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Abstract

The evolutionary classification of influenza genes into lineages is a first step in understanding their molecular epidemiology
and can inform the subsequent implementation of control measures. We introduce a novel approach called Lineage
Assignment By Extended Learning (LABEL) to rapidly determine cladistic information for any number of genes without the
need for time-consuming sequence alignment, phylogenetic tree construction, or manual annotation. Instead, LABEL relies
on hidden Markov model profiles and support vector machine training to hierarchically classify gene sequences by their
similarity to pre-defined lineages. We assessed LABEL by analyzing the annotated hemagglutinin genes of highly
pathogenic (H5N1) and low pathogenicity (H9N2) avian influenza A viruses. Using the WHO/FAO/OIE H5N1 evolution
working group nomenclature, the LABEL pipeline quickly and accurately identified the H5 lineages of uncharacterized
sequences. Moreover, we developed an updated clade nomenclature for the H9 hemagglutinin gene and show a similarly
fast and reliable phylogenetic assessment with LABEL. While this study was focused on hemagglutinin sequences, LABEL
could be applied to the analysis of any gene and shows great potential to guide molecular epidemiology activities,
accelerate database annotation, and provide a data sorting tool for other large-scale bioinformatic studies.
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Introduction

Influenza A viruses are widespread and diverse within mammals

and birds. As with other RNA viruses, they undergo frequent

mutations allowing rapid evolution in response to natural selection

[1,2]. The enormous health impact of influenza viruses in humans

and animals, and the potentially catastrophic effects of influenza

pandemics, have led to large-scale surveillance of mammalian and

avian influenza viruses with thousands of gene sequences being

generated each year for molecular characterization [3–5].

Protection against influenza viruses depends mainly on vaccination

and naturally acquired immunity, but the rapid antigenic

evolution of these viruses allows them to escape population

immunity [6]. Phylogenetic analyses, particularly those based on

hemagglutinin (HA) genes, can help characterize groups of related

viruses into clades and lineages expected to share common

immunologic and/or phenotypic features [7–9].

H5N1 and H9N2 are two avian influenza A virus subtypes with

significant pandemic potential. Both subtypes have widespread

geographic distribution in domestic poultry and have caused

occasional disease in humans. Since its identification in China in

1996, descendants of the A/goose/Guangdong/1/1996-like (Gs/

GD-like) hemagglutinin gene of highly pathogenic H5N1 have

spread across Asia, Africa, and Europe into over 63 countries

[10,11]. While these viruses are not readily transmissible between

humans, the case fatality ratio is approximately 58%, with over

600 laboratory-confirmed human infections [12]. By contrast, low

pathogenicity H9N2 viruses have been detected infrequently in

humans with mild influenza-like illness. Nonetheless, H9N2

continues to cause disease outbreaks throughout much of the

world’s poultry populations. In recent years, human zoonotic

infections that have been reported coincide with increased

detection of these viruses in domestic poultry throughout Asia

and the Middle East [13].

Both H5N1 and H9N2 viruses have persisted in domestic birds

for many years with viral diversification being driven by

pronounced spread during outbreaks, continuous interspecies

transmission in avian hosts, geographic isolation, and genetic

selection—all resulting in the emergence of multiple genetic

lineages [14,15]. H5N1 viruses in particular have been grouped

into over 30 genetic clades by the WHO/OIE/FAO H5N1

Evolution Working Group since its classification system was put

into place less than ten years ago [5,16–18].

The nomenclature recommendations and ongoing clade deter-

minations for H5N1 are based on phylogenetic analyses and

quantification of clade sequence divergence (WHO/OIE/FAO

2008). As such, accurate assignment of new sequences requires the

use of the appropriate annotated guide tree (www.who.int/
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influenza/gisrs_laboratory/h5n1_nomenclature) along with care-

ful application of the WHO/OIE/FAO H5N1 Evolution Working

Group guidelines. For large datasets the clade determination

process can be time-consuming, requiring the alignment of query

and reference sequences, manual correction of alignments,

phylogenetic tree construction with sufficient bootstraps, and,

finally, pairwise genetic distance calculations.

A number of automated, sequence comparison methods have

been developed for lineage assignment, subtyping, and genotyp-

ing. BLAST-based methods [19] are fast but are vulnerable to new

sequences that have diverged from the reference library.

Phylogenetic tree based methods—such as the ‘‘two-time test’’

for genotyping described in [20] where viruses from a recent time

window must be clustered with those from an earlier time

window—are highly accurate but require computationally-inten-

sive multiple sequence alignment, as well as tree construction, to

identify each gene lineage. Composition based approaches, such as

Chaos Game Representation, have been shown to effectively

identify HIV-1 subtypes with increasing efficacy for whole

genomes in comparison to sub-genomic regions [21]. However,

their discriminatory power may be limited for the analysis of

viruses with segmented genomes, such as influenza, where lineage

assignment is done on relatively small gene segments and where

clades can have very similar nucleotide composition.

Herein we provide a new method and pipeline for the

automated clade annotation of influenza hemagglutinin sequences.

The new tool, termed ‘‘Lineage assignment by extended learning’’

(LABEL), can be trained to characterize lineages with broad

diversity (e.g., HA subtypes), minor differences (e.g., emerging HA

sub-clades) or both, provided the initial lineages are pre-defined.

LABEL uses profile hidden Markov models (pHMM) to analyze

sequence similarity to various clades and extends the results to

support vector machines (SVM) for making lineage assignment

decisions. Profile HMMs have found use in remote homolog

identification and the determination of protein family membership

[22–24]. SVMs have been used previously in metagenomics,

splice-site recognition, gene finding, and sequence classification

[25–28].

LABEL was developed, validated and optimized using two

influenza A virus HA gene subtypes: highly pathogenic H5N1 and

low pathogenicity H9N2 avian influenza viruses. We show

excellent accuracy for full-length hemagglutinin gene analysis

and fast runtime compared to the usual phylogenetic tree methods.

Furthermore, we demonstrate how HMM profile scores can be

used to visualize clustering patterns for the annotation of

sequences that fail to cluster consistently using traditional

phylogenetic analyses. The use of LABEL to rapidly and

accurately assign new influenza virus sequences into lineages will

aid viral surveillance and disease control activities as well as

advance research into finding new clade-specific phenotypes.

Methods

Datasets
Nucleotide sequences used in our analyses may be obtained

from GISAID (www.gisaid.org), Genbank (www.ncbi.nlm.nih.

gov/genomes/FLU), and the WHO website (www.who.int/

influenza/gisrs_laboratory/h5n1_nomenclature). GISAID ac-

knowledgement tables for laboratory contributions for both

H5N1 and H9N2 hemagglutinins can be found in Supplemental

Files S1 and S2. The Supplemental Files also contain a listing of

virus strain names, accession numbers, data sources, as well as

known annotations versus LABEL predicted annotations for all

data used in this study. H5N1 clade annotations were obtained

courtesy of WHO/OIE/FAO H5N1 Evolution Working Group

members [5]. Thanks to advice from working group members

and insights gained from our analyses, a few annotations were

corrected or updated with respect to the published WHO/OIE/

FAO tree datasets, see Supplementary File S1. We excluded

laboratory-derived viruses and sequences shorter than 1200 base-

pairs. This threshold was more inclusive than the 1,600 nucleotide

cutoff used in [5] but still larger than a typical mature HA1

segment (,960 nts). Collectively, highly pathogenic H5N1

influenza A viruses that share common ancestry with the first

isolate (A/goose/Guangdong/1/96) are known as Gs/GD-like

while non-Gs/GD viruses include Eurasian and North American

low pathogenicity H5 isolates. Multiple sequence entries (i.e.,

duplicate virus names) and HA sequences with 100% sequence

identity were removed using a custom Perl script. For H5

annotation, 2506 sequences were used to create the profile HMMs

with 586 of these being further used to train the SVMs. A

simplified example of pHMM and SVM training data is shown

diagrammatically in Supplemental Fig. S1, steps 2 & 3. SVM

training sequences were then removed to test the SVMs. In order

to test both the SVMs and pHMMs together, 373 newly submitted

GISAID H5 hemagglutinin sequences (1 Feb 2011 to 1 Apr 2012)

that satisfied our criteria and were not redundant with any training

data were tested. In order to account for H5 lineages outside of the

WHO nomenclature studies we used 524 non-Gs/GD lineage H5

HA to create profile HMMs, with 59 being used to train SVMs.

We again removed SVM training sequences to test non-Gs/GD

H5s, leaving 465 sequences. For H9 annotation, 1592 sequences

were used to create HMM profiles, with 342 of them used for

SVMs. These were removed to test the SVMs. Most H9

hemagglutinin sequences were from the H9N2 subtype viruses,

although H9s paired with other neuraminidase subtypes were also

included. For the analysis of partial sequences (fragments) of both

H5 and H9 hemagglutinins, shortened sequences were removed if

they were more than 5% shorter than the alignment length

(ensuring coverage of the region of interest) or if they were

redundant with existing sequences in the set.

Lineage assignment by extending learning
LABEL classifies gene sequences into evolutionary clades

defined at the nucleotide level. We will refer to a set of clades

defined on a phylogenetic tree to be its lineage partition (see

Supplemental Fig. S1, step 1). A lineage partition may be used to

develop an annotation tree resembling the partition’s phylogeny and

in turn create a hierarchy of pHMMs (step 2). Next one can train a

hierarchy of SVMs (step 3) using smaller samples of the data and

the pHMMs previously put in place. Each internal node in the

annotation tree is connected to only a few annotation nodes which

are known together as an annotation level. This hierarchical structure

allows the annotation of gene sequences to proceed from a root

level to the tips of the annotation tree with increasing specificity

eventually being reached (step 4). As a consequence, lineages

closer to the root are often combined with descendant clades and

grouped as broader clusters of clades. Annotation trees for H5N1

and H9N2 are given in Figures 1 and 2, respectively. The depth

and detail of the annotation tree need not be equal for every

branch, and for some lineages only summary annotations may be

desired (notice the short depth of the American [Am_nonGsGD] and

Eurasian [EA_nonGsGD] non-Gs/GD lineages in Fig. 1).

Once a hierarchy of pHMMs has been established (Supple-

mental Fig. S1, steps 1 & 2), the rest of LABEL’s SVM training, as

well as lineage assignment, will follow two distinct phases: an

analysis phase and a decision phase (steps 3 & 4). For the analysis

phase, sequences are scored by pHMMs to analyze their similarity

LABEL: Fast and Accurate Flu Lineage Assignment
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to defined clades or clusters within the annotation tree. In the

decision phase, scoring data is used to train SVM decision-making

as well as provide data for query sequence annotation. A

completed LABEL module includes the full hierarchy of trained

SVMs, pHMMs, and annotation labels.

Training a LABEL module
LABEL was written as a shell pipeline using a BASH script

calling many custom Perl scripts, standard UNIX utilities, and

linking to various third-party binaries.

First, for the particular gene of interest, sequences from the

same clade were divided into separate files. This was done using

either existing annotations (H5N1) or through careful scrutiny of

the phylogenetic tree information combined with historical

considerations from the literature (H9N2). Each clade sequence

library was aligned using MUSCLE v3.8.31 [29] with default

parameters. JalView [30] was used to manually edit nucleotide

alignment frame-shifts and trim the jagged ends of the alignment

for greater consistency and quality. Specifically, the H5N1

hemagglutinin alignment was trimmed to GATCAGATT...G-

CACTGGCA with respect to A/goose/Guangdong/1/96

(AF144305/EPI_ISL_1254) while the H9N2 hemagglutinin

alignment was trimmed to GATAAAATC...TCATCTCTT rela-

tive to A/chicken/Beijing/1/94 (AF156380/EPI_ISL_1270).

Clade-specific alignments at each annotation level must not have

mismatched alignment endings with respect to each other. Highly

conserved motifs in the sparse ends can introduce unwanted bias

towards a particular clade-specific HMM profile and degrade

performance.

For LABEL’s analysis phase, hidden Markov model profiles

were constructed from clade nucleotide alignments using the

modelfromalign program included in the SAM v3.5 package [23].

SAM’s hmmscore program (with default settings) was used to score

sequences with the clade-specific HMM profiles.

To train and make classifications for LABEL’s decision phase,

we chose a multi-class support vector machine implemented by the

Shogun Machine Learning Toolbox [31] using the Generalized Minimal

Norm Problem or GMNP [32] method and a non-homogeneous

polynomial kernel of degree 20 (selected using leave-one-out cross-

validation of preliminary data, results not shown) with data

normalization. A binary SVM can be utilized when only 2 groups

are present by calling LIBSVM [33] using Shogun under the same

kernel parameters. SVM training data is composed of reverse-

corrected log-likelihood scoring matrices with dimensions deter-

mined by the number of training sequences versus the number of

clade-specific HMM profiles at the current annotation level. In

other words, each training sequence is scored not only against its

own clade-specific HMM profile but also against all other profiles

within the current annotation level.

SVM training sequences were usually small representative

samples from each clade or cluster. For very small clades, full sets

were sometimes needed while for larger clades random sampling

was the initial starting point (custom Perl script). To increase

annotation accuracy, SVM training data for each clade was down

or up-sampled in an ad hoc manner, especially if clade sizes were

highly disproportionate. However, once a LABEL module was

fully trained the annotation of unknown HA sequences required

no phylogenetic expertise or intervention.

Analysis of HA genes
After training a LABEL module for a desired influenza gene

and lineage partition, clade annotation for any given set of

sequences will proceed in a deterministic fashion. LABEL contains

no user parameters or options that can affect the outcome of the

lineage assignment operation, making the tool consistent and

reliable. Similar to module training, sequences are scored by the

HMM profiles (analysis phase) of the current annotation level in

order to produce a matrix of scores for SVM classification and

clade annotation (decision phase). Lineages are assigned hierar-

chically with the annotation becoming final once it reaches a leaf

node in the annotation tree.

For each HA sequence analyzed, the output from LABEL

includes a FASTA header and the corresponding predicted

annotations in various file formats (plaintext, tab-delimited, etc.).

Moreover, a trace of the pHMM scores is generated for each

annotation level reached within the tree. FASTA sequence files

corresponding to each annotated clade are also provided—the full

query sequence set being available for optional re-annotation and

alignment as well. Lastly, for manual verification of LABEL’s

annotations, one can optionally align and create a tree of query

sequences combined with a small reference library stored within

the LABEL module. In such a tree, predicted annotations of the

query sequences will appear in the form of {PRED:annotation}.

Maximum likelihood tree construction in LABEL is done using

FastTree2 [34] with GTR+GAMMA and 1000 local support

Figure 1. Annotation tree for LABEL’s H5N1 annotation module. Each internal node corresponds to an annotation level (classification step)
within the hierarchical annotation process. Accordingly, HMM profiles and SVM classes used by the H5 module are represented by all non-root nodes
(color circles). The ‘‘c-X’’ notation stands for ‘‘cluster X,’’ where X is some general group of clades. Exact correspondence with the H5N1 clade
clustering [5] is not preserved in the annotation tree for the sake of algorithmic simplicity.
doi:10.1371/journal.pone.0086921.g001
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bootstraps. FastTree2 was also used in phylogenetic analyses

throughout this study.

Runtime estimation
LABEL was tested versus an Intel-optimized version of

MUSCLE as well as MAFFT version 6.851b using FFT-NS-i

[35]. The UNIX time utility was used for assessing runtime on a

single 12-core 2.8 GHz Xeon computer with 48GB of RAM

(LABEL takes advantage of multi-core architecture). Tests were

run in quintuplicate with the number of seconds averaged for each

sample size. Samples were taken randomly without replacement

from the H5N1 dataset using a custom Perl script. A fixed set of

200 non-redundant reference sequences was added to each query

set for MUSCLE and MAFFT to simulate the usual phylogenetic

lineage inference process.

Annotation accuracy
Accuracy, represented as a percentage, is the number of samples

where LABEL correctly annotated the sequence divided by the

total number of sequences to be annotated. Since more than two

groups are annotated and because clades can be unequal in sample

size, we chose the balanced error rate [36] or BER as a second,

complementary measure of accuracy with 0% BER being best.

BER is calculated by finding the percentage of incorrectly

annotated samples for each group and averaging their error rates.

The outlier groups (typically very small in size) are aggregated into

single group for the purposes of the BER averaging (but not for the

purpose of assessing incorrect annotations).

Pairwise distance calculations
Pairwise distance matrices (p-distance) were calculated by

MEGA5 [37] for use with between and within group averaging

via custom Perl script, and by the R ape package [38] for use with

classical multidimensional scaling in R [39,40]. The C-value ratio

used in the H9N2 lineage partitioning is the ratio of the average

pairwise distance between a particular taxon and its closest

neighboring group divided by the average pairwise distance within

that selected clade. For distance matrices computed from pHMM

scoring matrices, scores were first normalized [41] before taking

the usual pairwise Euclidean distances.

Results

LABEL annotation of highly pathogenic avian influenza
A(H5N1) viruses

Since the earliest detection of highly pathogenic H5N1 viruses,

the immunologically critical viral surface protein, hemagglutinin,

has diverged into 32 phylogenetically distinct clades with no fewer

than 12 new genetically-defined clades emerging in just the past

several years [5]. We have adopted the WHO/OIE/FAO H5N1

evolution working group’s clade annotations for LABEL’s H5

annotation module. Supplemental Figure S2 shows a representa-

tive guide tree of 581 H5N1 hemagglutinins with strain names

annotated. Additionally, Figure 1 shows a diagram of the H5

annotation tree corresponding to all defined lineages.

As seen in Table 1, LABEL achieved 100% accuracy on self-

validation data (HMM and SVM training data, see Supplemental

Fig. S1) and, more importantly, on data excluding SVM training

sequences (SVM test set). The minimum sequence length observed

in these sets was 1,339 nts with an average full HA length around

1700 nts. The self-validation dataset contains many divergent

sequences and outliers. Therefore, we have used it to assess the

broadest range of clades in our sequence length analyses.

To evaluate whether partial H5 sequences from particular

hemagglutinin regions can be used for accurate clade annotation,

we tested LABEL lineage assignment on the HA1 segment as well

as three nearly equal non-overlapping regions of HA1. We have

observed that as many as 40% of smaller H5 HA sequences (less

than 1200 nts) from public databases cover the HA1 region (95%

of alignment length) while less than 2% of these partial HA cover

the HA2 segment (data not shown). Table 1 shows that the use of

HA1—on average about 960 nts—is highly informative, yielding

over 99% accuracy with only 20 out of 2,164 non-redundant

sequences being annotated erroneously (balanced error rate of

1.9%). This was expected as the HA1 segment is also generally

more phylogenetically informative than the HA2 segment [42].

Performing LABEL annotation on non-overlapping fragments

of HA1 (around 300 nts) reduced accuracy to between 87.2%

(fragment 3) and 93.5% (fragment 2). Smaller H5 HA (less than

1200 nts) encompass regions corresponding to fragments 2 or 3 as

much as 60% of the time while fragment 1 is represented 40% of

the time (data not shown).

LABEL can properly interpret long deletions because it relies on

pHMMs which in turn model potential deletion states. Thus,

annotation accuracy was improved with the concatenation of

fragments 1 and 3, from 88.2% and 87.2% when assessed

individually to 91.8% when concatenated together. In brief,

LABEL is capable of annotating viruses with good accuracy even

on smaller fragments. However, annotation is generally more

reliable with longer sequences.

To test LABEL accuracy and performance on data not used to

develop our annotation modules in any way, we obtained 373

previously unidentified H5 sequences from GISAID submitted

between 1 February 2011 and 1 April 2012. Of these, 119 were

new with respect to date collected as well. Sequence annotations

were compared to BLAST search and traditional manual

phylogenetic annotation as described previously. For this new set

LABEL achieved 100% clade annotation accuracy (see Supple-

mental File S1).

Finally, we assessed annotation performance for two very broad

non-Gs/GD lineages: one for the Americas (Am_nonGsGD) and one

for Eurasia (EA_nonGsGD). Such H5s may be mixed in with Gs/

GD-like H5N1 hemagglutinins when querying public databases

such that annotating them allows for proper discrimination and

separation of H5 samples. Table 1 shows accurate annotation of

all 465 non-Gs/GD lineage viruses tested. These results, combined

with accuracy in annotating Gs/GD-like viruses (even partial HA1

sequences), demonstrate the applicability of LABEL for future

H5N1 surveillance activities.

LABEL annotation of low pathogenicity avian influenza
A(H9N2) viruses

We have trained LABEL to do lineage assignment on H9N2

avian influenza viruses. Phylogeny of the H9 hemagglutinin has

been reported in [43–46] and also in the aforementioned Feb.

2010 WHO report. However, in contrast to H5N1 viruses, it was

Figure 2. Annotation tree for LABEL’s H9N2 annotation module. Each internal node corresponds to an annotation level (classification step)
within the hierarchical annotation process. Accordingly, HMM profiles and SVM classes used by the H9 module are represented by all non-root nodes
(color circles). The ‘‘c-X’’ notation stands for ‘‘cluster X,’’ where X is some general group of clades. Clades are named according to historical names and
for representative sequences.
doi:10.1371/journal.pone.0086921.g002
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necessary to first revise and annotate the H9 lineages. Our

phylogenetic analysis, including a substantial number of recently

deposited sequences that were not available for previous analyses

(1,592 sequences in total), allowed for the classification of H9 HA

genes into 23 distinct clades and 5 clade-specific outlier groups.

Table 2 shows the average pairwise distances (APD) within each

clade, the APD to the most closely related taxa, and the ratio (C-

value) of these two APDs. Lineages were restricted to a within

group APD of 6% and to C-values of no more than 1.1. Clade

nomenclature was chosen based on previous classification as well

as representative strain names within the clade of interest, as

shown in Table 3. Figure 2 shows the annotation tree for LABEL’s

H9 annotation module (outlier groups are not shown for

simplicity). Correspondingly, Supplemental Figure S3 shows a

representative tree of 606 H9N2 hemagglutinins with strain names

annotated.

Having trained LABEL on a dataset incorporating the revised

H9 nomenclature, we tested accuracy as described for H5 above.

Table 4 shows that LABEL was able to correctly identify clades for

all of the full length HA genes analyzed. The test dataset was next

subdivided into HA1 and HA2-encoding sequences as well as

three ,321 nt non-overlapping fragments encoding HA1—

recapitulating the approach used to analyze the informativeness

of partial regions within the H5 module. LABEL annotation

accuracy was 99.9% and 96.8% when using non-redundant HA1

and HA2-encoding regions respectively. Interestingly, although

fragments 1 and 2 of HA1 are relatively short, they retain very

high annotation accuracies (.99%). By contrast, fragment 3 only

provides 93.4% annotation accuracy, suggesting less informative

or fewer variant sites reside in this region (Supplemental File S2).

While our H9N2 lineage partition defines clades that are diverse in

terms of their APD and sampling (Table 2), LABEL was still able

to achieve 100% annotation accuracy on whole HAs and over

93% accuracy using just 321 nt length fragments (HA1).

Resolving clade annotations of transitional H5 HA genes
with LABEL

Transitional HA sequences that bisect two sister clades in a

phylogenetic tree pose a special challenge for annotation. For

example, we have observed three H5N1 viruses that do not fit well

with the older clade 1 or the newer clade 1.1: A/duck/Vietnam/

NCVD-126/2007, A/duck/Vietnam/NCVD-001/2008, and A/

duck/Vietnam/NCVD-385/2009. We classify these viruses as

1.1-like because they match most closely with 1.1 viruses using

BLAST (data not shown). Other authors also note the separation

of NCVD-126 from clade 1.1 [47]. Given the uncertainty in

phylogenetic tree reconstruction, such problems in cladistic

assignment and H5N1 annotation are surprisingly rare. Supple-

mental Figure S4 shows the tree for clades 1 and 1.1 along with the

1.1-like group. The APD of the 1.1-like group to clades 1 and 1.1 is

3.69% and 3.24% respectively, while its within group APD is

1.85%. From APD analysis, one may conclude that these viruses

should not belong to either clade 1 or 1.1, supporting their

classification as ‘‘1.1-like’’.

For corroboration of 1.1-like clustering patterns, LABEL was

used to generate scoring matrices for plotting using the R car

package [48]. Figure 3A shows a scatterplot of HMM profile

scores where the clade-1-specific profile scores are graphed versus

clade-1.1-specific profile scores. This plot shows that 1.1-like

viruses do not cluster with either clade 1 or clade 1.1

hemagglutinins. Scoring the same sequences with an HMM

profile created from the 1.1-like group and plotting it versus the

clade 1.1 pHMM shows a distinct separation of 1.1-like sequences

from the other clades (Fig. 3B).

Clade annotation of ‘‘outlier’’ H5 HA genes with LABEL
Clade 3 viruses were identified as early as 2000 while the related

clade 4 appeared in two waves—2002 to 2003 and 2005 to 2006.

According to WHO/FAO/OIE’s 2011 nomenclature guide tree

(www.who.int/influenza/gisrs_laboratory/201101_h5fulltree.pdf)

three viruses were identified as ‘‘outliers’’ clustering near clades 3

and 4: A/chicken/Shantou/904/2001, A/Hong_Kong/378.1/

2001, and A/duck/Hong_Kong/380.5/2001. We will refer to this

outlier group as 3-like. The determination of such outliers may be

related to the nomenclature criteria (such as violating APD

thresholds) or by clustering between established clades. Impor-

tantly, such determinations are very data-dependent and older

annotations may cease to be appropriate as new samples are

obtained.

Phylogenetic tree and LABEL scatterplot analyses showed that

these ‘‘outliers’’ were more similar to clade 3 than to clade 4. The

tree in Supplemental Figure S5 confirms that the 3-like group

Table 1. Hemagglutinin clade annotation for avian influenza subtype A(H5N1) by LABEL.

Hemagglutinin clade annotation for avian flu
H5N1 Sequence Count

Incorrect
Annotations Accuracy (BER)

Avg. Length
(nts) Min. Length (nts)

Gs/GD lineage H5N1 (SVM test set) 1920 0 100.0% (0%) 1707.3 1339

Plus SVM training set (self-validation set) 2506 0 100.0% (0%) 1707.5 1339

**full HA1 (GATCAGATT..AGAAATACC DQI..RNT) 2164 20 99.1% (1.9%) 959.5 919

HA1 frag. 1 (GATCAGATT..TTGAGCAGA DQI..LSR) 1161 137 88.2% (20.6%) 320.8 305

HA1 frag. 2 (ACAAACCAT..CCAGAAATA TNH..PEI) 1486 96 93.5% (10.3%) 317.8 315

**HA1 frag. 3 (GCTACTAGA..AGAAATACC ATR..RNT) 1228 157 87.2% (27.0%) 321.0 318

**HA1 fragments 1 + 3 1761 145 91.8% (27.5%) 641.7 612

*H5 submitted 2011/2/1 to 2012/4/1 (HMM & SVM
test set)

373 0 100.0% (0%) 1706.3 1202

Non-GS/GD H5 (SVM test set) 465 0 100.0% (0%) 1722.0 1615

*Non-redundant H5N1, GISAID, Min. Len. 1200 bp, excluding previous sets, non-laboratory derived.
**The cleavage site is not included.
Start and stop 9-mers with translated amino acids are given for each fragment relative to A/goose/Guangdong/1/96 (AF144305/EPI_ISL_1254); accuracy is the number
of correct clade annotations over the total number of tested HA nucleotide sequences; BER is the balanced error rate.
doi:10.1371/journal.pone.0086921.t001
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clusters within clade 3. The 3-like group has an APD of 0.5%

within itself and an APD of 2.47% between it and clade 4. By

contrast, the between group APD of the 3-like group versus clade 3

is only 1.32%, violating the WHO/OIE/FAO requirement that

clades have at least 1.5% APD between each other [17].

Moreover, the within group APD of clade 3 acceptably goes to

1.22% when the 3-like sequences are added to it (within group

APDs must be no more than 1.5%). Correspondingly, the pHMM

scores of the 3-like group cluster within clade 3 (Fig. 4A) although

one can induce modest separation using a 3-like group-specific

HMM profile (Fig. 4B). The scoring data obtained through

LABEL suggest that the 3-like viruses could have been added to

clade 3, in agreement with phylogenetic clustering and distance

evidence. Nonetheless, we retain the 3-like nomenclature to be

more consistent with WHO/FAO/OIE H5N1 evolution working

group’s latest recommendations and the purported disappearance

of the H5N1 HA clade in recent years [5].

Runtime performance
LABEL differs from tree-based clade annotation methods in

that it does not require the alignment of query sequences with a

reference library or the construction of a bootstrapped phyloge-

netic tree. Moreover, neither inferring lineages from the tree

programmatically nor manually inspecting the tree is required to

assign lineages. In our experience, the alignment phase of this

process is the most time-consuming. Hence, it may be used as a

baseline time for any tree-based method. For comparison of query

sequence annotation runtimes of tree-based methods versus

LABEL, we used an Intel-optimized MUSCLE binary and

MAFFT to perform alignments on H5N1 hemagglutinins of Gs/

GD-like viruses (a typical use case scenario).

For each query sample size (16, 32, 64, 128, 256, 512, and 1024

sequences) and adding in a constant 200 sequences for the

alignment programs, we ran LABEL, MAFFT, and MUSCLE

with 5 replications each. The guide tree available for H5

hemagglutinins on WHO’s website consists of 196 sequences;

therefore, 200 reference sequences is a realistic estimated sample

size. Supplemental Figure S6 shows the averaged runtimes for

LABEL, MAFFT, and MUSCLE. Our first observation was that

the run time for LABEL is directly proportional to the size of the

data set, while the run time for MUSCLE and MAFFT is

proportional to the square of the size of the data set. LABEL and

MAFFT have a similar run time while MUSCLE is slower than

both. Alignment run time will also increase or decrease with

respect to the reference dataset size. Finally, our benchmark

compares the full LABEL annotation procedure to just the

alignment stage of tree-based annotation pipelines, for which

phylogenetic tree construction and lineage inference will also need

to be performed. Full data for Supplemental Figure S6 is given in

Supplemental File S3 along with additional runtimes for LABEL

with MUSCLE-based control alignment features turned on.

Table 2. Revised 2012 H9N2 nomenclature.

Revised H9N2 clade name
Clade sample
count Closest clade

APD between clade &
closest APD within clade C-value

AR29209 5 HK448 14.9% 2.7% 5.5

Chk_Bei 76 Y280_G9 7.0% 1.7% 4.1

DB277 7 HK448 8.5% 3.4% 2.5

G1_Asia 42 G1_PK519 4.5% 3.5% 1.3

G1_Mideast_A 39 G1_PK519 4.3% 2.3% 1.9

G1_Mideast_B 116 G1_PK519 6.0% 5.0% 1.2

G1_Mideast_C 9 G1_PK519 3.8% 1.9% 2.1

G1_Mideast_D 35 G1_PK519 3.7% 3.2% 1.2

G1_PK519 4 G1_Mideast_D 3.7% 1.3% 2.9

HK147 9 HK448 7.6% 3.5% 2.2

HK448 6 HK147 7.6% 5.4% 1.4

KR38349 55 PV46B 10.6% 4.8% 2.2

MN5733 28 HK147 9.2% 3.5% 2.6

MY91 3 HK448 10.8% 0.8% 13.3

PV46B 9 VN340 6.6% 3.9% 1.7

SB261 13 PV46B 8.0% 2.7% 2.9

VN222 3 PV46B 10.0% 4.1% 2.5

VN340 39 PV46B 6.6% 3.8% 1.7

WI66 6 MN5733 15.7% 0.9% 17.2

Y280_Fuj_SL6 54 Y280_G9 9.2% 1.3% 7.3

Y280_G9 171 Chk_Bei 7.0% 4.5% 1.5

Y280_Sha_ZB07 22 Y280_G9 7.6% 2.9% 2.6

Y280B 824 Y280_Sha_ZB07 7.8% 5.2% 1.5

TOTAL COUNT: 1592 Full tree APD: 10.0%

Average pairwise distance (APD) values within and between closely related clades using a p-distance calculation with pairwise deletion. The C-value is the ratio of the
between group APD to the within group APD.
doi:10.1371/journal.pone.0086921.t002
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Dealing with inappropriate data using pHMM scores
LABEL’s ‘‘best fit’’ clade annotation scheme can allow for the

classification of inappropriate data (negative samples) as false

positives. For example, the user might accidentally submit the

wrong HA subtype, an amino acid sequence (rather than a

nucleotide one), or the wrong gene segment. To mitigate such

error, we established data filtering by profile hidden Markov

model scores using module-defined thresholds as described in

Supplemental File S4/Supplemental Methods. Such thresholds

allow for an expected worst-case (350 nt samples) misclassification

rate of less than 0.1% while retaining sensitivity to all positive

samples (sequences for which the module has defined lineages).

Our filtering method demonstrates that sequence annotation

and classification using pHMM scores alone can be highly

effective. However, pHMM-only classification will be the most

accurate for well-separated datasets, such as the H5 vs. H1-H4,

H6-H16 hemagglutinin dataset shown in Supplemental File S4.

For a more complex and highly similar set of clades, the pHMM/

SVM strategy employed by LABEL can increase accuracy. To

show this, we used pHMM-only clade annotation (best score wins)

to re-classify the 2506 H5 HA shown in Table 1 and 1592 H9 HA

shown in Table 4 over the same annotation trees and profile

HMMs. Compared to LABEL’s 100% accuracy on the H5 and

H9 datasets, pHMM-only clade annotation were 81.7% (55.8%

BER) and 97.5% accurate (17.9% BER) respectively.

Discussion

Hierarchical clade annotation
LABEL employs a hierarchical approach to lineage assignment

that offers several benefits. First, as new viral clades emerge,

adding a new leaf node to the module’s annotation tree may not

require the alteration of training data for older parent clades.

Second, annotation of sequences using a nested set of clades

eliminates unnecessary analysis of unrelated lineages. Since

influenza genes very rarely undergo recombination this is

appropriate. Finally, using a hierarchy allows one to discriminate

between very similar sequences by narrowing down the scope of

comparisons.

LABEL’s hierarchical lineage assignment method resembles so-

called ‘‘rank-flexible’’ techniques used in metagenomics [28,49].

LABEL differs in that its hierarchical branching always continues

until a leaf node is reached within the annotation tree, in that

annotations may be defined at arbitrary levels of specificity not

corresponding to traditional taxonomic units and, more impor-

tantly, that LABEL can be used for higher resolution typing within

a species. As such, LABEL is well suited for the annotation of

rapidly evolving RNA viruses.

In particular, heterogeneous clade specificity within LABEL’s

annotation tree allows researchers the flexibility to define lineage

partitions ad hoc, as exemplified by the H5 module where further

clarification of the EA_nonGsGD and Am_nonGsGD lineages was not

Table 3. Revised 2012 H9N2 nomenclature references.

Representative Virus Clade Additional Info

A/quail/Arkansas/29209-1/93 AR29209

A/shorebird/Delaware_Bay/277/
2000

DB277

A/duck/Hong_Kong/448/78 HK448

A/duck/Malaysia/91/1997 MY91

A/mallard/Ireland/PV46B/1993 PV46B Supplemental Figure S3

A/shorebird/DE/261/2003 SB261

*A/duck/Vietnam/NCVD-222/
2009

VN222

A/duck/Viet_Nam/340/2001 VN340

A/Chicken/Korea/38349-
p96323/96

KR38349 [54,55]

A/duck/Hong_Kong/147/77 HK147

A/goose/Minnesota/5733/80 MN5733 [44]

A/turkey/Wisconsin/1/1966 WI66

A/quail/Hong_Kong/G1/97 G1_Asia

A/chicken/Middle_East/ED-1/
1999

G1_Mideast_A

A/chicken/Iran/B102/2005 G1_Mideast_B [43]

A/quail/Dubai/303/2000 G1_Mideast_C

A/chicken/Saudi_Arabia/CP7/
1998

G1_Mideast_D

A/chicken/Pakistan/AG519/98 G1_PK519 aka Pakistan1999

A/chicken/Beijing/1/94 Chk_Bei [56]

A/chicken/Hong_Kong/G9/97 Y280_G9 aka Y280A

A/duck/Hong_Kong/Y280/97 Y280B [13]

A/chicken/Fujian/SL6/2011 Y280_Fuj_SL6

A/chicken/Shandong/ZB/2007 Y280_Sha_ZB07 Supplemental Figure S3

*Named for virus not in our dataset that clusters with clade VN222.
doi:10.1371/journal.pone.0086921.t003

Table 4. Hemagglutinin clade annotation for avian influenza subtype A(H9N2) by LABEL.

Hemagglutinin clade annotation for avian flu H9N2
Sequence
Count

Incorrect
Annotations

Accuracy
(BER)

Avg. Length
(bp)

Min. Length
(bp)

H9N2 lineage HA(self-validation set) 1592 0 100.0% (0%) 1642.0 1202

Without SVN training data (SVM test set) 1250 0 100.0% (0%) 1640.9 1202

full HA1 (GATAAAATC..CCTGCTAGA DKI..PAR) 992 1 99.9% (0.7%) 959.9 924

HA1 fragment 1 (GATAAAATC..CTTTTTAGT DKI..LFS) 674 4 99.4% (3.2%) 318.0 315

HA1 fragment 2 (TCTGCTAGT..CCCCCTGTC SAS..PPV) 804 4 99.5% (2.5%) 321.0 320

HA1 fragment 3 (AATGGTCAG..CCTGCTAGA NGQ..PAR) 749 47 93.7% (5.2%) 312.0 311

full HA2 (AGAGGACTA..TCATCTCTT RGL..SSL) 843 27 96.8% (2.3%) 590.0 562

Start and stop 9-mers with translated amino acids are given for each fragment relative to A/chicken/Beijing/1/94 (AF156380/EPI_ISL_1270); accuracy is the number of
correct lineage annotations over the total number of tested HA nucleotide sequences; BER is the balanced error rate.
doi:10.1371/journal.pone.0086921.t004
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defined or desired. Shallow clade annotation tree depth could also

result from the clade going extinct or from a lack of clade samples.

Clade definition flexibility was important in creating our refined

H9N2 nomenclature (Tables 2-3; Fig. 2; Supplemental Fig. S3)

where sample size sometimes forced narrowly-defined lineages

(MY91, VN222, etc.) or allowed more broad definition for others

(e.g., KR38349 and Y280B, within group APD of 4.8% and 5.2%

respectively). Indeed, the choice of a broad within group APD

threshold (6%) lets our lineage partition accommodate older,

under-sampled, and possibly extinct groupings while our use of a

Figure 3. Two-dimensional scatterplots of profile HMM negative log-likelihood scores for H5N1 hemagglutinins in clades 1 (green
circles) and 1.1 (red triangles) along with those in a 1.1-like group (blue stars). (A) Plot shows scores for the clade 1.1-specific pHMM (Y-axis)
versus scores for the clade 1-specific pHMM (X-axis). (B) As in A, but with the X-axis containing scores for the 1.1-like pHMM instead. Smaller (more
negative) numbers are considered better fits for that clade or group.
doi:10.1371/journal.pone.0086921.g003

Figure 4. Two-dimensional scatterplots of profile HMM negative log-likelihood scores for H5N1 hemagglutinins in clades 3 (green
circles) and 4 (red triangles) along with those in a clade 3-like group (blue stars). (A) Plot shows scores for the clade 3-specific pHMM
(Y-axis) versus scores for the clade 4-specific pHMM (X-axis). (B) As in A, but with the X-axis containing scores for the 3-like pHMM instead. Smaller
(more negative) numbers are considered better fits for that clade or group.
doi:10.1371/journal.pone.0086921.g004
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minimum C-value (1.1) ensures clades will be less diverse internally

than they are versus the nearest clade.

By contrast, increasing H5N1 surveillance allows the WHO/

OIE/FAO H5N1 evolution working group nomenclature to limit

within group APDs to ,1.5% and between group APD to .1.5%

for its unified nomenclature [5,16–18]. To compare with our H9

nomenclature, the H5 unified nomenclature would use minimum

C-value of 1—albeit with stricter thresholds. In addition, WHO/

FAO/OIE specifies clades must contain at least four samples, be

monophyletic, and have a minimum of 60% bootstrap support for

Gs/GD-like viruses. LABEL does not rely on explicitly evaluating

these unified nomenclature criteria as a phylogenetic tree method

would; rather, LABEL does so implicitly by assigning a ‘‘best fit’’

clade consistent with WHO/OIE/FAO’s lineage partition.

Annotation of partial and transitional HA
LABEL annotated full length hemagglutinins correctly (100%

accuracy) for both H5N1 and H9N2. However, due to technical

difficulties, full-length sequences are not always available in

surveillance. The use of partial sequences showed 87% to 99%

accuracy depending on factors such as sequence length and the

choice of region. The examined partial H5N1 hemagglutinin

regions could not be annotated as well as those of H9N2 HAs

(87.2%–99.1% vs. 93.7%–99.9% respectively). While the com-

plexity of H5 lineages is greater than for H9 (32 clades in H5

versus 20 in H9; 7 outlier groups vs. 5 outlier groups), this

difference in accuracy for the HA1 region sequences (a common

partial sequence) may be traced to so-called outlier groups.

Supplemental File S1 shows that of the 20 incorrectly annotated

H5 HA1 sequences, 13 belonged to outlier groups with the

majority being re-assigned to closely related clades. (We have

refined outlier annotations to include clade context such as 2-like,

1-8-like [1 or 8-like], and 2.3.4-like groups, see Supplemental

Figure S2.) For the H5 HA1 segment dataset we chose to include

the full dataset encompassing many outliers while for H9 HA1

dataset we excluded classifier training data and with it many

outliers. It makes intuitive sense that transitional viruses will be

more difficult to annotate from partial sequences, as particular

gene regions may contribute to clade uniqueness.

Anomalous sequences within well-defined clades can also cause

problems. For the H5 HA1 dataset, only A/pigeon/Laos/NCVD-

36/2007 was classified to a distant clade (1 instead of 2.3.4). We

have observed that adding NCVD-36 to a tree of full length HA

introduces a topological inconsistency where the 1.1-like group of

outliers clusters instead with clade 2.3.4. Using BLAST as well as

phylogenetic analysis after removing NCVD-36 confirms that the

1.1-like group should remain basal to clade 1.1. Since LABEL

correctly classifies NCVD-36 as 2.3.4 when the full-length

sequence is provided, we believe that some discriminating

information must exist in HA2 necessary for proper sequence

classification. Using smaller sequence fragments for annotating H9

and H5 may sometimes be less reliable.

Critical evaluation of LABEL
LABEL provides a method for fast (linear time, ,1 second per

sequence on H5) and highly accurate lineage assignment. Profile

HMM scores collated in the LABEL pipeline can also be used to

create both two and three-dimensional scatterplots, and we have

shown a couple cases where scatterplot clustering can be used in

conjunction with phylogenetic tree clustering to resolve difficult to

annotate sequences.

In terms of runtime, BLAST-based annotation methods, such as

[19], should be comparable or slightly faster than LABEL

although BLAST runtimes will also be dependent on the size of

the reference library. Decreasing the size of the reference library to

improve runtime for BLAST may increase the chance of

improperly annotating query sequences. Moreover, the choice of

a fixed percent identity and e-value threshold for BLAST may fail

to produce accurate matching over time as newer sequence data

diverges from the reference library. BLAST-based lineage

assignment methods will therefore be relatively fast but at the

cost of accuracy (especially over time). In contrast, the usual tree-

based lineage assignment method will be relatively accurate, but

also relatively slow.

How then does LABEL handle continuing clade evolution? In

our experience with training LABEL, we have noticed that

sequences near the tips of a clade within a phylogenetic tree are

reliably annotated with respect to different training sets whereas

sequences nearer to the split between clades were not as reliably

annotated. In order to empirically understand the effects of future

sequence divergence on LABEL, we annotated H5 clades 1.1,

2.2.1, and 2.3.2.1 from our new H5 dataset (collected February

2011 to April 2012, not used in any training) with a ‘‘new’’ suffix to

distinguish new sequences from older ones of the same name. Then,

in Supplemental Figure S7, we created scatterplots for each cluster

of clades by taking 2D classical multidimensional scaling of p-

distance matrices vs. the scaling of distance matrices derived from

the pHMM scores used by LABEL (scripts available upon request).

New (blue) points unsurprisingly show drift from old ones (red) when

visualizing p-distance (panels A1, B1, and C1 for clades 1.1, 2.2.1,

and 2.3.2.1 respectively). On the other hand, clustering between old

and new data is better preserved for plots computed from pHMM

scoring matrices (A2, B2, and C2). It must be noted that defining

new sub-clades, instead of relying on old definitions, is the work of

subject matter experts and may take into account antigenic as well

as genetic information. As such, LABEL was written to annotate

existing nomenclatures and not invent new ones (although

visualization from scoring matrices may help in this process).

In recent years, another methodology called phylogenetic

placement has been of interest for short read placement on a

reference phylogenetic tree [50,51]. By contrast, LABEL is a

hierarchical classifier complementary to such methods but very

different in function. After the writing of this manuscript, the

Influenza Research Database (IRD) [52] implemented an H5N1

clade annotation tool using pplacer as one of its components. We

tested IRD’s tool using full-length non-outlier H5 HAs for Goose/

Guangdong-lineage viruses (2463 sequences). IRD’s tool per-

formed at 98.9% accuracy, while, anecdotally, the computation

required over 3 times as much time compared to a local 3.2 GHz

Quad-core Intel Xeon workstation (data not shown). A direct

comparison may be performed if the work is published. However,

tools like IRD’s may be seen as complementary to LABEL and we

hypothesize that several different methods in conjunction might

produce conservative but reliable results. On the other hand, if

reference dataset privacy concerns are an issue for the stand-alone

distribution of software, LABEL has an advantage over alignment-

based methods (traditional approach, BLAST or phylogenetic

placement) in that module distribution does not require the

distribution of reference sequences, even though reference sets

may be optionally provided.

LABEL has several limitations that will be addressed in future

versions. First, training LABEL modules requires both expertise in

phylogenetics and an intimate knowledge of our pipeline. We plan

to provide tools to streamline module training. Second, LABEL is

very specific when it comes to detecting previously characterized

‘‘outlier’’ sequences but somewhat inflexible at detecting new ones.

We plan to implement anomaly detection helpful for outliers and

previously un-sampled lineages. Finally, while support vector
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machines are considered robust methods for machine-learning

[53] and while HMM profiles provide a statistical framework for

evaluating similarity to clade alignments, LABEL gives no

indication of statistical confidence for its annotations. Methods

for p-value estimation and other confidence measures are being

investigated for the next major version of LABEL.

Final remarks
We introduce a method for the rapid HA clade annotation of

highly pathogenic H5N1 and low pathogenicity H9N2 influenza A

viruses, two viruses with pandemic potential. However, we believe

that this methodology may be developed to rapidly assess the full

influenza genome in order to detect viral reassortment and identify

novel influenza genotypes for epidemiological analyses. Moreover,

while influenza was a useful organism to study due to its rapid

mutation rate and the wealth of surveillance data available, we are

not limited to influenza. The LABEL methodology outlined in

Supplemental Figure S1 could be applied to any gene of interest

provided one is able to develop a lineage partition for the various

taxa involved, and provided the sequences are independently

heritable. We believe that the rapid and accurate annotation of

clades for human pathogens will aid molecular epidemiologic

assessment and support public health interventions.

Availability
We offer a web platform for LABEL along with its code and

current annotation modules (H5 and H9) for use and download at

label.phiresearchlab.org. We include instructions for easy installation

on both Mac OS X and Linux systems. All of the custom LABEL

scripts are licensed under the GNU Public License (GPL) version

3. Third-party licenses for some of LABEL’s components

(including GPL and a not-for-profit academic or government

license for SAM) are included in the package and apply when used

within LABEL or separately. For those wishing to host LABEL on

their own webserver we have implemented options for cluster

integration compatible with Open Grid Scheduler/Grid Engine

2011.11 (not used in benchmarks).
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