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Abstract

Background: Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) is a proteomics
tool for biomarker discovery and other high throughput applications. Previous studies have identified various areas
for improvement in preprocessing algorithms used for protein peak detection. Bottom-up approaches to
preprocessing that emphasize modeling SELDI data acquisition are promising avenues of research to find the
needed improvements in reproducibility.

Results: We studied the properties of the SELDI detector intensity response to matrix only runs. The intensity
fluctuations and noise observed can be characterized by a natural exponential family with quadratic variance
function (NEF-QVF) class of distributions. These include as special cases many common distributions arising in
practice (e.g.- normal, Poisson). Taking this model into account, we present a modified Antoniadis-Sapatinas
wavelet denoising algorithm as the core of our preprocessing program, implemented in MATLAB. The proposed
preprocessing approach shows superior peak detection sensitivity compared to MassSpecWavelet for false
discovery rate (FDR) values less than 25%.

Conclusions: The NEF-QVF detector model requires that certain parameters be measured from matrix only spectra,
leaving implications for new experiment design at the trade-off of slightly increased cost. These additional
measurements allow our preprocessing program to adapt to changing noise characteristics arising from
intralaboratory and across-laboratory factors. With further development, this approach may lead to improved peak
prediction reproducibility and nearly automated, high throughput preprocessing of SELDI data.

Background
Mass spectrometry is a promising technology for bio-
marker discovery [1]. There are a wide variety of mass
spectrometers from which one could choose from dur-
ing the design of a biomarker discovery experiment,
reviewed in [2]. Matrix assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry (MALDI-TOF
MS, or just MALDI) can ionize whole proteins intact
over a wide range of protein mass values, making it sui-
table for biomarker discovery in complex media such as
blood serum, where both protein concentrations and
masses vary greatly [3]. Surface-enhanced laser deso-
rption/ionization time-of-flight mass spectrometry
(SELDI-TOF MS, or just SELDI) [4] is a variant of
MALDI that adds an on-chip chromatographic

separation step at the front end of the analysis pipeline.
This, combined with robot-automated sample prepara-
tion, enables SELDI to be high-throughput, an attractive
feature for many laboratories. For a recent review of the
application of SELDI in the context of biomarker dis-
covery, see [5].
The typical SELDI work flow involves the collection of

samples (e.g.- blood serum) from patients, application of
the samples to SELDI ProteinChips® selected for desired
physicochemical properties, and analysis in the SELDI
mass spectrometer. The raw data must be preprocessed
to detect relevant peaks which correspond to proteins in
the sample. Typical signal preprocessing steps per-
formed are spectral alignment, denoising/smoothing,
peak detection, peak matching, normalization, and quan-
tification (see Figure 1 of [6]). The preprocessing of the
raw SELDI spectra is typically accomplished using one
of several available software packages (reviewed in
[6-8]). Artifacts due to insufficient preprocessing of the
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data have, in the worst case, led to erroneous biological
conclusions in early SELDI studies [9-11]. This fact
inspired several important comparison studies of SELDI
preprocessing algorithms [6-8,12]. We now briefly sum-
marize a few of the major contributions. For a more
detailed overview, see the introduction of [6].
Coombes et al introduced the use of wavelets for

denoising SELDI spectra [13], providing a more adaptive
approach to denoise compared to moving average filters
(e.g., as in [14]). Meanwhile, Morris et al introduced the
notion of a mean spectrum, which represents average
protein activity of a group of spectra. Under non-restric-
tive assumptions, the mean spectrum has less noise and
allows one to circumvent complicated peak matching
algorithms that consolidate peak predictions among
individual spectra into a consensus prediction. Malyar-
enko et al introduced a novel baseline removal algo-
rithm based on a proposed charge accumulation model
of the saturation phenomenon of the detector [15]. This
was one of the first algorithms that was designed from
the “bottom-up”, starting with physical considerations of
SELDI. Later, deconvolution filters were shown to be a
possible approach for improving mass resolution of
SELDI [16-18].
Sköld et al analyzed single-shot spectra [19], the basic

components of a final SELDI spectrum obtained by
summing the results of many laser shots. They
suggested that the observed counts in the single shot
spectra may be proportional to a Poisson random vari-
able, proposing a heteroscedastic model for the data.
Meuleman et al also make use of single-shot spectra
(sub-spectra) to derive a preprocessing algorithm based
on analyzing these components separately [20].
In an attempt to improve on the bottom-up approach

to preprocessing, we analyze the statistics of the SELDI
signal over a wide range of intensity values. Based on
data presented herein, we propose a natural exponential
family model with quadratic variance function for the
statistics of the detector response for SELDI experi-
ments. We believe this model is a plausible explanation
for acquisition of single-shot spectra, summing of sin-
gle-shot spectra into a final spectrum, and extracting
protein estimates from a mean spectrum under a unified
framework. Under this framework, we introduce a new
preprocessing approach, adaptive to changing noise
characteristics per spectrum and per experiment, and
show favorable peak prediction performance.

Results
Buffer-only intensity measurements
Electronic measurements exhibit natural random fluc-
tuations [21]. In many cases, these fluctuations are inde-
pendent of the signal and are modeled as additive white
Gaussian noise. In order to understand the nature of the

noise fluctuations inherent to SELDI, we study the
response of the detector under controlled experiments
applying different buffers instead of protein samples
under varying laser intensities (as in [22]). This elimi-
nates the complexity introduced by adding serum to the
chips while facilitating measurements of ion counts over
a wide range of intensity values. In principle, this gives
us a set of n repeated experiments from which we can
study the statistics of the detector response com-
pounded with noise and interference inherent to SELDI.
In this fashion, we have generated two separate buffer +
matrix datasets, denoted BUFFER1 and BUFFER2, which
represent data generated on the same SELDI PBS IIc
machine by different scientists and different machine
parameters. BUFFER1/BUFFER2 contain 183/114 spec-
tra, respectively.
We visualize all of the spectra in BUFFER1 and BUF-

FER2 in Figure 1. In particular, we are interested in ana-
lyzing the region between 3 and 30 kDa, since this is the
mass focusing region in our experiments. In this region,
the observations across spectra for a fixed time (mass)
point represent approximately independent, identically-
distributed measurements in BUFFER1 or BUFFER2,
respectively. Figure 1 shows the median, 75% quantile,
and 25% quantile of BUFFER1 and BUFFER2. The
median spectrum shows the form of an ordinary mea-
surement, with any measurement between the 75% and
25% spectrum lines considered typical as well.
Figure 1 shows us the behavior of the typical buffer +

baseline signal component seen in all SELDI raw spec-
tra. Indeed, we see that changing different machine set-
tings leads to different response properties. For
BUFFER2, the median spectral response is large in the
range shown, and the distribution of responses is sym-
metric about the median, whereas the distribution of
detector response values for BUFFER1 are heavily
skewed, and thus certainly not normally distributed.
We study the detector response (intensity output) for

SELDI under varying input conditions, creating a detec-
tor response curve as follows. For each fixed time
(mass) point across spectra from BUFFER1 in the mass
focused region [3kDa; 30kDa], we estimate the mean
intensity observed and the corresponding variance, with
the same repeated for BUFFER2. These are displayed as
a scatter plot in Figure 2 along with the best fit quadra-
tic curve. Observing Figure 2 we see

1. Intensity fluctuation/variance increases monotoni-
cally with the mean.
2. The variance of the detector response is a quadratic
function of the mean, to a very good approximation.
3. The detector response curves for BUFFER1 and
BUFFER2 are quite different, and thus are dependent
on the machine settings.
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The detector response statistics thus exhibit a quadra-
tic variance function. Briefly, a random variable X is said
to have a quadratic variance function (QVF) if

V      ( ) = + +0 1 2
2, (1)

with μ being the mean of X, V(μ) the variance, and υ0,
υ1, υ2 constants, some of which may be zero.
From these observations, summarized in Figures 1 and

2, it seems unlikely that an algorithm optimized for
BUFFER1 would work well on BUFFER2 and vice versa.
Further, neither a homoscedastic approach (e.g. - stan-
dard wavelet shrinkage [23]) or a simple heteroscedastic
approach (e.g. - Poisson regression formulation [24]) to
preprocessing the data is likely to be sufficient.

Data for evaluating preprocessing algorithms
We have generated two new datasets for evaluating pre-
processing algorithms in order to improve upon purely

simulation-based datasets used in previous comparison
studies [6,7]. A good comparison dataset should have
the following properties (discussed previously in [6]):

1. Exact protein content is known (and thus expecta-
tion of where “true” peaks will appear)
2. Analyzed sample is complex containing many pro-
teins/peaks
3. Noise and baseline characteristics should be as
close to those of real SELDI data as possible.

If one uses simulated data [6,7,25], complete control can
be attained over requirements 1) and 2) at the expense of
having noise/baseline characteristics that are overly ideal.
If one uses purely real data, the noise, baseline, and arti-
facts that arise in actual experiments are present. However,
this usually accompanies the trade-off of either not know-
ing the exact protein content (e.g.- complex serum data)
or an overly simplified scenario (e.g. - spike-in data).

Figure 1 Quantile spectrum visualization of BUFFER1 and BUFFER2 datasets. Quantile spectrum visualizations for all 183/114 spectra from
BUFFER1/BUFFER2 datasets respectively. The middle, upper, and lower spectra are the 50% (median), 75%, and 25% quantile spectra respectively,
calculated pointwise for each mass point. The results show that different machine settings give rise to different statistical behavior of the
intensity values registered at the detector. Preprocessing techniques should be able to adapt to this varying behavior.
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We combine the advantages of purely simulated and
real data by introducing the notion of a hybrid spec-
trum. To generate a hybrid spectrum, we use an imple-
mentation of the SimSpec 2.1 SELDI simulator [25,26]
http://bioinformatics.mdanderson.org/Software/Crom-
well/simspec.zip to generate a “clean” SELDI spectrum,
shown at the top of Figure 3. This gives an accurate
peak shape characteristic as would be seen in low reso-
lution SELDI/MALDI for given mass and ion abundance
values, without any electronic noise or baseline present.
We then select one of our buffer + matrix spectra (from
either BUFFER1 or BUFFER2) and add the two together
to produce the hybrid spectrum shown at the bottom of
Figure 3. Thus, in a hybrid spectrum we know the exact
virtual protein content specified to the simulator a priori
while maintaining exactly the same noise, baseline, and
other artifacts one encounters with real SELDI data.

Further details on the hybrid spectra can be found in
the Methods section and in Additional file 1. The col-
lection of hybrid spectra under different operating con-
ditions results in test sets, denoted HYBRID1 and
HYBRID2, with each test set containing thirty datasets
of fifty hybrid spectra each. The mean performance of a
preprocessing algorithm on HYBRID1 and HYBRID2
can be interpreted as the expected performance of the
preprocessing approach in each separate operating con-
dition in a repeated experiment or sampling from a
homogeneous population (e.g. - cancer group or control
group).

New preprocessing algorithms for SELDI
We have developed a set of MATLAB® scripts for pre-
processing SELDI spectra named LibSELDI. For infor-
mation on how to obtain LibSELDI and the associated

Figure 2 SELDI detector intensity response curves. For repeated experiments under homogeneous machine settings, the variance in
intensities observed is shown to be quadratic in the mean intensity observed. Thus, peaks occurring in areas of the spectrum affected near the
baseline will be more noisy and more difficult to detect. Most algorithms for preprocessing SELDI data assume constant variance, independent
of signal intensity. The detector response curve is shown to be dependent on machine settings, as it is different for BUFFER1 and BUFFER2.
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scripts used to produce the figures in this paper, contact
the authors. We compare our preprocessing package to
the MassSpecWavelet package from the Bioconductor
project [27]. MassSpecWavelet has been established as
one of the best approaches in terms of peak finding in
recent comparison studies [6,7], and has been down-
loaded > 6000 times in the past two years as of March
2010 http://bioconductor.org/packages/stats/bioc/Mass-
SpecWavelet.html. Both packages have the advantage of
having only one main user-adjusted parameter.
In order to compare the performance of each prepro-

cessing program, we generate operating characteristic
curves (OC curves) [6,20], one for each of the 30 datasets
of HYBRID1 and HYBRID2, by varying the Peak Area
threshold (LibSELDI) and signal-to-noise ratio threshold
(Snr.Th in MassSpecWavelet) parameters in the pro-
grams. Code snippets showing how MassSpecWavelet

was tested can be found in Additional file 1. This allows
us to understand the trade-offs between false discovery
rate (FDR) and sensitivity (TPR) achieved by each algo-
rithm. The results for both the HYBRID1 and HYBRID2
collections are shown in Figure 4, where we have plotted
the FDR-axis in log scale to emphasize the low FDR
region which is usually of most interest in biomarker dis-
covery applications. Note that, since both HYBRID1 and
HYBRID2 are collections of datasets representing
repeated trials (or equivalently a homogeneous popula-
tion), the OC curves we show in Figure 4 are the mean
OC curves across the 30 datasets for each.
The results show that LibSELDI tends to have a consid-

erable advantage in the low FDR region, while MassSpec-
Wavelet tends to have higher sensitivity for FDR > 25%.
One way to summarize the performance of the algorithms
is using the area under the OC curve for the FDR region

Figure 3 Construction of hybrid simulated/real spectra for testing preprocessing programs. (top) Clean, pure protein component
spectrum with no noise and no baseline simulated using SimSpec 2.1 MALDI/SELDI simulation engine. Arrows over peaks show the m/z values
of the virtual proteins. (middle) Buffer+matrix spectrum generated in a SELDI PBS IIc, representing noise, baseline, and artifacts that are typically
seen. (bottom) Final hybrid spectrum, consisting of the sum of simulated and real components. Hybrid spectra have the advantage of having
diverse signal components (150 virtual proteins) with exact knowledge of the virtual proteins while retaining the true noise and baseline
characteristics from real SELDI data.
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of interest. We compute two area under the curve values,
PAUC [6] (calculated for FDR Î [0, 50%]), and PAUC25
(calculated for FDR Î [0, 25%]). The results are shown in
Table 1, where we have normalized each score separately
so that a perfect PAUC25 (likewise, PAUC50) score is 100.
In Figure 5, we show the specific operating character-

istics for LibSELDI and MassSpecWavelet for Dataset 2
of HYBRID1. While both algorithms perform well, Lib-
SELDI resolves more than 90 proteins correctly before
making a mistake. Since operating characteristics show
false discovery rate along the x-axis rather than false
positive rate (as in the traditional ROC curves), they
tend to penalize more when false predictions are made
with very few true proteins found. Indeed, in this case
MassSpecWavelet got its first protein prediction correct
but its second prediction wrong, leading to the point at
FDR = 50%, TPR = 7%. Thus, operating characteristics

Figure 4 Trade off between sensitivity and false discovery rate for LibSELDI and MassSpecWavelet. Average loess-smoothed operating
characteristics show the trade-offs between sensitivity (TPR) and false discovery rate (FDR) for HYBRID1 and HYBRID2. The mean loess-smoothed
curve is indicated by the solid line, while the upper and lower dashed lines indicate the 75% and 25% quartile curves. The FDR axis is shown in
log-scale to emphasize lower FDR values. LibSELDI demonstrates superior sensitivity compared to MassSpecWavelet on both datasets for FDR
values less than about 25%. MassSpecWavelet has the advantage for FDR values greater than 25%.

Table 1 Area under the operating characteristic
comparison

Algorithm/Dataset PAUC25 PAUC

LibSELDI/HYBRID1 58.8%
(9.9)

66.1%
(7.1)

MassSpecWavelet/HYBRID1 50.8%
(8.5)

64.9%
(5.9)

LibSELDI/HYBRID2 53.2%
(8.7)

64.1%
(6.1)

MassSpecWavelet/HYBRID2 45.4%
(9.5)

61.3%
(6.9)

Area under the operating characteristic curve in a range of false discovery
rate values of interest is a useful way to compare peak prediction
performance. We show two partial area under the curve metrics, calculated in
the range FDR Î [0, 50%] (PAUC) and FDR Î [0, 25%] (PAUC25). PAUC is more
of overall measure of peak prediction potential, while PAUC25 focuses on
measuring performance at low FDR. The number shown is the average
(standard error) calculated from the 50 operating curves from HYBRID1 and
HYBRID2. LibSELDI shows particularly appealing PAUC25 performance.
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with false discovery rate along the x-axis enforce the
principle of conservative decision making, rewarding
approaches that are successful with their initial large
threshold (conservative) predictions and penalizing
those that make mistakes early.
At FDR values greater than 30%, MassSpecWavelet

outperforms LibSELDI. However, this is at the expense
of generally more promiscuous predictions, since Mass-
SpecWavelet generates 586 potential protein predictions
compared to 250 for LibSELDI.

Discussion
We posit that the detector response is a member of the
Natural Exponential Family with Quadratic Variance
Function (NEF-QVF), which is a proper subset of the
exponential family of distributions [28]. Figures 1 and 2

show that assuming the detector response takes the form
of a specific distribution is impractical, but that the
detector response V(μ) has a QVF. The NEF-QVF family
of distributions occur often in practice and have the fol-
lowing useful properties, characterized by Morris [28]:

1. If a random variable X ÎNEF-QVF, it is comple-
tely specified by its variance function V(μ)
2. If X ÎNEF-QVF, a, b constants then aX + b is
also NEF-QVF
3. Additivity: If X1; X2 ÎNEF-QVF, then X1 + X2 is
NEF-QVF
4. Affine combinations of normal, Poisson, gamma,
binomial, negative binomial, and generalized hyper-
bolic secant distributed random variables generate
all possible distributions in the NEF-QVF family.

Figure 5 Example operating characteristic. Operating points shown summarize the performance of LibSELDI and MassSpecWavelet on
Dataset 2 of HYBRID1 for many different parameter choices. Each blue diamond is the (FDR, TPR) observed for a single choice of Peak Area
threshold for LibSELDI, while each red plus symbol shows the result of a single Snr.Th parameter choice for MassSpecWavelet. For this particular
example, LibSELDI finds more than 90 true proteins before making a mistake. At high FDR conditions, MassSpecWavelet resolves close to 90% of
proteins compared to about 85% for LibSELDI.
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There are some physical reasons as to why the NEF-
QVF assumption could be reasonable as well. Some
plausible justifications for the first two terms in Eq. (1)
are:

1. Constant Term: This is possibly due to thermal
noise (additive Gaussian noise) which is common to
all electronic measurement devices [21].
2. Linear Term: The ability to detect an ion in a
multiple stage electron multiplier, a common type of
detector in MALDI-like instruments, is described by
compound Poisson statistics [29].

The existence of a plausible physical explanation for
the quadratic variance term remains an open question.
However its effect is measured in both BUFFER1 and
BUFFER2 and cannot be neglected. While the QVF
model explains the data well in the mass focused region
between 3 and 30 kDa, it is likely to break down at
lower masses around 2-2.5 kDA where the baseline
reaches a maximum. In this region the detector often
saturates, introducing a non-linearity into the data that
we have not accounted for.
The success of our univariate model for SELDI may

indicate that we have selected the most important fea-
ture to consider in the preprocessing of the data:
namely, the fluctuations in the response of the ion
detector subject to different inputs. The analysis of
expression values of preprocessed data, on the other
hand, requires multivariate methods as there are signifi-
cant statistical dependencies between the peak heights
corresponding to proteins that may be interacting.
While these correlations are important in the analysis
performed after the data is preprocessed, our results
indicated it may be safe to ignore them during the pre-
processing. While we have shown LibSELDI to be accu-
rate for estimating peak m/z values, we have not
assessed the usefulness approach for estimating peak
intensities in this work. The utility of LibSELDI for
accurately estimating peak intensities remains an open
question and subject of future work.
It is entirely possible that the quadratic variance

model could be applicable to other similar technologies
such as MALDI and newer SELDI mass spectrometers.
This, however, has not been confirmed.
Having buffer only spectra allows one to estimate the

parameters of the detector response curve. Knowledge
of the detector response curve enables us to apply the
modified Antoniadis-Sapatinas denoising scheme
described in the methods. Using this approach in our
LibSELDI package yields excellent peak detection per-
formance. We have proved this concept on HYBRID1
and HYBRID2 by estimating the QVF parameters of (1)
using the buffer-only spectra that were randomly

selected from BUFFER1 and BUFFER2 respectively. This
implies that spots on SELDI chips should be reserved
for buffer-only spectra. Thus, the trade-off for using our
approach is increased cost in terms of the number of
chips one must use. The modified Antoniadis-Sapatinas
denoising is computationally intensive as well, taking
approximately seven minutes per spectrum on a high-
end workstation.
We argue that some of the cost is recovered by the

potential for adaptive and accurate preprocessing, but
not all. It may be possible to use QC and/or calibration
samples to estimate the QVF as well rather than buffer-
only spots. However, this would add in some additional
variation due to the nature of the medium (serum,
plasma, etc).
While LibSELDI outperforms MassSpecWavelet on

the HYBRID1 and HYBRID2 test sets, the applicability
of this comparison and of these results to purely real
data remains an open question. There is some basic bio-
logical variability modeled in our test sets (see descrip-
tion in supplement of [6]). However, data from complex
biological samples such as serum or plasma likely con-
tains more biological variation and artifacts than we
have modeled in HYBRID1 and HYBRID2. The investi-
gation of how biological variation affects the model in
QC samples is a work in progress.
In addition to achieving a better mean OC curve at

lower FDR values, LibSELDI consistently predicts fewer
peaks than MassSpecWavelet, leading to protein predic-
tions closer to the true number of proteins in the data,
as shown in Figure 6. This is further evidence that the
adaptive modified Antoniadis-Sapatinas denoising
approach using the NEF-QVF model for the detector
response is smoothing the spectra by close to the right
amount.

Conclusions
We have shown that the variance of the intensity of a
SELDI spectrum is quadratic in the mean signal
strength. We further make the flexible assumption that
the underlying distribution of the intensities is from a
natural exponential family. From this point of view, we
use a modified Antoniadis-Sapatinas wavelet shrinkage
approach for denoising SELDI spectra. With this
method at the core of our LibSELDI program for pre-
processing SELDI data, we demonstrate excellent sensi-
tivity at low false discovery rates. For applications that
can tolerate higher false discovery rates, the MassSpec-
Wavelet algorithm performs better in this region.
Our work has implications in the design of SELDI

experiments. Namely, the modified Antoniadis-Sapatinas
denoising technique performs well but requires an esti-
mate of the quadratic variance function (QVF) describ-
ing the SELDI detector. This, in turn, is affected by
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machine settings. We have used buffer-only spectra to
estimate the QVF. Thus, buffer-only spots could be
interlaced on chips. We are investigating less expensive
ways to estimate the QVF in future work.

Methods
Protocol for generating buffer-only spectra
Buffer-only spectra were generated by interspersing buf-
fer only samples with protein samples from subjects
(e.g. serum samples) and with pooled subject samples
(for quality control) on the same chip. The buffer-only
samples were spotted with wash buffer that was either
PBS (phosphate buffered saline with various concentra-
tions of phosphate and NaCl) based or acetonitrile +
TFA (triflouroacetic acid) based, as manufacturer
recommended per chip type. These buffer only samples
were processed with the same washing steps as the sub-
ject samples, as described in [22], and then SPA matrix
was applied to all spots.
The samples were analyzed with the Protein Biological

System IIc™ SELDI mass spectrometer (Ciphergen Bio-
systems, Freemont, CA). The machine settings (e.g. laser

intensity, detector sensitivity) and precise washing steps
varied from buffer only spot to buffer only spot, and
were generally different between BUFFER1 and BUF-
FER2. Note especially that laser intensities were gener-
ally higher for BUFFER2 than for BUFFER1. A detailed
list of machine settings is given in the Additional file 1.

Hybrid data
Calculating performance statistics for comparison of
MassSpecWavelet and LibSELDI requires a large num-
ber of spectra emulating an experiment that was
repeated many times. To generate the HYBRID1 dataset,
we combine each clean spectrum with one buffer
+matrix spectrum from BUFFER1, and similarly we
form HYBRID2 from BUFFER2 by combining those
spectra with the same clean spectra.
A basic model of repetitive experiments for SELDI is

available with SimSpec 2.1 that takes into account fluc-
tuations in protein concentrations, m/z values, and pre-
valence in the data. Using the SimSpec 2.1 model
developed at the MD Anderson Cancer Center [25,26],
we generate 30 datasets containing 50 clean (noise and

Figure 6 Efficiency of peak/protein predictions. We show boxplots summarizing the number of peaks predicted for each program in the
mean spectrum of each dataset from HYBRID1 and HYBRID2 before thresholding. LibSELDI consistently predicts around 250 peaks, while
MassSpecWavelet predicts more than 600 peaks consistently. MassSpecWavelet’s more promiscuous predictions lead to high sensitivity at the
expensive of higher false discovery rate performance. LibSELDI’s peak predictions are reproducibly closer to the true number of virtual proteins,
150 of them, present in each dataset.
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matrix-free) spectra each. Each dataset consists of 150
virtual proteins and each spectrum within the given
dataset contains a proper subset of these proteins with
fluctuating parameters according to the model described
in [25] and its supplement. The goal for the preproces-
sing programs in our performance evaluation is to
reconstruct the master list of 150 virtual proteins char-
acterizing the dataset. Repeated across all 30 datasets,
we can calculate useful performance statistics. The
properties of the 150 virtual proteins themselves are
drawn from a prior distribution that was estimated from
real data. See [25], or alternatively, the description in
the supplement of [6].
We use sampling to overcome the limitation of having

much fewer spectra in BUFFER1 and BUFFER2 than we
have clean spectra in preparation for testing the algo-
rithms. In principle the best way to construct the hybrid
test sets would be to have one unique spectrum in BUF-
FER1 (likewise BUFFER2) for each spectrum in our
clean protein-only set. However, this would require
1500 buffer+matrix runs to be performed for both BUF-
FER1 and BUFFER2, an impractical amount of blank
chips to run. Sampling from BUFFER1 (BUFFER2) pro-
vides a cost effective way to introduce variation in the
noise/matrix characteristics between the datasets in
HYBRID1 (HYBRID2).

Preprocessing the spectra
First we consider a model for a single SELDI spectrum,
X(t). We observe X(t), a random process, on a discrete
time grid t1,..., tm, where X(t) represents the intensity of
the raw SELDI spectrum observed at time (equivalently
mass) point t. For all t, we assume that X(t) is distribu-
ted according to a natural exponential family (NEF)
with quadratic variance function (QVF) equal to V(μ(t))
as in Eq. (1). The variance function V(μ) completely
characterizes the NEF-QVF family. The goal of prepro-
cessing in SELDI is to estimate μ(t), the expectation of
X(t), which is the signal corresponding to ions that hit
the detector. With a good estimate of μ(t), extracting
peaks and estimating protein m/z values in a dataset is
relatively straightforward.
As a side note we point out that a SELDI spectrum is

actually a sum of single shot spectra. However, the addi-
tivity property of the NEF-QVF family guarantees the
sum is NEF-QVF provided that the single-shot spectra
are NEF-QVF, agreeing with our detector response
model and experimental observations.
Multiple spectra considerations
Rather than observe a single spectrum, the typical bio-
marker discovery approach is to generate at least one
spectrum for each of n samples from an approximately
homogeneous population. For example, one homoge-
neous population may be a group of early stage prostate

cancer patients matched for age, race, etc. Assuming the
samples are run on the same SELDI machine with the
same operating conditions, we have

X t X t V tn1 ( ) ( ) ∝ ( )( )( ), ..., .NEF-QVF  (2)

Our assumption that all n patients have the same
underlying μ(t) is equivalent to assuming that the under-
lying biological condition being observed in each patient
is approximately the same. Thus, we wish to estimate
the underlying commonality μ(t) related to the biology
of their condition expressed through the SELDI signal.
We can mitigate some of the effects of the QVF by
forming the mean spectrum (first introduced by [25]).

X t
n

X tk

k

n

•
=

( ) = ( )∑1

1

. (3)

It is straightforward to show that

E X t t• ( ){ } = ( ) (4)

Var X t
n

V t• ( )( ) = ( )( )1
 . (5)

Thus, the mean spectrum concept is valuable under
the assumptions of the NEF-QVF model as well.
Modified Antoniadis-Sapatinas denoising
We now discuss estimation of μ(t) from the mean spec-
trum (3). Since the Xk(t) are sampled on a discrete time
grid (and thus X•), we introduce vector notation

x • • •= ( ) ( )⎡⎣ ⎤⎦
′

= ( ) ( )⎡⎣ ⎤⎦
′

X t X t

t t

m

m

1

1

,...,

, ..., .  

For any estimate ̂ x •( ) of, μ we measure its fitness

using the mean-squared-error (MSE)

MS E Eˆ , ˆ .   x x• •( )( ) = ( ) −{ }2
(6)

Antoniadis and Sapatinas proposed a wavelet shrinkage

scheme to solve for ̂ in (6) in the context of NEF-QVF

regression [30]. We summarize their main results. For our
denoising, we use the orthogonal discrete wavelet transform
with respect to the Symmlet 8 basis [31]. The transform
can be represented by an m × m orthogonal matrix W,

w x= •W . (7)

Let h be a length m vector with entries taking values
between 0 and 1. Let H = diag(h) be the m × m matrix
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defined by placing the entries of h along the main diag-
onal, all other entries 0. The class of estimators for

̂ x •( ) considered by [30] take the form

ˆ

.

 x w

x
•

•

( ) = ′

= ′
W H

W HW
(8)

This is the typical wavelet denoising scenario where
each wavelet coefficient is left alone or shrunk towards
zero according to some criterion, and is completely
defined by the vector h. Antoniadis and Sapatinas
showed that a good estimator for data from the NEF-
QVF family is given by choosing

h w

w
i

i i

i
i m

z
z z

z

( ) =
( ) − ( )⎡⎣ ⎤⎦ +

( )
=

[ ] + =
≥
<

⎧
⎨
⎩

2 2

2 1

0

0 0

ˆ
, ,...,

,

, .



The term ̂ 2 is estimated as

ˆ . 2

2

1
1

=
+

⋅( ) ( )•
W W V x (9)

Where V(x•) is the vector constructed by applying the
QVF from (1) to each term of x•. (W · W ) is the matrix
whose i, j element is the square of the i, jelement of W.
The parameters υ0, υ1, υ2 in (1) are measured from the
buffer-only spectra, as described in the Results and Dis-
cussion section.
We make an intuitive modification to (9)

 2

2

0

1
1

=
+

⋅( ) ( )

( )( ) = ( )( ){ }
•

• •





W W V

V i V i

†

†

.

max , .

x

x x

Thus our modified Antoniadis and Sapatinas estimator

h uses ̂ 2 in (8) rather than ̂ 2 . The modification

was introduced to account for cases when (9) may
underestimate the noise when low amounts of observed
signal are detected. Define

 



h
w

w

h

=
( ) − ( )⎡⎣ ⎤⎦ +

( )

= ( )

i i

i

H

2 2

2



ˆ .diag

Then, our modified Antoniadis-Sapatinas estimate of
μ is defined as

  = ′ •W HWx . (10)

Peak detection/baseline removal
We consolidate the two preprocessing steps of baseline
removal and peak detection typically performed sepa-
rately into a single step as follows. We assume that the
underlying μ(t) shown in (4) is the superposition of
protein ions, s(t), and energy-absorbing matrix ions, b
(t) striking the detector. It is well known that the dis-
tribution of the isotopes in our analyte of interest gives
rise to a roughly Gaussian peak shape. Thus, we pro-
pose

 t s t b t( ) = ( ) + ( ) (11)

s t a tj

j

j jj
( ) = ( )∑ 3 , (12)

where,  ( , )t j j denotes a Gaussian kernel function

centered at tj with standard deviation sj and zero out-
side the interval [tj - a, tj + a].
Typically, s(t) is very sparse in the sense that it is mostly

zero over the domain of the observed signal. Therefore,
the local minima of our estimated baseline + noise signal
 are points we may assume touch the baseline. From
this point of view, once we have detected all the local

minima in  , the baseline curve estimation problem
reduces to an interpolation problem amongst these points.
We have found through experimentation that piecewise
cubic Hermite interpolating polynomials [32] are excellent
interpolation functions.
The minima and maxima in  are found in one pass

using the extrema function downloadable from
MATLAB® central file exchange. The maxima are the
peaks in the mean spectrum potentially indicating pro-
teins represented in our sample population while the
minima correspond to samples from the baseline signal.
Each detected peak is quantified using peak area and a

threshold is chosen based on the peak area measure-
ment to generate the final prediction set.

Operating characteristics

The peaks we detect in  represent the initial set from
which we choose our final estimates of proteins that are
active in the population of interest. The choice of final
estimate is accomplished using a peak area threshold
(LibSELDI) or signal-to-noise ratio measurement (Snr.
Th in MassSpecWavelet). From each prediction, we cal-
culate the observed false discovery rate (FDR) and true
positive rate (TPR, also called sensitivity)

FDR
FP

FP TP
=

+
(13)
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TPR
TP

TP FN
=

+
. (14)

Where TP (the number of true positives) is the num-
ber of the 150 virtual protein m/z values having at least
one predicted m/z value within 0.3% relative error. The
FP is defined as the number of predicted m/z values not
within 0.3% of any of the 150 virtual protein m/z values
for this dataset. Similarly, FN is the number of the 150
virtual protein values without any predicted m/z value
within 0.3% relative error.
For each dataset, a curve is fit to the operating points.

Each operating curve is averaged to produce a mean
operating characteristic, as shown in Figure 4. From this
curve, the calculation of the area-under-the curve is
straightforward. For more details, see sections 2.2 and
2.2.1 of [6].

Additional material

Additional file 1: Experiment and simulation settings. This file
contains additional details about how simulations and experiments were
carried out.
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