the United States, the 
Bureau has studied radar [automatic removal of undesired 
reflections (3)] and cutter tool force and vibration 
(application of adaptive signal techniques). The latter is 
the subject of this report. 

The basis of force and vibrational eID is that cutting
tool force and induced-vibration signals (mechanical, 
acoustical, and seismic) are related to the mechanics of 
the cutting process-mechanical properties of the geologic 
material being cut, mining-machine type, cutting-tool con
dition, and the manner in which the coal is being cut (e.g., 
how each operator cuts the coal). Evidence exists from 
both the field and laboratory to support this hypothesis. 
Machine operators have reported that when sitting in the 
cab of continuous miners they were able to feel the dif
ference between the machine cutting coal, top (roo!), and 
bottom (floor).3 General Electric performed a series of 
laboratory investigations and established that the vibrations 
of cutting tools and tool holders are nlated to the me
chanics of the cutting process.4 Furthermore, they showed 
that the basic character of vibrations induced by cutting of 
coal appeared different from those induced by the cutting 
of shale or sandstone. 

2Italic numbers in parentheses 1'efer to items in the list of references 
at the end of this report. 

3Bendix Corp. Sensory Feedback for Remote Control of a Continu
ous Miner. Contract DOE DE-AC22-76ET-12458, formerly BuMines 
contract H0366057. 

40eneral Electric Co. A Vibration Sensor for Horizon Control in 
Automated Longwall Mining. Contract DOE ET-75-C-Ol-9015, formerly 
BuMines H0155120. 

A major problem with cutting-tool force and vibration 
signals obtained from the machines is their complex nature 
due to the variability of the geology, mining-machine types, 
and operational considerations. The Bureau proceeded to 
reduce the sources of variability by first acquiring less 
complex cutting data, i.e., data collected in the laboratory 
under controlled conditions. Cutting-tool force and vibra
tion signals were measured as a linear-cutting apparatus 
(LCA) made constant-depth cuts in specially prepared 
specimens of coal and mine rock. The cutting of a speci
men by a conical bit is shown schematically in figure 1. 
The Bureau then began to investigate the use of ASD sys
tems to help classify these signals. 

In 1990, Bureau work on adaptive signal discrimination 
(ASD) systems using LeA data provided the following 
observations (4): 

• Of the four conventional classifiers investigated for 
use in ASD systems (linear discriminant, K-nearest neigh
bor, empirical Bayesian, minimum distance), no single 
classifier consistently performed better than the others. 

• In most cases, system recognition rates were seen to 
improve as the number of signal features used by the sys-
tem increased from one to five features. Also, the most 
significant improvement usually occurred within the first O~ 
three features. 

• Classifiers using cut force or normal force per
formed better than those using the horizontal-force 
component. 

• The problem of discriminating between coal cutting 
and shale cutting was more difficult than discriminating 
between coal cutting and sandstone cutting. 

• Best ASD system performance was accomplished by 
voting among the best three classifiers, followed by voting 
among the three force components. 

• For the coal-shale case, a reduction in data window 
size, i.e., length of signal examined-4.16 to 0.51 in
resulted in a decrease in system recognition rate from 
93 pct to 73 pct. This decrease was attributed to cutting 
brittle, nonhomogeneous materials which frequently have 
irregular surfaces with depressions or voids whose dimen
sions equal or exceed short data windows. Signals corre
sponding to intervals during which the bit lost contact with 
the sample (cutting air) appeared in both coal and shale 
data sets, thereby resulting in poor ASD system training 
and recognition rates. 

The objective of the latest investigation was to first 
confirm the Bureau's fmdings of 1990 mentioned above, 
and then to explore means of improving ASD system per- " 
formance. Additional data sets were acquired by measur- (/ 
ing cutting-tool forces and vibrations in the laboratory for 
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Figure 1.-Schematic of conical bit cutting specimen. A, Cutting perpendicular to'the bedding plane; B, cutting 
para"el to the bedding plane. 

several coal and rock samples for both conical and roller 
cutters on the LCA. Cuts were made in two directions, 
perpendicular and parallel to the bedding plane of the 
materials. A number of ASD systems were trained and 
tested to study how data window size (number of consecu
tive data points being examined), type of signal feature, 
combining or fusing cutting information, and cutter-tool 
type influence system performance. Both conventional and 
neural-network classifiers were investigated. Since a 

Bureau study (5) found that a coal-shale combination is 
the most likely to be encountered underground, emphasis 
was placed on working with those materials. 

This report documents the status of the Bureau's CID 
sensor program in the area of tool cutting forces and tool 
cutting vibrations. In particular, it presents results from 
the Bureau's ongoing investigation of the use of ASD sys
tems to distinguish between cutting coal and cutting mine 
rock. 

ADAPTIVE SIGNAL DISCRIMINATION SYSTEM 

The term "adaptive signal discrimination system" as 
used in this report denotes any system that extracts rele
vant features from sensor signals and provides signal trace 
classification capability. The term "adaptive" refers to the 
system having the capability of "changing," via training, to 
a given situation (not necessarily in real time). The ASD 
system is initially trained on a set of data originating from 
known conditions (e.g., class 1: "cutting coal" and class 2: 
"cutting rock"). It extracts a number of features from the 
data and then trains one or more signal classifiers. The 
classifier(s) are then used to identify unknown signals and 
can be used until the mining lithology changes significantly. 

The recognition rates obtained for a given situation 
depend upon the nature of the problem (inherent sep
arability of the classes being examined), the quality of 
signals, the quantity of signals, the subset of features used 

to represent the signals, and the type of classifiers used 
(based on sample size and probability distribution). 

As in prior Bureau work, the software package 
JCEPAKs was used to implement the basic ASD system 
tasks: signal feature extraction, classifier training, and 
classification of unknown signals using conventional 
classifiers (6). The features automatically extracted by 
JCEP AK included various parameters in the time, fre
quency, phase, cepstral,6 and autocorrelation domains (e.g., 
counting the number of peaks above different thresholds, 

SReference to specific pl'Oducts does not i:nply endorsement by the 
U.S. Bureau of Mines. 

tThe term "cepstral" is associated with the term "cepstrum," which is 
the inverse Fourier transform of the log of the power spectrum of a 
time-series signal. 
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bands of power spectra, and peak rise and/or fall times). 
Conventional classifiers used in the ASD's included the 
linear discriminant function, K-nearest neighbor, empirical 
Bayesian, and minimum distance. Each classifier is based 
on a different mathematical approach, and each is specially 
suited to particular situations. During the training mode, 
signal features that best differentiate the classes are ob
tained and are ranked in order of significance. The user 
selects a number of the highest ranked features and type 
of classifier to be used. To obtain reasonable classifier 
recognition rates, the data used for training must have a 
minimum of 10 signals per feature extracted per class. 

In addition to the ASD systems that used conventional 
classifiers, a number of ASD systems utilized neural
network classifiers. As stated by Aziz and Wong (7) the 
neural-network model consists of layers of neurons con
nected by internal connections that are associated with 
weight matrices. The input and output layers serve as the 
communication link to the outside world. 

Neural networks exhibit several attributes that offer the 
potential for better performing ASD systems. The advan
tage of the neural-network approach, with respect to the 

current applications, is its ability to generalize patterns () 
through its associative memory. The associative memory 
of the network is the result of the correct weight matrices 
between the layers of neurons. With the associative mem-
ory, the network can retrieve a complete fact given a par-
tial fact. A fact here refers to an input-output pattern. 
The presence of a second or third layer creates additional 
weight matrices that improve the ability of the network to 
generalize patterns. 

The network is trained to become a pattern-matching 
engine through a supervised learning scheme known as 
back-propagation (8). This training process includes pre
senting input-output pairs to the network repeatedly, prop
agating the error signals backward through the network, 
and modifying the network's internal connections to reduce 
the errors. The objective of reducing the error by updat
ing the weight matrices is achieved through the steepest 
descent-minimization method. The training is complete 
when the network reaches stochastic equilibrium within a 
specified tolerance. The tolerance parameter is the meas
ure that quantifies the congruence between the network 
output and the training patterns. 

TEST HARDWARE AND PROCEDURE 

The Bureau's LCA was used to acquire cutting signals 
on coal and mine-rock materials under controlled condi
tions. A complete description of the LCA along with its 
instrumentation can be found in the literature (4). The 
data from these tests, which simulate ideal cutting con
ditions, helped determine the range of performance that 
may be expected from an ASD system and to give some 
insight into how its performance can be improved. 

The test materials were made up from coal and mine
rock samples from three different sites-the Bureau's mine 
(Bruceton, PA), a coal yard (southern Pennsylvania), 
and Eastern Mingo Mine, Marrowbone Development Co. 
(southern West Virginia). Each sample, typically measur
ing 16 by 10 by 10 in, was cast in an 18-in-cube mold of 
concrete for mounting in the LCA. The sample was held 
in place on the fIxture by steel plates and large set screws. 
During the tests, researchers did not attempt to simulate 
in situ stresses, but only ensured suffIcient confmement to 
prevent block movement during cutting. 

Prior to actual tests, the front surface of the block was 
"squared" by taking one row of cuts (0.5 in deep, 1 in 
apart) across the sample face. Test cuts were made using 
either a Kennametal U70 conical bit or a custom-made 
roller-disk cutter. Tests were run under the following 
conditions: 

1. Constant depth of cut. 
2. Constant 1-in intergroove (cut) spacing. 
3. Repeated cuts made in the furrows of prior cuts. 
4. Cuts made across (perpendicular) or along (parallel) 

the bedding plane of the sample. 
S. Angle of attack of 37.so (conical bit). 
6. Cutter tool speed of approximately 100 in/ s. 

Data acquisition was initiated just prior to cutter con
tact with the block. All data were recorded on magnetic 
tape while cutting the encapsulating material and coal 
sample. 
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DATA ANALYSIS 

A number of cases representing different operating con
ditions were run to study their effects on ASD system per
formance. The parameters being varied were as follows: 

• Type of geologic material: three coals, two shales, 
one soapstone. 

• Type of cutting tool: conical bit, roller-disk cutter. 
• Type of cutting bit signal: force, vibration. 
• Data window size: 0.25 to 1.0 in bit travel. 
• Depth of cut: 0.125, 0.25, 0.5 in. , 
• Cut direction across or along bedding plane of 

sample. 

It was not possible to collect data for all combinations 
of the above parameters for a number of reasons, includ
ing a damaged test block, too thin material specimen to 
ensure quality cutting data, and cutting forces sometimes 
beyond the range of the dynamometer. 

For each case, ASD system training and tes.ting pro
ceeded in the same manner. Force or vibration data asso
ciated with a number of adjacent cuts made over several 
layers of test block were selected for processing. The 
signals comprising the data set were extracted from the 

'1 innermost portion of each cutting pass across the test 
block and did not include any concrete materiaF 

Training for the ASD system consisted of defining the 
two classes of signals, namely "cutting coal" and "cutting 
rock." Then all digitized data were analyzed using 
ICEPAK for grouping into these two classes. Next; 
ICEPAK performed a feature extraction analysis based on 
these two classes. ICEPAK extracted a total of 108 fea
tures during the analysis and created a feature file for each 
class. These two feature files were then normalized via 
zero mean unit variance mapping (6). In order to provide 
a large feature set for training, the normalized files were 
not split into two independent sets, one for training and 
one for evaluation, as was the usual procedure by 
ICEPAK. The program then rank-ordered the features in 
terms of the best feature for classification. The best 
features, up to five, were used to train the ASD signal 
classifiers. 

In the next step, the ASD classifier was tested with a 
set of unknown signals for cuts beyond that portion of the 
test block where training data were collected. Prior to 
testing, the same features as those used to train the 
classifier were extracted from the unknown signals. ASD 
system performance was expressed in terms of a recogni
tion rate, i.e., the percentage of test signals that were 
identified correctly. 

DISCUSSION 

COMBINING CLASSIFIER RESULTS (VOTING) 

Since current and prior work (4) demonstrated that no 
single classifier consistently performed better than the 
others, an improvement in ASD system performance was 
sought by combining or pooling results from several signal 
classifiers. Figure 2 illustrates the structure of an ASD 
system employing multiple signal classifiers. After each 
classifier was trained, as described above, features from 
test signals were extracted, then introduced at level 1. At 
each subsequent level, outputs were combined through 
majority voting to get a final decision at level 3. Note that 
at level 2 each classifier was assigned a voting weight cor
responding to its performance during training, whereas at 
level 3 each axis was given a voting weight of 1. Twenty
two cases were performed as shown in figure 2, using six 

7Because of an upgrade in data acquisition equipment during cutting 
tests, initial conical bit cutting data were digitized at 11,200 samples per 
second versus 20,000 samples per second for subseq uent conical and roll
er cutter data. The net result of using the new equipment with its higher 
sampling rate was a larger number of data points per inch of tool travel. 

data. sets. The data sets were associated with cutting 
across the bedding plane of different coal and mine-rock 
specimens. Training and test sets typically corresponded 
to 75 and 25 in of tool travel, respectively. The effects of 
combining information through majority voting can be 
seen in tables 1 and 2. Table 1 presents statistics for the 
22 cases at each level of ASD system operation-level 1 
before voting, level 2 after voting by classifiers, and level 
3 after voting by axis. Table 2.shows individual ASD sys
tem performance, level 3, for all cases. Results of this 
exercise were as follows: 

• For all three force or vibration axes, overall level 2 
mean performance was greater and dispersion was less 
than at level 1. 

• Overall level 3 performance was better, in terms of 
high mean performance and lowest dispersion, than level 
2 performance. 

• At levels 1 and 2, X-axis (horizontal axis) perform
ance was lowest. 
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Table 1.-Overall performance (percent) at each 
level of ASO operation (22 cases) 

Mean Variance 

Level 1: all classifiers: 
Z ... , ............. 77.5 165.4 
y ................. 73.4 114.6 
X ................. 67.9 137.0 

Level 2: vote by classifier: 
Z ...... , .. , ....... 82.1 136.4 
y ................. 76.7 88.9 
X ................. 72.4 123.2 

Level 3: vote by axis ... . 81.3 84.5 

Standard 
deviation 

12.8 
10.7 
11.7 

11.6 
9.4 

11.1 
9.1 

DATA WINDOW SIZE 

The influence of data window size on ASD system per
formance can be seen in table 2. Note that the results in 
table 2 were taken from level 3 of figure 2; however, lev
el 1 and 2 results reflected the same window size effects. 

There were 11 instances in which data window size 
was doubled-from 32 to 64 points for the conical tool 
and from 64 to 128 points for the roller cutter tool. For 
either tool, these windows corresponded to tool travel 
paths of 0.25 in and 0.5 in, respectively. On 10 occasions, 
ASD system recognition rates improved as data window 
si~e increased and in one instance the recognition rate 
decreased . 

Table 2.-ASO system performance using conical and roller tool data (voting, five features, four classifiers, three axes) 

Tool and Material Depth of Location 
data set cut, in 

Conical bit: 
1 ...... Coal-shale 0.5 Coal yard .. 
2 ...... .. do .... . 25 .. do ...... 
3 .. , ... .. do .... .25 PRC ...... 

Roller cutter: 
4 ...... .. do ... .25 Coai yard .. 
5 ...... Soapstone .25 Marrowbone 
6 .... , . .. do .... . 125 .. do ...... 

NA Not available. 
PRC Pittsburgh Research Center. 
lO.25-ln tool travel. 
20.5-in tool travel. 

Z-AXIS 

Feature 1 
Feature 2 

• 
Input • 

Feature N 
Z-axis signal 

Y-AXIS 
Y-axis signal Extract Fea,ture 1 

signal Feature 2 
X-axis signal features • • 

Feature N 

X-AXIS 

Feature 1 

Feature 2 
• 

Feature N • 

Force, pct Vibration, pet 

32-point windowl 64-point window2 32-point windowl 64-point wlndow2 

70.8 
100.0 
65.9 

75.0 
87.5 
78.5 

Level 

81.2 
95.0 
77.2 

83.6 
89.2 
85.7 

Linear discriminant 

K-nearest 
neighbor 

Empirical Bayesian 

Minimum distance 

Linear discriminant 
K-nearest 
neighbor 

Empirical Bayesian 

Minimum distance 

Linear discriminant 

K-nearest 
neighbor 

Empirical Bayesian 

Minimum distance 

68.7 70.8 
92.5 97.5 
NA NA 

75.8 80.3 
75.8 83.9 
78.5 80.3 

Level 2 Level 3 

Output 

Figure 2.-Arehitecture of ASO system with conventional classifiers. 
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SIGNAL TRACES WITHOUT "AIR CUTTING" 

In prior Bureau work (4), poor ASD system perform
ance using short signal durations (representing only 0.25 to 
0.5 in of cutter-tool travel) was attributed to "cutting air," 
i.e., the cutter tool passing through surface cavities or 
voids. Signals corresponding to intervals during which the 
bit lost contact with the sample (cutting air) appeared in 
both classes, thus resulting in poor classification accuracy. 
At that time it was suggested that the problem might be 
resolved by either improving data quality (i.e., remove 
"cutting air" segments from signal traces) or operating as 
a three-class classification problem (coal-rock-air). In ef
fect, both solutions were different implementations of the 
same solution in that success was dependent upon the sys
tem's ability to identify and remove cutting air portions of 
a signal. 

One attempt at improving data quality concluded with 
positive results. A computer program was written to re
move four or more consecutive data points associated with 
air cutting (based upon a user-defmed amplitude threshold 
value) from a signal and then to extract, from the remain
ing signal, only those data blocks (32 consecutive points 
that corresponded to 0.25 in of continuous tool travel) 
associated with material cutting. An example of preproc
essing effects on a coal-cutting signal can be seen in fig
ure 3. Table 3 shows the results for two cases of ASD 
system testing with preprocessed data using force data sets 
1 and 3 (32-point window). One negative aspect of this 
approach to the problem is that a large percentage of the 
original signal may be removed (50 to 60 pct for the two 
cases run). This in itself is not a problem if the cutting air 
portions consist of many short "pieces" (0.25 to 0.50 in) 
interdispersed among a series of coal or rock classifica
tions, since they can be assigned to the same classes 
(adjacent coal-cutting or rock-cutting designated classes) 
with a reasonable degree of confidence. On the other 
hand, if the removed portions are large "pieces" (1.0 in or 
more) then the probability of classifying them correctly, 
using the same procedure, will be low. 

Table 3.-EHect of preprocessed data on ASO system 
performance, (percent) (voting, five features, 

four classifiers, three axes) 

Data set .........•.................. 

Processed data (without air cutting) ...... . 
Unprocessed data (with air outting) ...... . 
Improvement ....................... . 

86.9 
70.8 
16.1 

3 

73.0 
65.9 

7.1 
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NEURAL-NETWORK CLASSIFIER 

Whereas ASD systenis using conventional classifiers, 
figure 2, combined information at two discrete levels (ma
jority voting by classifiers at level 2, majority voting by 
axis at level 3), ASD systems consisting of neural-network 
classifiers permitted a more intricate fusing of information, 
i.e., because of structure, each input is fed to every other 
node at every level. A neural-network-based ASD system 
that was investigated is illustrated in figure 4. It consisted 
of three levels and was implemented as a back-propagation 
network with three layers-input, hidden, and output. 

Neural-network ASD systems were trained and tested 
for three cases using force data sets 1, 3, and 4 (32-point 
window). In this exercise, input to the systems consisted 
of the first three highest ranked signal features from Z
axis (cut) and Y-axis (normal) data. Note that the fea
tures selected were based upon earlier fmdings relative to 
best features (4) and best cutting-tool forces (table 1). 
Table 4 shows that for all cases, the ASD systems using 
neural-network classifiers outperformed those using con
ventional classifiers. Although the results were positive, 
a large portion of the improvement in performance was 
attributed to not using horizontal force data. 

Table 4.-ASO system performance (percent) using neural
network classifiers versus conventional classifiers 

Data set ........•............ 

Neural-network classifiers ....... . 
Conventional classifiers1 

.••.••..• 

'Improvement ................ . 

83.3 
70.8 
12.5 

3 

72.4 
65.9 
5.5 

4 

85.0 
75.0 
10.0 

lperformance results extracted from table 2 (force data, 32-point 
window). 

At this point, a decision was made to continue the in
vestigation with neural-network ASD systems because they 
(1) appeared to perform as well or better than ASD sys
tems with conventional classifiers, (2) allowed more com
plex logic structures, and (3) were easier to implement. 

MULTIPLE MOVING WINDOWS 

As an alternative to removing "air cutting" portions of 
the signal trace to improve ASD system performance, the 
use of mUltiple moving windows was explored. The bene
fits resulting from their use included 

1. Higher performance derived from large window size 
(0.5 to 1.0 in) since air cutting constituted a smaller pro
portion of the window. 

2. System decision at each 0.25 in of tool travel. 
:; 
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The term multiple moving window as used in this report 
is illustrated in figure 5.8 Each signal was divided into "n" 
data blocks with a data block equal to data window 1. The 
data windows, corresponding to 0.25 in (window 1), 0.50 in 
(window 2), and 1.0 in (window 3) of tool travel, and the 
manner in which they overlap, are shown in figure 5. 
Each digitized signal was then transformed into three 
distinct data flIes, corresponding to three window sizes, the 

KEY 
Data window 

I?Z2J 1 

I I I--------["TJ Block 
12m 4 5 6 N - 1 N number 

8Note that for the data sets used, window 1 was either 32 points or 
64 points depending on the sampling frequency with which the signal 
data were acquired. The explanation given here is for window 1 con
taining 32 points. 

~2 
1S:s13 ISSS%S"J 

Figure 5.-Location of multiple moving data windows. 
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second being double the first and the third double the sec
ond. Each window was advanced through the original sig
nal at increments of 32 points. That is, file 1, associated 
with window 1 (32 data points), started with data block 3 
in the original and ended with data block "n -1". File 2, 
associated with window 2, started with data block 2, and 
ended with data block "n -1". File 3, associated with win
dow 3, started with block 1 and ended with data block "n". 

ASD systems with a structure as shown in figure 4 were 
trained and tested for three cases using the signals from 
bit forces in data sets 1, 3, and 4. Data files based upon 
window size were assembled as described above and signal 
features were extracted. From the total feature sets, a set 
of 18 features were picked consisting of the first three 
features, as ranked by IeEP AK, from each window for the 
forces along the Z and Y axes. In addition to the case of 
three moving data windows, other variations were also 
tried (one and two moving windows) in order to determine 
the optimum window combination. Table 5 and figure 6 
show how ASD system performance is influenced by dif
ferent moving window combinations. Figure 6 discloses 
the following points: 

• ASD system performance increased with increasing 
window size. 

• The ASD system using data windows 2 and 3 (64 
points and 128 points, respectively) resulted in the highest 
performance in two out of three cases. 

• In an ASD system using three moving windows, 
window 1 (32 points corresponding to 0.25 in of tool 
travel) contributed least to ASD performance. 

• ASD systems performed better when using multiple 
moving windows than when using preprocessed data (data 
with air cutting removed, table 3). 

Table 5.-ASD system performance (percent) for different 
window sizes and window combinations (force data, 

neural-network classifiers) 

Data window 2 3 2,3 1,2,3 

Data set: 
1 ........... 83.3 85.4 88.5 93.7 92.7 
3 ........... 72.4 77.5 85.7 83.6 82.6 
4 •.......... 85.0 86.0 89.0 90,0 91,0 

Tool travel . ,in. , 0.25 0.50 1,00 (1) e) 
10.50 and 1,00 in of tool travel data, combined. 
20,25, 0,50, and 1,00 In of tool travel data, combined, 

ASD SYSTEM PERFORMANCE USING CUITING 
FORCE AND VIBRATION 

The effect of combining both force and vibration 
data on ASD system performance was explored using data 

set 1. Two moving data windows (windows 2 and 3 as de- 1\ 
fined in the previous section) were used to generate a total~· ) 
of 24 signal features (3 features from each of 2 parameters 
(force, vibration) and 2 axes (Z, Y). The ASD system 
structure was a derivative of that shown in figure 4. Re-
sults shown in figure 7 indicate that data from two sensors 
(which in this case can be viewed as two simultaneous 
measurements from the same type of sensor, since force 
and vibration are related) result in higher system perform-
ance than from a single sensor or single measurement. 
Note that the term "single sensor" used here refers to sen-
sor type, i.e., force or vibration; however, it does include 
two axes of force or two axes of vibration. 
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0 a. 

t-=' 
(J 80 w KEY a:: 
a:: Data set 
0 
(J -II 1 

70 ..... 3 ..... 4 

60 
1 2 3 2,3 1,2,3 

DATA WINDOWS 

Figure 6.-Effect of multiple moving windows on ASD system 
performance (force data, neural-network classifiers). 
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ASD SYSTEM PERFORMANCE WHEN CROSSING 
AN IDEAL INTERFACE 

The performance of an ASD system using multiple data 
windows was examined for the case of a conical bit tra
versing an ideal coal-shale boundary. Since a real speci
men containing both coal and rock was not available, Bu
reau personnel decided to proceed with an ideal interface. 
A number of ideal or pseudo interfaces were constructed 
by appending signals associated with cutting coal to signals 
associated with cutting shale (force data set 1). In effect, 
the resultant signals represented tool travel across 1 in 
of coal followed by 1 in of shale. Classifier training and 
testing were conducted with signal features from mUltiple 
moving windows corresponding to 0.25, 0.5, and 1.0 in of 
tool travel. Figure 8 identifies the classes used in train
ing and testing. The signal feature set, which totaled 
18 features, consisted of the f~st 3 features, as ranked by 
ICEP AK, for each window for both the Z and Y force 
components. When given an unknown interface and 
prompted to identify the material just cut as the conical 
bit moved from 0.5 in on the coal side of the interface to 
0.75 in on the rock side, the ASD system responded cor
rectly 86 pct of the time. As anticipated, the system was 
wrong most frequently only when the larger data windows 
(0.5 and 1.0 in) straddled the interface, i.e., contained both 
coal and shale signals (71.4 pct of the time the system was 
incorrect). 

Class 

Coal 

Coal 

Rock 

Rock 

Rock 

KEY 
Data window 
~1 
IDim 2 
~3 

Material 
Coal Rock 

-1 0 

TOOL TRAVEL, in 

Figure S.-Multlple moving data windows crossing coal-rock 
Interface. 
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CONICAL BIT VERSUS ROLLER DISK 

The use of roller-disk cutters was investigated as a 
means of obtaining better cutting (signal) data. Earlier 
tests indicated that roller disks9 produced coal-cutting and 
rock-cutting signals that were more distinctly different than 
those produced by conical bits. In order to better ascer
tain the merits of roller cutters for CID, the earlier study 
was continued to develop a larger data base-one that in
cluded other materials and another cutting direction. The 
criteria for comparing the two cutting tools were (1) the 
degree of separation between the amplitude distribution of 
coal-cutting signals and the amplitude distribution of rock
cutting signals and (2) actual ASD system performance. 

The ftrst part of the investigation consisted of com
paring appropriate data sets by overlaying the amplitude 
distribution plot of shale-cutting data on the amplitude dis
tribution plot of coal-cutting data. A number of data sub
sets were ftrst assembled from data set 7 based upon tool 
type (conical, roller), material cut (coal, shale), cut com
ponent [cut (Z-axis), normal (Y:-axis)], and cutting direc
tion (perpendicular or parallel to the specimen's bedding 
plane). Each data set corresponded to 48 in of cutting
tool travel, and the same coal and shale blocks were used 
to obtain perpendicular and parallel cutting data. Each 
composite plot was then examined for the degree of distri
bution overlap in order to judge how well the coal-cutting 
and shale-cutting classes were separated. That is, the 
greater the separation between distributions, the higher the 
chances of distinguishing between cutting classes. The 
results of this exercise, which are illustrated in ftgure 9, 
show the following with regard to cutting-tool force data: 

• The roller cutter was clearly better than the conical 
bit at separating into classes the type of material being cut 
in both cut (Z-axis) and normal (Y-axis) components when 
the cutting tool traveled perpendicular (90°) to the bedding 
plane of the material. 

• The roller cutter was moderately better than the 
conical bit for cut (Z-axis) and normal (Y-axis) compo
nents when the cutting tool traveled parallel (0°) to the 
bedding plane of the material. 

In the second part of the investigation, a neural-network 
ASD system, as illustrated in figure 4, was trained and 
evaluated to show, in a quantitative manner, how well each 
tool performed. Because of specimen size and the loss of 
material when preparing the shale block for each cutting 
scenario, selected data sets for all scenarios were limited 
to a standard 4O.S in of cutting. Furthermore, as the result 
of short signal trace lengths, only a single moving data 
window was available, window 1 (64 data points, 0.25 in of 
tool travel). Thus, the six system inputs consisted of the 

9SSI Services, Inc. Cutter Edge Profiles for Coal Interface Detection. 
BuMines contract S0398000. 
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three highest ranked signal features from the Z-axis (cut) 
and Y-axis (normal) signal data. Because of the small 
data sets available, Bureau personnel decided that ASD 
evaluation results obtained during ASD training were a 
better indicator of performance than ASD results obtained 
with a very small test set after training. Results, which are 
given in table 6, indicate that ASD systems perform better 
with roller cutter data than with conical bit data regardless 
of signal type (force, vibration) or cutting direction (90°, 
0°). In retrospect, ASD system performance appears to be 
a better criterion than the distt;ibution of signal amplitude 
for comparing cutting tools because system performance 
is a function of multiple signal features (the best [hree in 
this case) versus one signal feature which may not be 
among the best three. 

Table 6.-ASD system performance (percent) for two 
cutting tools (neural-network claSSifiers, three 

features, two axes, data window 1) 

(Data set 7; coal-shale; blocks R, E; 0.25-ln 
depth of cut; Marrowbone) 

Signal type Conical Roller 
and cut angle bit cutter 

Force: 
90· 0 ••••••••••••••••••• 

69.1 95.0 
O· .......... , .......... 78.7 92.5 

Vibration: 
90· 0 •••••••• , •••••••••• 60.9 79.2 
O· ........ , .. , ......... 67.0 90.8 

13 

SIGNAL FEATURES 

An examination of the 3 highest ranked signal features 
fOl: 22 cases (table 2) did not reveal any single repeatable 
feature set but did tend to show a grouping by domain 
(time, power) that could be associated with sampling fre
quency or cutting-tool type (table 7). For the conical bit 
data sampled at 11 kHz, the highest ranked features for 
each case, regardless of cutting tool, cutting axis, signal 
type, or material cut, were from the time domain more 
often than any other domain. For the roller cutter data 
sampled at 20 kHz, the best features were most often from 
the power domain. 

Data set 7 (table 6), which was sampled at 20 kHz and 
whose best features were most often from the power do
main, indicates an association between cutting-tool type 
and power-domain features. An examination of the fre
quency of occurrence of the three highest ranked features 
revealed a feature set associated with the roller cutter. 
Table 8 shows that for roller cutters the best feature set 
for either force or vibration signals consists of the percent 
partial power in three frequency bands-O to 625 Hz, 1,875 
to 2,500 Hz, and 2,500 to 3,125 Hz; for conical cutters 
the best set is not well defined and ranges over a larger 
number of features. 

Table 7.-8lgnal features! associated with force and vibration data selected for cases 1 to 21 (table 2) 

Axis Ranked Conical bit, ii-kHz sampling frequency Roller cutter, 20-kHz sampling frequency 
feature 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Z .... 1st .... T A T T A T A T A P P P P P P P P P P P P 
2d .... A A A A A A A A A P P P P P P P P P P P P 
3d .... A A C A A A T A A P P P P P P P C A P P P 

y .... 1st .... T T T T A T C T T P P A P C C P P P P P P 
2d .... A A A A A A A A T P P P P S P P P P P P P 
3d .... A A C A A A A A T P C P P P P P P S P P P 

X .... 1st .... T P T S C T A T T P P P P P P P P P P P P 
2d .... A P A P S A C A A P P C P P P P P P P P P 
3d .... A S A S C A T A A P P P C P P P P P P P P 

lOomains: A = autocorrelation 
C = cepstral 
P = power 
S = phase 
T = time 
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Table a.-Frequency of occurrence of best signal feature sets 

Feature 

CONICAL BIT 

TIME DOMAIN 
Greatest peak amplitude ........................... . 

POWER DOMAIN 
Number of peaks above 25-pct maximum signal amplitude .. 
2d greatest peak amplitude ......................... . 
Percent partial power at-

625 to 1,250 Hz ................................ . 
1 ,250 to 1,875 Hz ............................... . 
2,500 to 3,125 Hz ............................... . 
3,125 to 3,750 Hz ............................... . 
3,750 to 4,275 Hz . . . . . . . . . . . . . . . . . . . . . . . ........ . 

AUTOCORRELATION DOMAIN 
Number of peaks above-

Signal base line ................................ . 
10-pct maximum signal amplitude .................. . 

Percent partial powe~ at-
1 ,875 to 2,500 Hz .......•........................ 
2,500 to 3,125 Hz . . . . . . . . . . . . . .................. . 

ROLLER CUTTER 

TIME DOMAIN 
Number of peaks above-

10-pctmaximum signal amplitude .................. . 
25-pct maximum signal amplitude .................. . 

2d greatest peak amplitude ......................... . 
POWER DOMAIN 

2d greatest peak amplitude ......................... . 
Percent partial power at-

Ot0625 Hz ................................... . 
625 to 1,250 Hz .............................•... 
1,875 to 2,500 Hz ..............................•. 
2,500 to 3,125 Hz ............................... . 

PHASE DOMAIN 
Percent partial power at 625 to 1,250 Hz ........•........ 

0 
1 
3 
3 

SUMMARY AND CONCLUSIONS 

0 
0 
0 

0 

1 
4 
3 
4 

0 

The objective was to train and test ASD systems on a 
range of coals and mine rocks in order to explore different 
means of improving system performance in distinguishing 
between the cutting of coal or rock. Cutting tool force 
and vibration sensor signals along. three axes were re
corded and digitized as the LCA made constant-depth cuts 
in coal, shale, and soapstone test specimens. ASD systems 
were trained and tested with various feature sets obtained 
from signals associated with two types of cutting tools 
(conical bit, roller disk cutter), two cutting directions 
(perpendicular, parallel), and three sets of coal and mine
rock samples. A number of cases were studied to observe 
the influence of signal features, data window size, com
bining or polling of information, and data preprocessing on 

ASD system performance. Results from this investigation 
include the following: 

• ASD system performance improved with increasing 
data window size for both force and vibration signals and 
for both conical and roller cutters (table 2). 

• An ASD system that used processed data (Le., signal 
traces with "air cutting" segments removed) outperformed 
an ASD system that used unprocessed data (table 3). 

• ASD systems using neural-network classifiers per
formed as well as or better than ASD systems using con
ventional classifiers (table 4). 

• ASD systems performed better when using mUltiple 
moving windows than when using preprocessed data (data 
with "air cutting" removed) (table 5 versus table 3). 

( -" 
~, ;/ 
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't) • An ASD system using two moving data windows 
\, > corresponding to cut lengths of 0.5 and 1.0 in resulted in 

highest performance in two out of three cases (table 5). 
• In an ASD system using three moving data windows, 

the largest window (1.0 in of tool travel) contributed most, 
and the smallest window (0.25 in of tool travel) con
tributed least to ASD performance (table 5). 

• ASD systems performed better with roller cutter 
data than with conical bit data from both force and vibra
tion signals and both cutting directions (90°, 0°) (table 6). 

• The best feature set for roller cutters (based on 
0.25 in of tool travel, 64 data-point window) for both force 
and vibration signals, consisted of the percent partial 
power in three frequency bands-o to 625 Hz, 1,875 to 
2,500 Hz, and 2,500 to 3,125 Hz (table 8). 

• Signal features were seen to depend upon sampling 
frequency and cutting tool type. A sampling frequency of 
11 kHz resulted in time and autocorrelation domain fea
tures whereas 20 kHz produced power domain features. 
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For roller-cutter data acquired at a 20-kHz sampling fre
quency, a three-feature set was identified as best regard
less of cut component or cut direction (table 8). 

Based on the above results it is concluded that an ASD 
system that incorporates the following items has the po
tential of correctly classifying material being cut with a 
high degree of confidence. 

• Uses a roller-disk cutter. 
• Uses cutting force and/or vibration signals. 
• Uses normal and cut components of data. 
• Uses multiple moving windows corresponding to 0.5 

and 1.0 in of cutter tool travel. 
• Uses three signal features from the power domain 

(percent partial power) per axis of cutting. 
• Uses back-propagation neural networks to classify 

signals and to fuse information. 
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