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Abstract 

Background:  Emerging and understudied pathogens often lack information that most commonly used analytical 
tools require, such as negative controls or baseline data; thus, new analytical strategies are needed to analyze trans-
mission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported 
in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close 
contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform 
public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly avail-
able bioclimatic data, we demonstrate one such approach. Using an ecological niche model (ENM) algorithm, we 
identify the environmental conditions under which VACV outbreaks have occurred, and determine additional loca-
tions in two affected countries that may be susceptible to transmission. Further, we show how suitability for the virus 
responds to different levels of various environmental factors and highlight the most important factors in determining 
its transmission.

Methods:  A literature review was performed and the geospatial coordinates of 87 molecularly confirmed VACV out-
breaks in Brazil were identified. An ENM was generated using MaxENT software by combining principal component 
analysis results of 19 bioclim spatial layers, and 25 randomly selected subsets of the original list of 87 outbreaks.

Results:  The final ENM predicted all areas where Brazilian outbreaks occurred, one out of five of the Colombian out-
break regions and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. 
Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, 
annual precipitation, mean temperature of the coldest quarter and mean diurnal range.

Conclusion:  The analyses here provide a means by which to study patterns of an emerging infectious disease and 
identify regions that are potentially suitable for its transmission, in spite of the paucity of high-quality critical data. 
Policy and methods for the control of infectious diseases often use a reactionary model, addressing diseases only after 
significant impact on human health has ensued. The methodology used in the present work allows the identification 
of areas where disease is likely to appear, which could be used for directed intervention.
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Background
Zoonotic pathogens, including Ebola virus, H1N1, 
MERS and SARS [1–5], impose significant threats to 

human health and are projected to increase in their dis-
tribution and impact in coming years [5]. Currently, 61% 
of all pathogens that infect humans are zoonotic and 75% 
of emerging disease pathogens are zoonotic in origin 
[6]. This pattern is driven in part by novel interactions 
between humans and previously undisturbed environ-
ments, and can be attributed to human modifications, 
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land-cover change, climate change, unplanned urbaniza-
tion and human migration [5].

Vaccinia virus (VACV) is one such example of an 
emerging, zoonotic pathogen. VACV is an Orthopoxvi-
rus and is closely related to the virus that causes smallpox 
(Variola virus). VACV was used as the vaccine against 
smallpox during eradication efforts, but more recently, 
human infections of zoonotic origin have been reported 
[7–9] in Brazil, India [7] and Mongolia [10]. The natu-
ral history of VACV and its transmission cycle is not 
known, but several wild and peri-domestic species of 
mammals have shown evidence of orthopoxvirus infec-
tion, including horses, coatis, opossums, monkeys and 
rodents, which could be involved in the maintenance of 
the virus in nature [11–16]. In South America, the first 
VACV outbreak of zoonotic origin was identified in Bra-
zil in 1999 [17] and all documented VACV outbreaks on 
the continent since that year have been associated with 
dairy farms in Brazil [18–21] or Colombia [22]. During 
an outbreak, the virus is presumably spread throughout 
a farm by direct cow-to-cow contact or via milkers who 
develop lesions on their hands and spread the virus to 
others during milking. The virus could be transmitted to 
neighboring farms by sharing infected cattle for breed-
ing practices and/or infected milkers. Secondary human 
cases of VACV without direct physical contact with 
infected cattle, have also been reported [17, 23]. VACV is 
not a mandatory reportable disease and the current sur-
veillance system is not designed to capture these infec-
tions. Further, only a limited number of epidemiologic 
studies have been conducted, which restricts the ability 
to estimate the burden of the disease and the use of other 
analytical approaches to research transmission patterns 
and risk factors that would aid in its control.

VACV infection causes moderate to severe illness in 
humans and reduces milk production in cows; disease 
manifestation in humans includes pruritus at the site 
of infection, papules, vesicles, and pustules surrounded 
by erythema and induration as well as fever, headache, 
exhaustion, enlarged lymph nodes, and malaise; symp-
toms last for up to 30 days [21]. Experimentally infected 
cows show symptoms that last 1–32 days post inoculation 
(dpi), whereby vesicles, papules and ulcers form on teats, 
and in some cases the muzzle as well, and eventually scar. 
Milk production is affected by infection as mastitis begins 
early in infection and remains through the entirety of the 
disease. Milk volume drops by more than 70% by 3  dpi 
and milk quality, measured by somatic cell count (SSC), 
significantly decreases [24]. Studies of milk experimen-
tally contaminated with VACV showed a major reduction 
of infective viral particles (>94%), after the pasteurization 
process but a few were still infective [25].

The dairy industry in Brazil is currently the world’s 5th 
largest milk producer and is rapidly increasing. There 
are over 1 million dairy cattle farms in Brazil, which are 
heavily concentrated in the states which have experi-
enced VACV outbreaks (Minas Gerais, São Paulo, Goiás, 
and Rio Grande do Sul [26]). Studies of milk experimen-
tally contaminated with VACV showed a major, but not 
complete, reduction of infective viral particles (>94%) 
after the pasteurization process [25], this opens the pos-
sibility for viral spread through consumption of milk.

Public health control of emerging pathogens is chal-
lenging when the origin and basic risk factors for patho-
gen acquisition are not well understood. The mechanism 
by which VACV is maintained in nature, cows become 
infected, transmission patterns, attack rate and basic risk 
factors are still unknown. In lieu of opportunities to col-
lect more data from larger outbreaks or formal epidemio-
logical studies, this work attempts to utilize the existing 
and publicly available information to gain insight into 
this emerging threat. Based on the premise that patho-
gen circulation depends, in part, on certain environmen-
tal conditions, identifying and mapping those conditions 
can be used to hypothesize the distribution of a pathogen 
across the landscape [27]. Here, we aim to identify at-risk 
regions for VACV transmission in Brazil and Colom-
bia by determining the environmental factors common 
among locations in which outbreaks have been recorded, 
and to identify the most relevant bioclimatic factors 
affecting its transmission.

Methods
Input data
Outbreak occurrence data
A literature search was performed to create a list of 
VACV outbreaks and their geographical coordinates. 
The search was conducted in PubMed, was restricted to 
articles in English and used the following search terms: 
Bovine Vaccinia, Vaccinia virus, Bovine Associated Vac-
cinia, or Brazilian Vaccinia. References within articles 
identified by this search were reviewed for other publi-
cations that were not found in the original. Results were 
further supplemented with publications suggested by 
subject matter experts including Brazilian researchers 
familiar with local publications. Inclusion criteria for an 
outbreak were (1) the outbreak occurred in Brazil, (2) 
the etiologic agent was confirmed as VACV via molecu-
lar diagnostics, and (3) the article noted the municipal-
ity in which the outbreak occurred. The centroid of each 
municipality was then used to represent the location of 
disease occurrence. The complete list of outbreaks used 
for modeling is listed in Additional file 1 and summarized 
by state in Table 1.
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Information concerning reported cases of VACV in 
Colombia is more limited: they have occurred in the 
municipalities of Medina, Puerto Salgar (INS Personal 
Communications) and Valaparaíso [22]. Additionally, 
cow samples from the departments of Casanare and 
Santander have been found to be positive (INS Personal 
Communications).

Climatic data
At broad scales, climatic variables have been used in eco-
logical niche models to find non-random associations 
between occurrences and environmental conditions at 
those locations to estimate distribution of many infec-
tious diseases [28, 29]. Here, we used climatic datasets 
from WorldClim, http://www.worldclim.org/bioclim, 
which provide fine-scale data of various environmental 
factors for the entire world, including minimum, maxi-
mum, and average temperature, annual precipitation, as 
well as seasonal estimates for each factor. These datasets 
are publicly available through 19 bioclimatic spatial layers 
[30] and are offered in four resolutions. A visual compari-
son of each resolution’s pixel size to the average munici-
pality size was performed to select the most adequate 
spatial resolution to fit the precision of the VACV occur-
rence data. To reduce dimensionality and auto-correla-
tion between variables, Principal Components (PC) were 
calculated based on the 19 bioclim layers in ArcMap, v. 
10.3.1 over the total area of interest (Colombia and Bra-
zil) [31] (Table 2).

Model generation
ENMs have been used to gain understanding of environ-
mental aspects of transmission of diseases and their spa-
tial distribution with limited amounts of available data. 
Maxent has been shown to be useful in its application to 
study infectious diseases [32], and to have a higher per-
formance than other similar algorithms [33]. Thus, ENMs 
were built using MaxENT software [34], which applies 

the maximum entropy principle, whereby a model is con-
structed by fitting a probability distribution to the envi-
ronmental variables, which is closest to uniform and is 
constrained by parameters associated with the outbreaks; 
by doing this, MaxENT finds non-random associations 
between environmental variables and VACV outbreaks 
via the comparison of environmental conditions at such 
localities and background conditions within the study 
area. Here, the default settings in MaxENT (i.e., regulari-
zation multiplier = 1.0, 1500 maximum iterations, 10,000 
background points, convergence limit = 1025) were used.

In generating an ENM, the choice of a geographic 
extent in which models will be trained strongly influ-
ences the model’s calibration since pseudo-absences can 
be selected from within this area [35]. An extent that is 
too large would offer the model too much area where 

Table 1  Brazilian outbreaks of VACV by state

Number of recorded VACV outbreaks in each Brazilian state

State # of VACV outbreaks

Bahia 1

Espírito Santo 9

Goiás 3

Maranhão 1

Mato Grosso 2

Minas Gerais 33

Rio de Janeiro 22

Rio Grande do Sul 1

São Paulo 15

Table 2  PCA results

Eigen vectors and values

Listed are the Eigen vectors, indicating the contributions of each bioclim 
layer to the 5 principle component (PC) layers, used in MaxENT modeling. The 
three largest contributors to each layer are highlighted in italics. Eigen values 
listed in the last row indicate the amount of heterogeneity that each PC layer 
accounts for PWQ precipitation of wettest quarter, MTCQ Mean Temperature of 
Coldest Quarter, AP annual precipitation, TS Temperature Seasonality (standard 
deviation * 100), PS Precipitation Seasonality (Coefficient of Variation), MTWaM 
maximum temperature of the warmest month, ISO isothermability (Bio2/
Bio7) * (100), PDQ Precipitation of Driest Quarter, PDM precipitation of the driest 
month, MTCM minimum temperature of the coldest month, PCQ Precipitation 
of Coldest Quarter, TAR Temperature Annual Range (MTWaM–MTCM), PWaQ 
Precipitation of Warmest Quarter, MTWaQ Mean Temperature of Warmest 
Quarter, MTDQ Mean Temperature of Driest Quarter, PWM precipitation of the 
wettest month, AMT annual mean temperature, MTWQ Mean Temperature of 
Wettest Quarter, MDR mean diurnal range

Bio clim layer PC 1 PC 2 PC 3 PC 4 PC 5

PWQ 0.6356 0.5965 0.2536 0.0680 −0.2815

MTCQ 0.2760 0.2158 −0.8614 −0.1089 0.3413

AP 0.2166 0.0951 0.0801 0.6262 0.2729

TS 0.0830 0.1829 −0.0215 −0.5473 −0.3041

PS 0.0750 0.0312 0.0203 0.2270 0.1051

MTWaM 0.0360 0.1909 0.4181 −0.4064 0.7729

ISO 0.0306 −0.0205 −0.0466 −0.0061 −0.0659

PDQ 0.0255 −0.0257 −0.0134 0.0306 −0.0361

PDM 0.0238 0.0547 −0.0042 −0.1760 −0.0939

MTCM 0.0236 −0.0199 −0.0302 0.0310 −0.0683

PCQ 0.0161 −0.0165 −0.0120 0.0315 −0.0308

TAR 0.0101 −0.0126 −0.0006 0.0275 −0.0036

PWaQ 0.0087 −0.0078 −0.0159 0.0340 −0.0390

MTWaQ 0.0071 −0.0047 −0.0045 −0.0161 0.0057

MTDQ 0.0066 −0.0116 −0.0029 0.0671 −0.0441

PWM −0.0048 −0.0251 0.0070 0.0725 0.0518

AMT −0.0069 −0.0040 0.0270 0.0338 0.0292

MTWQ −0.0240 0.0089 0.0437 0.0732 0.0217

MDR −0.6747 0.7154 −0.0722 0.1510 −0.0356

% of eigen values 66.9938 92.3237 97.2055 98.8945 99.6106

http://www.worldclim.org/bioclim
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transmission is not possible, resulting in a falsely precise 
model. A study area too small would not allow for suffi-
cient environmental variability and would limit the selec-
tion of pseudo-absences (points where a case has not 
been reported, but cannot be ruled out) [35]. To address 
this, six geographic extents were tested—50, 100, 150, 
200, 250 and 300 km radius (results for three of them are 
reported). Given that using a geographic extent that is 
too big would inflate AUC scores, we tested the extents 
iteratively, beginning with the smallest, and the one with 
the highest performance was chosen.

To test the ability of the ENM to predict areas suit-
able for VACV, the list of outbreaks was divided into two 
datasets—separated by whether each outbreak fell above 
or below the median longitude and median latitude of 
all outbreaks [36]. These datasets, which each contained 
outbreaks from different quadrants of the study area, 

were then used as test and training datasets, to test and 
train model performance.

Mapping of VACV outbreaks (Fig. 1), identified through 
the literature search revealed clustering of outbreak 
reports in southeastern Brazil might be due to reporting 
bias since surveillance efforts are not uniform across the 
country. This clustering could interfere with the model 
performance metrics by means of spatial autocorrelation 
(i.e., nearby localities have similar environmental condi-
tions and could predict each other) [32]. To address this 
bias, subsets of the outbreaks were created to generate a 
more homogeneous spatial representation of the distri-
bution of the disease and correct for spatial autocorrela-
tion. These subsets were created in R Studio, v. 0.99.849 
using base packages [37]. To generate a subset, one out-
break was randomly selected as part of the subset and all 
points within an indicated proximity threshold [either 

Fig. 1  VACV outbreaks in Brazil. Red points indicate the centroid of municipalities with confirmed VACV outbreaks. Grey circles show the 300 km 
radius from centroids, which indicates the geographic extent used in MaxENT model. Inset most outbreak municipalities were found in southeast-
ern Brazil in the states of Minas Gerais, Espírito Santo, and Rio de Janeiro
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33 km (0.1°) or 52 km (0.5°)] were removed. Then, a new 
outbreak was randomly selected from the remaining out-
breaks and its neighbors (within the same proximity) were 
removed. This process was repeated until all outbreaks 
were assigned to the subset or discarded. This process was 
repeated 25 times to create 25 subsets with each proximity 
threshold, either with 33 or 52 km. The resulting subsets 
contained approximately 70 or 45 outbreaks, respectively. 
While not every outbreak was included in every subset, 
each outbreak was included in at least one of the subsets. 
Another correction for bias was applied by restricting the 
areas used to train the model to buffered regions around 
the outbreaks. Pseudo-absences were selected from within 
these regions, such that the selection bias of the outbreaks 
was applied to the environmental layers as well [38].

Models were run in MaxENT using each one of the 
outbreak datasets (33 km subsets, or 52 km subsets) and 
one set of environmental layers (PC layers clipped to 
either 50, 100, 150, 200, 250 or 300 km radius). Individual 
log probability outputs of each model were transformed 
into binary maps (0 = unsuitable and 1 = suitable using 
three probability thresholds calculated based on 0, 5, or 
10% omission of the training occurrences [39]. Individual 
binary maps were then combined within each omission 
level to generate a map that represents model agreement 
with values ranging from 0 (all models agreed the pixel 
was unsuitable) to 25 (all models agreed the pixel was 
suitable) [39]. Finally, the model was projected onto the 
countries of Brazil and Colombia [40]. This projection 
was compared to the available geographic information of 
Colombian VACV outbreaks.

Model evaluation and analysis
Models were evaluated using the area under the curve 
(AUC) of the receiver-operating characteristic (ROC). For 
medical diagnostics, AUC values 0.5–0.7 are considered 
low accuracy, values of 0.7–0.9 are accurate and values 
≥0.9 are highly accurate [41]. Previous studies selected an 
AUC of 0.85 as acceptable; given the uncertainty in the pre-
cision of the localities (municipalities) we used to generate 
the model, we would expect higher levels of omission, and 
therefore considered an AUC above 0.8 as acceptable.

A three-dimensional plot was produced using values 
from the first three PC layers, to visualize the climatic het-
erogeneity of the study area and the portions in environ-
mental space occupied by the areas deemed suitable for 
transmission by the MaxENT model, as compared with 
the values of the actual outbreaks in Brazil and Colombia.

The PC layers used to make the ENMs contribute dif-
ferentially to the final model. For each model, MaxENT 
provides the relative contribution of each variable. The 
higher the contribution, the more impact a PC layer has 
on predicting VACV suitability.

These values are derived by default in MaxENT. In brief, 
the first estimate reflects the increase in regularized gain, 
which is added to the contribution of the variable. Next, 
the values of each variable on training presence and back-
ground data are randomly permuted. The model is reeval-
uated on the permuted data, and the resulting drop in 
training AUC is shown (normalized to percentages). The 
average contribution of each PC layer across the 25 sub-
sets, and the corresponding standard deviation is reported.

Values for each of the 19 bioclimatic layers were 
extracted from the areas identified as suitable for transmis-
sion in the final MaxENT model. Summary statistics were 
calculated for each layer. The same statistics are calculated 
at the points of outbreaks in Colombia and Brazil. These 
extracted values were also plotted as frequency plots.

Finally, the final model was visually compared to livestock 
densities as livestock is involved on the virus’ transmission 
to humans. Estimates of livestock density are provided by 
the Food and Agriculture Administration of the United 
Nations (FAO) [42]. The density maps used here are a result 
of the FAO continuously collecting livestock statistics at 
sub-national levels. These data are then matched to their 
administrative boundaries and densities are calculated, 
accounting for suitable land (i.e., excluding lakes and cities).

Results
The literature review and selection criteria resulted in 
the identification of 87 Brazilian municipalities in which 
VACV outbreaks had occurred, mapped in Fig.  1. Most 
outbreaks are clustered in southeastern Brazil in the states 
of Rio de Janeiro, Minas Gerais and São Paulo. Some 
reports include multiple outbreaks that occurred over 
a time period [23, 43] while others reported on a single 
outbreak [44, 45]. Visual comparison of the four spatial 
resolutions of bioclim layers to the average size of VACV-
affected municipalities led to the selection of the 5 arc-min 
resolution bioclim data for this analysis. At this resolution, 
pixels in bioclim layers were not considerably smaller or 
larger than the size of most VACV municipalities.

A principal component analysis of the 19 bioclim lay-
ers, revealed that the first five principal components 
account for 99.6% of the heterogeneity across Brazil and 
Colombia (Table 2) and were selected for use for in sub-
sequent analyses. Among these five layers, the three larg-
est bioclim contributors for each layer are bolded.

Precipitation of the wettest quarter (PWQ), mean tem-
perature of the coldest quarter (MTCQ) and annual pre-
cipitation (AP) were the most important factors for PC 1. 
For PC 2, in addition to PWQ and MTCQ, mean diurnal 
range (MDR) was also identified as an important factor.

Multiple ENM models were generated using different 
combinations of outbreak datasets with environmental 
layers. These combinations and the resulting AUC values 
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are summarized in Table  3. Only three of the six geo-
graphic extents tested are listed here.

MaxENT models 1–4 were run to determine the ability of 
an ENM to predict outbreaks by generating the model using 
a training dataset, which contained approximately half of the 
total outbreaks, and testing its ability to predict areas suit-
able for the other half of the outbreaks. Using a geographic 
extent limited to a 50  km radius surrounding outbreaks 
yielded models that were not accurate or predictive (Test 
AUC = 0.64, Train AUC = 0.684). When a buffer of 250 km 
was used to select the training area, the model improved 
considerably (Test AUC  =  0.802, Train AUC  =  0.935). 
These results indicated that the MaxENT model was capa-
ble of predicting outbreak localities by identifying environ-
mental conditions suitable for VACV transmission.

Models were created using each set of the subsets of 
outbreaks and PC 1–5 layers at a 250 km radius extent. 
AUC values were higher for those models using subsets 
generated using 33 km (Model 6 AUC = 0.861) compared 
with the models, which used 52  km subsets (Model 5 
AUC = 0.803). However, this could be due to incomplete 
elimination of clustering; thus, subsets generated using 
52 km were used for modeling, with a slightly larger geo-
graphic extent, 300 km (Model 7 AUC = 0.812).

Models 9 and 10 were run using the 19 bioclim vari-
ables, which were not reassembled into PC layers. Each 
of the 19 were clipped to 300 km around each outbreak 
and models were generated using 52  km (Model 9) and 
33  km (Model 10) outbreak subsets. As such, models 7 
and 9 are comparable and models 8 and 10 are compa-
rable. In each comparison, the AUC is slightly improved 
when using 19 bioclim variables, rather than PC lay-
ers 1–5. This suggests that use of PC 1–5 removed some 
information that describes VACV suitability. Five bioclim 
variables accounted for about 80% of the heterogeneity: 

isothermability (26.6%), Precipitation of the coldest 
quarter (15.9%), mean temperature of the driest quar-
ter (15.6%), precipitation seasonality (12.2%), and tem-
perature seasonality (9,7%). The remaining 14 layers 
each contributed less than 5% each to the heterogene-
ity of the principle components. One of these variables, 
precipitation of the coldest quarter, was identified as a 
key environmental parameter in models, which used PC 
layers. That the other three variables are different may 
suggest that without the adjustment provided by princi-
ple components, the estimate of these variables is overly 
emphasized.

Final models were produced at three thresholds of 
omission (Fig. 2a). The 0% threshold, in addition to iden-
tifying the regions where VACV outbreaks have already 
occurred, uniquely highlighted new regions of the Mato 
Grasso, Tocantins, Rio Grande do Sul as well as several 
central-eastern states, as suitable for transmission. The 
more conservative 10% threshold identified new states 
and regions as suitable for transmission, including Santa 
Catarina, Paraná, and Mato Grosso do Sul. States which 
have already experienced at least one VACV outbreak, 
and were identified by the model as suitable to VACV 
transmission are: Mato Grosso, Rio Grande do Sul, Minas 
Gerais, Rio de Janeiro, Espírito Santo, Bahia, Goiás, and 
smaller portions of Maranhão and Bahia. States which 
have not yet experienced a VACV outbreak, yet were 
identified as suitable by the model were Mato Grosso do 
Sul, Paraná, Santa Catarina and smaller portions of Piauí, 
Ceará, Pernambuco, Alagoas, and Sergipe.

The final models were then projected onto Colombia 
(Fig. 2b). The known outbreaks that have occurred there 
are shown by black outline of the most granular geo-
graphic extent available: municipalities (Medina, Valapa-
raíso and Puerto Salgar) or departments (Casanare and 

Table 3  Summary of VACV MaxENT models

Summary, variables used and resulting AUC values, of MaxENT models run in selecting variables. Subsets had 33 or 52 km, 0.3 or 0.15 decimal degrees in between 
each outbreak, corresponding to ~52 and 33 km, respectively. MaxENT runs 5–7 were generated using 25 subsets of outbreaks. The AUC values reported here are 
averages of those AUC’s from those 25 models. Standard deviations are reported in parenthesis

MaxENT run Outbreak dataset Enviro. layers (radius to centroids) AUC (SD) AUC (train)

1 Test v train PC 1–5 (50 km) 0.64 0.684

2 Train v test PC 1–5 (50 km) 0.626 0.832

3 Test v train PC 1–5 (250 km) 0.802 0.935

4 Train v test PC 1–5 (250 km) 0.848 0.844

5 Subsets, 52 km PC 1–5 (250 km) 0.803 (0.007) X

6 Subsets, 33 km PC 1–5 (250 km) 0.861 (0.003) X

7 Subsets, 52 km PC 1–5 (300 km) 0.812 (0.007) X

8 Subsets, 33 km PC 1–5 (300 km) 0.867 (0.002) X

9 Subsets, 52 km BioClim 1–19 (300 km) 0.873 (0.004) X

10 Subsets, 33 km BioClim 1–19 (300 km) 0.907 (0.001) X

11 (combined datasets) Subsets, 52 km PC 1–5 (300 km) 0.95 X
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Santander). Outbreaks could have occurred anywhere 
within the outlined regions. The model predicted part of 
one department, Casanare, and the model, using the 0% 
threshold, predicted part of one municipality, Medina, 
as suitable for transmission. The regions in which three 
of these outbreaks occurred lie outside of the predicted 
region.

The density of livestock [42] is mapped (Fig.  2c), and 
many of the Brazilian outbreaks fall within regions of 
Brazil that have a high density of cattle, i.e., Goiás, Rio de 
Janeiro, Minas Gerais, and São Paulo. Several areas with 
high density of livestock are predicted suitable for trans-
mission such as Mato Grosso do Sul, and northwestern 
Paraná.

Figure  3a–c show several angles of the three-dimen-
sional plot of PC 1–3 values. The MaxENT model pre-
diction for suitable ranges for each of these variables is 
shown in black dots. The values for Brazil (red) fall within 
this range, as the model accurately predicted the major-
ity of the outbreaks there. Some of Colombia’s outbreaks 
fall outside of the suitable environments, as predicted by 
the model. One of these outbreaks is notably discordant 
for PC 1. Most of Colombia’s outbreaks fell within Brazil’s 
range for PC layers 2 and 3, but again, varied for PC layer 
1. In Fig. 3b, c, the background and MaxENT model con-
ditions were removed for better visualization.

The percent predictive contribution of each PC layer to 
the final model is listed in Table 4.

Fig. 2  a Three omission thresholds—0% = yellow, 5% = orange and 10% = red—of the final MaxENT model projected over Brazil, indicating suit-
ability for VACV transmission. Black points show all outbreaks used to generate model, b three thresholds of the final MaxENT model projected onto 
Colombia. The outlines of VACV municipalities (Medina, Valaparaíso and Puerto Salgar) or departments (Casanare and Santander) are outlined in 
black, c livestock densities throughout Brazil and Colombia. Values represent cattle head densities (values per square kilometer). Country totals are 
adjusted to FAOSTAT values in 2006
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PC layers 1 and 2 collectively contributed over 70% 
to the final model. The bioclim layers with the highest 
contribution to PC layers 1 and 2 are precipitation of 
the wettest quarter (PWQ), mean temp of the coldest 
quarter (MTCQ), annual precipitation (AP) and mean 
diurnal range (MDR) and were further analyzed. Plotted 
in Fig. 4 is the number of pixels deemed as suitable for 
transmission at each value of the bioclim variable indi-
cated: MaxENT prediction (black line), Brazilian out-
breaks (red line). The range for each of these variables, 
as predicted by MaxENT, is as follows: PWQ (198.12–
1546.86  mm), MTCQ (9.5–27.1  °C), AP (467.36–
3571.24  mm), and MDR (6.6–15.7  °C). Summary 
statistics for each of the bioclim layers extracted from 

each model can be found in Additional file 2 and pixel 
plots for the remaining 15 bioclim layers are provided in 
Additional file 3. To summarize the results of the ENM, 
the environmental factors associated with most of the 
VACV outbreaks in Brazil include an annual mean tem-
perature of 22.5 °C, mean diurnal temperature range of 
11.7 °C, and an annual precipitation of 1493.52 mm. 

Discussion
Ecologic niche modeling was used to identify the actual 
and potential niche of VACV, an Orthopoxvirus which 
primary affects dairy cattle in Brazil. Subsets of the geo-
graphic locations of VACV cases were combined with 
environmental layers, condensed by a principle compo-
nent analysis, and were clipped to various extents. The 
final extent and subset combination was selected by using 
the model, which produced the highest AUC value. This 
model was then projected onto a larger geographic range, 
to include neighboring Colombia, where outbreaks have 
also occurred. The values of each PC layer as well as the 
biocim values were extracted at each outbreak location. 
These values were compared across the two countries. 
Several methods were used to account for the bias inher-
ent in the outbreak data including: using a 10% threshold 
of probabilistic estimates, selecting a resolution of envi-
ronmental data which was not significantly more resolute 

a b

c

Fig. 3  a–c 3-D plot of values of PC layers 1–3 for Brazil (red), Colombia (blue), MaxENT predictions (black), and background values (grey), b–c differ-
ent angles of the same plot with only Brazil and Colombia predictions

Table 4  Average contribution of  each PC layer to  final 
model

Average percent contribution of each PC layer, to the final ENM. Average of 25 
subsets used to make final model is shown.

PC layer Average SD

PC 1 20.70 2.04

PC 2 53.16 2.82

PC 3 12.71 1.10

PC 4 9.68 1.67

PC 5 3.75 1.10
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than the available geographic granularity of the out-
breaks, and creating subsets of outbreaks which reduced 
the effect of clustering.

The result was a model, which identified regions in 
Brazil where VACV outbreaks have already occurred as 
well as several new locations within Brazil, which could 
be vulnerable to a VACV outbreak. Most states identified 
as suitable for VACV transmission, have regions with a 
high density of livestock, as this industry is clustered in 
southern Brazil. Where high density of livestock and suit-
ability for transmission co-localize, the risk of VACV is 
likely much greater.

The final model predicted a portion of one of the five 
regions in Colombia, which have confirmed VACV out-
breaks. This prediction could be explained in several 
ways. For example, VACV could have different reser-
voirs in different regions, i.e., different mammal species 
maintain the virus in nature, each with different ecologic/
environmental requirements. An argument for multi-
ple reservoirs is supported given the variation in small 

rodent species found to have evidence of infection with 
orthopoxviruses in Brazil [46]. Additionally, poxviruses 
can infect several species of animals i.e., Monkeypox 
virus in pouched rats, [47], prairie dogs, squirrels [48], 
and dormice [49], among others; Cowpox virus in voles 
[50], llamas [51], mice [52], cats [53] among other spe-
cies of animals. Consistent with this is the results of the 
3D graph, which allows for comparison of the ecologic 
niche that VACV occupies across the two countries. The 
discordance for PC 1 suggests that VACV occupies a dif-
ferent climate space in Colombia, as compared with Bra-
zil. Further, suitable environmental conditions alone are 
insufficient for transmission of VACV, as the suitable 
area would also have to be occupied by its reservoir, and 
pathogen distribution is also restricted by geographic 
barriers, mobility, and human intervention [54]. Finally, 
the limited number of outbreaks that have been recorded 
in Colombia leaves the predictive capability of the Bra-
zil model for Colombia, inconclusive. Only a few VACV 
infections in Colombia have been reported since 2014; all 

a b

c d

Fig. 4  Available values are plotted to demonstrate the key environmental parameters and the ecological niche occupied by VACV, according to 
MaxENT predictions (black), 87 Brazilian outbreaks (red), and background (grey). On the Y-axis is the number of pixels for each variable and the X-Axis, 
the bioclim variable indicated
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of which have had contact with cows. It is possible that 
cases are happening in areas of high livestock density in 
Colombia, but they go unreported since the surveillance 
system is not designed to capture them. Given the dif-
ferences in the available data from Brazil and Colombia, 
(i.e., both geographically biased, but Brazil having many 
more years detecting and reporting) conclusions about 
the different niches for VACV in these places, are limited.

Key bioclimatic indicators for this disease have also 
been identified by the model: PWQ, MTCQ, AP and 
MDR.

Several limitations exist for this type of modeling. To 
generate the ENM reported here, the centroids of munic-
ipalities, which have experienced a VACV outbreak, not 
the actual farm, were used. Significant environmental het-
erogeneity across the municipality would reduce the pre-
cision of the final model. Further, the outbreaks used to 
make the model are a result of a literature review, which 
do not represent reports from active surveillance of dis-
ease in humans or cattle; therefore, there is an inherent 
bias that could over-represent the geographic areas that 
routinely report and test for VACV. Several measures 
have been taken to minimize the potential effects of these 
biases, including the use of subsets, limiting geographic 
extents, and the use of a 10% threshold to make conserv-
ative estimates. Improvements in either the specificity of 
coordinates used and in data collection methods would 
likely improve model prediction. Implementing a surveil-
lance program for VACV would improve the precision 
and number of cases and outbreaks. This would, in turn, 
improve model accuracy and predictive capability. Addi-
tionally, overcoming barriers for reporting cases (i.e., fear 
of closing farms) would aid in surveillance efforts. High-
quality occurrence data would also allow the use of rel-
evant non-climatic factors such as land use, trade data, 
milker travel records, and other sources of environmental 
data (i.e., satellite imagery) at higher spatial and temporal 
resolutions to refine the models and broaden our under-
standing of the ecology of this pathogen.

Despite their limitations, the data presented here could 
provide valuable information to public health officials in pro-
tecting human health proactively; areas where the ecological 
niche predicts suitable environments for transmission could 
be targeted by education campaigns to inform local farmers 
of symptoms and warn against sharing of cows with these 
farms, early symptoms in cows, horses, and humans, and 
encourage methods to prevent its spread such as improved 
sanitation and ill cattle isolation. Similarly, future epidemio-
logical and ecological studies could focus on these areas and 
study the local species and their potential role in the mainte-
nance of VACV in nature. Given the prediction capabilities 
of the model in Brazil, in its current state, this model would 
be of most use in Brazil, for these purposes.

Public engagement and a participatory process, inclu-
sive of all stakeholders: farmers, milk consumers, plan-
ning officials, public health personnel, and community 
organizations, would improve the quality and impact 
of all interventions aimed at preventing and mitigating 
harm from outbreaks.

This information is increasingly relevant in context of 
the growing dairy industry in Brazil. An estimated 30% 
of the total milk production in Brazil in 2014, 36 bil-
lion liters, was under informal methods, or not under 
the inspection of government officials [26]. Moreover, 
populations in VACV affected regions of Brazil practice 
a traditional cheese making process which uses unpas-
teurized milk [55], whereby virus in milk may not be 
entirely inactivated. There is a documented case of a 
human patient, without any direct contact with cows, 
who developed VACV lesions of the mouth [56] suggest-
ing a potential risk for transmission via consumption of 
infected milk.

Most VACV publications, to date, are descriptions 
of outbreaks or reported cases [43, 57–61], and a few 
others describe controlled experiments using VACV 
to infect cows or mice [62]; however, to the best of our 
knowledge, there are no publications describing the 
suitable environmental conditions for the transmission 
of VACV. The recent VACV reports from Colombia 
highlights the potential for VACV, or other poxviruses, 
to cause human and animal disease in other countries. 
Further, current events have illuminated the threat of 
spread of infectious diseases, which in past decades may 
have been isolated to a certain region, but now have 
potential to spread globally in a relatively short period 
of time [63, 64]. Finally, herd immunity to poxviruses is 
dissipating due to smallpox vaccination no longer being 
routine.

Conclusions
The study of emerging diseases presents a unique set of 
challenges, several of which are highlighted in work pre-
sented here: selection bias, specificity of data and lim-
ited information, are among them. In addition, lack of 
basic information about a disease, such as a complete 
host range and transmission patterns, leaves prevention 
efforts with little direction. Finally, the lack of a surveil-
lance, cohort or case control study, limits the analytical 
methods that could be used. Here, we sought to address 
these challenges by applying an ecological niche model as 
a proof of concept to demonstrate ways to spatially pre-
dict VACV outbreaks. The analyses here provide a means 
by which to study the patterns of an emerging infec-
tious disease, and regions that are potentially at risk for 
it, in spite of the paucity of critical data and limitations 
described above.
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Policy and methods for the control of infectious dis-
eases often use a reactionary model, addressing diseases 
only after significant impact on human health has ensued. 
Here, we provide a means to predict where the disease is 
likely to appear, providing a map for effective prevention. 
Contemporary events [64, 65] strongly indicate the need 
for the study of emerging and neglected diseases despite 
the implicit hurdles. Global developments over the last 
century have given many infectious diseases a new land-
scape and offer them boundless immune susceptible 
organisms. In the pursuit to counteract these measures, 
current strategies will not suffice in protecting human 
health. We must look for novel solutions and means to 
prevent and mitigate infectious disease epidemics.
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